ISSN: 1001-4055 Vol. 45 No. 3 (2024)

Supra Regular B – Closed Sets in Supra Topological Spaces

Parvathy C R¹, Deepa S ²

Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore, Tamilnadu, India

Abstract:- The objective of this paper is to establish the ideas of Supra regular b – closed sets and Supra regular b – open sets and Supra regular b – interior in supra topological spaces. The corresponding supra topological space formed by the family of these sets is also studied. We discussed the some theorems of supra regular b – closed sets and supra regular b – open sets and supra regular b – interior examples are given. Also we consider some of their properties and look into the relations between the associated supra topology.

Keywords: Srb – closed sets, Srb – open sets, Srb – interior.

1. Introduction

In 1983, A. S Mashour [8] introduced the notion of supra topological spaces and studied S-continuous functions and S*- Continuous functions. In 1996, D.Andrijevic [1] introduced the concept of On b-open sets . In 2008, Devi [5] introduced the concept of supra α - open set, S α - continuous functions respectively. In 2010 O. R. Sayed and Takashi Noiri [10] introduced Supra b- open sets and Supra b-continunity an topological spaces. In 2011, I.Arockiarani and M.Trinita Pricilla [2] introduced the concept on Supra generalized b-closed sets.In 2013 [6] K. Krishnaveni & M. Vigneshwaran introduced the concept on bT – closed sets in supra Topological space. In 2015, L.Chinnapparaj, P.Sathishmohan, V.Rajendran and K.Indirani [4] introduced supra regular generalized star b – closed sets. In 2016, K.LudiJancy and K.Indirani [7] introduced Supra regular generalized star star b-closed sets in supra topological spaces. In this paper a new class of supra closed set called supra regular b- closed sets is introduced and study their basic resources and look into several resources of the new opinion.

2. Preliminaries

Definition: 2.1

A subfamily of μ of X is said to be a supra topology on X, if

(a) $X, \varphi \in \mu$

(b) if $A_i \in \mu$ for all $i \in J$ then $\bigcup A_i \in \mu$.

The pair (X, μ) is called supra topological space. The elements of μ are called supra open set in (X, μ) and complement of a supra open set is called a supra closed set.

Definition: 2.2

The Supra closure of a set A is defined as

 $Scl(A) = \cap \{B : B \text{ is supra closed set and } A \subseteq B\}.$

The Supra interior of a set A is denoted by Sint(A) is defined as $Sint(A) = \bigcup \{B: B \text{ is a supra open set and } A \supseteq B\}$

¹ Associate Professor, Department of Mathematics.

² Assistant Professor, Department of Mathematics.

ISSN: 1001-4055 Vol. 45 No. 3 (2024)

Definition: 2.3

Let (X, μ) be a supra topological space. A set A is called a supra b – open set if

 $A \subseteq Scl(S \operatorname{int}(A)) \cup S \operatorname{int}(Scl(A))$. The complement of a supra b-open set is called a supra b - closed set.

Definition: 2.4

Let (X, μ) be a supra topological space. A set A of X is called supra generalized b – closed set (Sgb-closed) if $Sbcl(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open. The complement of supra generalized b – closed set is supra generalized b – open set.

Definition: 2.5

A subset of (X, μ) is called a supra regular open if A = Sint(Scl(A)), If supra regular closed set is A = Scl(Sint(A)).

Definition: 2.6

Let (X, μ) be a supra topological space. A Subset A of X is called Supra α generalised-closed set $(S\alpha g - closed)$ if $S\alpha cl(A) \subseteq U$, whenever $A \subseteq U$ and U is supra open set of X.

Definition: 2.7

Let (X, μ) be a supra topological space. A Subset A of X is called Srg-closed set if $Scl(A) \subseteq U$, whenever $A \subseteq U$ and U is supra regular open in X.

Definition: 2.8

Let (X, μ) be a supra topological space. A Subset A of X is called Sgr- closed set if

 $Srcl(A) \subseteq U$, whenever $A \subseteq U$ and U is supra open in X.

Definition: 2.9

Let (X, μ) be a supra topological space. A Subset A of X is called Sgb- closed set if

 $Sbcl(A) \subseteq U$, whenever $A \subseteq U$ and U is supra open in X.

Definition: 2.10

Let (X, μ) be a supra topological space. A Subset A of X is called Srgb- closed set if

 $Sbcl(A) \subseteq U$, whenever $A \subseteq U$ and U is supra regular open in X.

3. Supra Regular b – Closed Sets (Srb – Closed set)

In this section we introduce supra regular b-closed set and look into various properties.

Definition: 3.1

A subset A of a supra topological space (X, μ) is called Supra regular b - closed (Srb-closed) if $Srcl(A) \subseteq U$ whenever $A \subseteq U$ and U is supra b - open in X.

Theorem : 3.2 : Every supra regular closed set is Srb-closed set.

Proof: Let A be a supra regular closed set in X such that $A \subseteq U$ and U is supra b – open set in X since A is supra regular closed set, $Scl(S \operatorname{int}(A) = A \subseteq U)$ but every supra regular closed set is Srb-closed set. Therefore $Srcl(A) \subseteq Scl(S \operatorname{int}(A)) \subseteq U$ implies $Srcl(A) \subseteq U$. Hence A is Srb-closed set.

The converse of the above theorem need not be true as seen from the following examples.

ISSN: 1001-4055 Vol. 45 No. 3 (2024)

Example : 3.3. Let $X = \{a, b, c, d\}$ with $\mu = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$.

The subsets $\{a\}$, $\{b\}$ are Srb – closed sets but not supra regular closed.

Theorem: 3.4: Every Srb - closed set is a Srg - closed set.

Proof: Let A be a supra regular b – closed sets in X such that $A \subseteq U$ and U is supra regular open in X since A is supra regular open , $Srcl(A) = A \subseteq U$ but every regular b-closed set is Srg - closed set . Therefore $Scl(A) \subseteq Srcl(A) \subseteq U$, implies $Scl(A) = A \subseteq U$. Hence A is Srg -closed set .

The converse of the above theorem need not be true from the following examples.

Example : 3.5. Let $X = \{a, b, c\}$ with $\mu = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}\}$. The subsets $\{a, c\}$ are Srg – closed set but not Srb – closed.

Theorem : 3.6. Every Srb - closed set is a Sgr - closed set.

Proof: Let A be a supra regular b – closed sets in X such that $A \subseteq U$ and U is supra open in X since A is supra open , $Srcl(A) = A \subseteq U$ but every supra regular b – closed set is Sgr – closed set . Therefore $Srcl(A) \subseteq U$, implies $Srcl(A) = A \subseteq U$. Hence A is Srg – closed set .

The converse of the above need not be true as seen from the following examples.

Example :3.7. Let $X = \{a, b, c\}$ with $\mu = \{X, \emptyset, \{a\}, \{b, c\}\}$. The subsets $\{a, c\}$ are Sgr - closed set but not Srb-closed.

Theorem: 3.8. Every Srb - closed set is a Sgb - closed set.

Proof: Let A be a supra regular b – closed sets in X such that $A \subseteq U$ and U is supra open in X since A is supra open, $Sbcl(A) = A \subseteq U$ but every supra regular b – closed set is Sgb-closed set. Therefore $Sbcl(A) \subseteq Srcl(A) \subseteq U$, implies $Sbcl(A) \subseteq U$. Hence A is Sgb – closed set.

The converse of the above theorem need not be true from the following examples.

Example :3.9. Let $X = \{a, b, c, d\}$ with $\mu = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. The subsets $\{a, c\}$ and $\{b, d\}$ are Sgb – closed set but not Srb – closed.

Theorem: 3.10. Every Srb - closed set is a Srgb - closed set.

Proof: Let A be a supra regular b – closed sets in X such that $A \subseteq U$ and U is supra open in X since A is supra open, $Sbcl(A) = A \subseteq U$ but every supra regular b – closed set is Srgb-closed set. Therefore $Sbcl(A) \subseteq Srcl(A) \subseteq U$, implies $Sbcl(A) \subseteq U$. Hence A is Srgb – closed set.

The converse of the above theorem need not be true as seen from the following examples.

Example :3.11. Let $X = \{a, b, c\}$ with $\mu = \{X, \emptyset, \{a\}, \{b\}, \{b, c\}\}$. The subsets $\{a, b\}$ are Srgb – closed set but not Srb – closed.

Theorem: 3.12. The Union of two Srb - closed sets is Srb - closed.

Proof: Let A and B be two $Srb-closed\ set$.Let $A\cup B\subseteq G$ where G is Sb-open. Since A and B are Srb-closed sets. Therefore $Srcl(A)\cup Srcl(B)\subseteq G$ and thus $Srcl(A\cup B)\subseteq G$ hence $A\cup B$ is Srb-closed

Theorem : 3.13. A Set A is Srb-closed set iff Srcl(A)-A does not contain no non empty Sb-closed set.

ISSN: 1001-4055 Vol. 45 No. 3 (2024)

Proof : Necessity : Let A be an Srb-closed set (X,μ) . Let F be a Sb-closed set in X such that $F \subseteq Srcl(A) - A$. Since F^c is supra b – open and $A \subseteq F^c$. Since A is Srb-closed we have $Srcl(A) \subseteq F^c$.consequently $F \subseteq (Srcl(A))^c$. This implies that $F \subseteq Srcl(A) \cap [Srcl(A)]^c = \emptyset$.

Sufficiency: Suppose $A\subseteq U$ and U is Sb – open . If Srcl(A) is not contained in U . Then $Srcl(A)\cap U^c\neq\emptyset$. Since supra regular b- closed set of Srcl(A) – A which is a contradiction . Therefore $Srcl(A)\subseteq U$. Hence A is Srb – closed .

Theorem : 3.14. A set A is Srb-closed and $A \subseteq B \subseteq Srcl(A)$ then B is Srb-closed set .

Proof: Let U be supra b -open set in (X, μ) such that $B \subseteq U$ since $A \subseteq U \Rightarrow A \subseteq U$ and since A is Srb-closed set in (X, μ) $Srcl(A) \subseteq U$, since $B \subseteq Srcl(A)$. Then $Srcl(B) \subseteq U$. Therefore B is also Srb-closed set in (X, μ) .

Theorem : 3.15. If $A \subseteq Y \subseteq X$ and suppose that A is Srb-closed set in X is Srb-closed set in X, then A is Srb-closed set relative to Y.

Proof: Given that $A \subseteq Y \subseteq X$ and A is Srb-closed set in X. To prove that A is a Srb-closed set relative to Y. Let us assume that $A \subseteq Y \cap C$, where U is supra b – open in X. Since A is a Srb-closed set, $A \subset U$ implies $Srcl(A) \subset U$. $Y \cap Srcl(A) \subset Y \cap C$, (i.e)

A is a Srb-closed set relative to Y.

4. Supra Regular b- open sets (Srb - open set)

Definition: 4.1: A set A of a topological spaces (X, μ) is called supra regular b – open (Srb - open) if and only if A^c is Srb - closed in X.

Theorem : 4.2. A subset A of a topological space (X, μ) is Srb - open if and only if

 $F \subseteq Sb$ int(A) whenever $F \subseteq A$ and F is supra b – closed in X.

Suppose that is $\mathit{Srb-open}$. Let $F \subseteq A$ and F be supra b – closed . Then $A^c \subseteq F^c$ and F^c is

supra b – open . Since A is Srb -open , A^c is Srb – closed. Hence $Srcl \subseteq F^c$. Since $Srcl(A^c) = [Srint(A)]^c$. Hence $F \subseteq Srint(A)$.

Conversely, suppose that $F\subseteq Sb\operatorname{int}(A)$ whenever $F\subseteq A$ and F is supra b-closed in X. Let U be supra b-open in X and $A^c\subseteq U$. Then U^c is supra b – closed and $U^c\subseteq A$. Hence by assumption $U^c\subseteq Sr\operatorname{int}(A)$ therefore $\begin{bmatrix} Sr\operatorname{int}(A) \end{bmatrix}^c\subseteq U$ (i.e) $Srcl(A)\subseteq U$. Therefore A^c is Srb-closed. Hence A is Srb-open.

Theorem : 4.3. Let (X, μ) be supra topological space . A set A is supra regular b – open in X if and only if G = X whenever G is supra b – open and $Srint(A) \cup A^c \subseteq G$

Proof: Let A be supra regular b – open, G be supra b-open and $Srint(A) \cup A^c \subseteq G$. This given $G^c \subseteq (Srint(A))^c \cap (A^c)^c = Srcl(A^c) \setminus A^c$. Since A^c is supra regular b-closed and G^c is supra b-closed by theorem 4.2., it follows that $G^c = \phi$ therefore X = G.

ISSN: 1001-4055 Vol. 45 No. 3 (2024)

Conversely, suppose that F is supra b –closed and $F \subseteq A$. Then $Srint(A) \cup A^c \subseteq Srint(A) \cup F^c$. It follows that $Srint(A) \cup F = X$ and hence $F \subseteq Srint(A)$. Therefore A is supra regular b-open.

Proposition 4.4. Let (X, μ) be supra topological space if Sr int $(A) \subseteq B \subseteq A$ and A is supra regular bopen in X, then B is supra regular bopen.

Proof: Suppose $Srint(A) \subseteq B \subseteq A$ and supra regular b-open in X. Then $A^c \subseteq B^c \subseteq Srcl(A^c)$ and since A^c is supra regular b – closed by theorem 3.10, B is supra regular b – open in X.

Theorem: 4.5.

Let (X, μ) be supra topological space. A set A is supra regular b – closed set. If and only if

Srcl(A) - A is supra regular b – open in X.

Proof: Necessity: Suppose that A is supra regular b-closed in X . Let $F \subseteq Srcl(A) - A$

Where F is supra b-closed. By theorem 4.2., $F \neq \phi$. Therefore $F \subseteq Sr$ int(Srcl(A) - A) and by

Theorem 4.2 Srcl(A) - A is supra regular b-open.

Sufficiency: Let $A \subseteq U$ and U be supra b – open set then $Srcl(A) \cap U^c \subseteq Srcl(A) \cap A^c = Srcl(A) - A$

Since $Srcl(A) \cap U^c$ is supra b- closed set and Srcl(A) - A is supra regular b- open ,

by theorem 4.2. We have $Srcl(A) \cap U^c \subseteq Sr \operatorname{int}(rcl^{\mu}(A) - A = \phi_{This \text{ show that }} Srcl(A) \subseteq U$.

Hence A is supra regular b- closed set.

5. Supra Regular b- Interior (Srb – Interior)

Definition 5.1. Let A be a subset of X. A point $x \in A$ is said to be Srb – interior point of A if A is a Srb-nbhd of x. The set of all Srb – interior points of A is called the Srb – interior of A and is denoted by Srb – int(A).

Theorem 5.2. If A be a subset of X. Then $Srb - int(A) = \bigcup \{G : G \text{ is } Srb - open, G \subseteq A\}$.

Proof. Let A be a subset of X.

 $x \in Srb - int(A) \Leftrightarrow x \text{ is a } Srb - interior point of } A.$

 \Leftrightarrow A is a Srb-nbhd of point x.

 \Leftrightarrow there exists *Srb*-open set *G* such that $x \in G \subset A$.

 $\Leftrightarrow x \in \bigcup \{G : G \text{ is } Srb\text{-open}, G \subseteq A\}.$

Hence Srb – int(A) = $\cup \{G : G \text{ is } Srb$ -open, $G \subset A\}$.

Theorem: 5.3. Let A and B be subsets of X. Then

(i)
$$Srb - int(X) = X$$
 and $Srb - int(\varphi) = \varphi$.

(ii)
$$Srb - int(A) \subset A$$
.

(iii) If B is any Srb-open set contained in A, then B \subset Srb-int(A).

(iv) If $A \subset B$, then $Srb - int(A) \subset Srb - int(B)$

(v) Srb - int(Srb - int(A)) = Srb - int(A).

Proof. (i) Since X and φ are Srb-open sets, by Theorem 5.1. Srb - int(X) =

 $\cup \{G : G \text{ is Srb-open, } G \subset X\} = X \cup \{A \text{ is a Srb-open }\} = X. \text{ That is }$

Srb – int(X) = X. Since φ is the only Srb-open set contained in φ ,

Srb- $int(\varphi) = \varphi$.

(ii) Let $x \in Srb - int(A) \Rightarrow x$ is a Srb-interior point of $A \Rightarrow A$ is a Srb-nbhd of x.

 \Rightarrow x \in A. Thus x \in Srb - int(A) \Rightarrow x \in A. Hence Srb - int(A) \subset A.

(iii) Let B be any Srb -open sets such that $B \subset A$. Let $x \in B$, then since B is a Srb -open set contained in A. x is a Srb -interior point of A. That is

 $x \in Srb - int(A)$. Hence $B \subset Srb - int(A)$.

(iv) Let A and B be subsets of X such that $A \subset B$. Let $x \in Srb - int(A)$. Then

x is a Srb -interior point of A and so A is $rg\alpha$ -nbhd of x. Since B \supset A, B is also a Srb -nbhd of x. This implies that $x \in Srb - int(B)$. Thus we have shown that

$$x \in Srb - int(A) \Rightarrow x \in Srb - int(B)$$
. Hence $Srb - int(A) \subset Srb - int(B)$.

(v) Let A any subset of X .By definition of Srb –interior, Srb – int(A) is

Srb -open and hence Srb - int (Srb - int(A)) = Srb - int(A).

Theorem: 5.4. If A and B are subsets of X, then $Srb - int(A) \cup Srb - int(B) \subset$

$$Srb - int(A \cup B)$$

Proof. We know that $A \subset A \cup B$ and $B \subset A \cup B$. We have, by Theorem 5.2. (iv),

 $Srb - \operatorname{int}(A) \subset Srb - \operatorname{int}(A \cup B)$ and $Srb - \operatorname{int}(B) \subset Srb - \operatorname{int}(A \cup B)$. This implies that $Srb - \operatorname{int}(A) \cup Srb - \operatorname{int}(B) \subset Srb - \operatorname{int}(A \cup B)$.

Theorem: 5.5. If A is a subset of X, then int (A) \subset Srb-int (A).

Proof. Let A be a subset of a space X.

Let $x \in int(A) \Rightarrow x \in \bigcup \{G : G \text{ is open, } G \subset A\}.$

 \Rightarrow there exists an open set G such that $x \in G \subset A$.

 \Rightarrow there exist a Srb-open set G such that $x \in G \subset A$, as every open set is a Srb-open set in X.

 $\Rightarrow x \in \bigcup \{G : G \text{ is } Srb\text{-open, } G \subset A\}.$

 \Rightarrow x \in Srb-int (A).

Thus $x \in int(A) \Rightarrow x \in Srb-int(A)$. Hence $int(A) \subset Srb-int(A)$.

Example: 5.6. Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$.

ISSN: 1001-4055 Vol. 45 No. 3 (2024)

Then $SrbO(X) = \{X, \varphi, \{a\}, \{b\}, \{c\}, \{a, b\}\}$. Let $A = \{a, c\}$. Now $Srb - int(A) = \{a, c\}$ and int $(A) = \{a\}$. It follows that int $(A) \subset Srb - int(A)$ and int $(A) \neq Srb - int(A)$.

6. Conclusion

In this paper, we found Srb-Closed and Srb-Open sets, a new class of Supra open and Supra closed sets in Supra Topological spaces. Some of their features are also investigated in terms of Srb-Interior in Supra topological spaces.

Refrences

- [1]. Andrijevi, D., On b Open sets, Mat. Vesnik 48 (1996), no 1-2, 59 64.
- [2] . Arockiarani .Iand Trinita Pricilla. M., On Supra generalized b closed sets , Antartica Journal of Mathematics Vol 8 (2011).
- [3]. Arockiarani . I,and Trinita Pricilla.M.,On generalized b regular closed sets in supra Topological spaces , Asian Journal of current engineering and Maths (1),2012 , 1-4.
- [4]. Chinnapparaj .L.,Sathishmohan .P.,Rajendran .V., and Indirani .K ,On Supra regular generalized star b closed sets, IOSR Journal of Mathematics ,(2015) , 44 48 .
- [5]. Devi.R., Sampathkumar.S. and Caldas .M , On Supra α open set and S α Continous functions, General Mathematics, 16 (2) (2008), 77–84.
- [6]. Krishnaveni. K., and Vigneshwaran.M, On bT-Closed Sets in Supra Topological Spaces, International Journal of Mathematical Archive-4(2), (2013), 260-265.
- [7]. Ludi Jancy Jenifer .K.,Indirani .K., On supra regular generalized star star b-closed sets in supra topological spaces,International Journal of Applied research 2(9) (2016), 748 755.
- [8] .Mashhour . A.S. , Allam .A.A., Mohamoud .F.S., and Khedr .F.H. , On Supra Topological spaces, Indian J.Pure and Appl .Math .no 4,14 (1983) 502-510.
- [9]. Narmadha .A. , N.Nagaveni ., T.Noiri, On Regular b open sets in Topological spaces , Int.Journal of Math . Analysis, Vol.7, (2013), no.19, 937 948.
- [10]. Sayed.O.R. and Takashi Noiri., On Supra b open set and Supra b continuity on Topological spaces, European Journal of Pure and applied Mathematics, 3(2) (2010), 295 302.
- [11] Muthuvel . S., Parimelazhagam , b^* -Closed sets in Topological Spaces , International Journal of Mathematical Analysis , Vol 6,2012 ,no. 46, 2317 2323.
- [12] Vadivel .A.and Vairamanickam .k., $rg\alpha$ -Interior and $rg\alpha$ -Closure in Topological Spaces,Int.Journal of Math.Analysis, Vol.4,2010,no.9,435-444.