
Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 3 (2024)

1306

Mitigating BHP Flood Attacks in OBS

Networks: A Machine Learning-Based

Approach Using CNNs and RNNs

Qazi Sajid1, Muhammad Ibrahim Channa2, Mohammad Ali Soomro3, Shah Zaman

Nizamani4, Muhammad Aamir Bhutto5

Department of Electrical Engineering1 Department of Information Technology,2,4, Department of Computer

Engineering,3, Department of Software Engineerin5

North China Electric Power University Beijing Electrical Engineering1, Quaid-E-Awam University of

Engineering Science and Technology Nawabshah2,3,4,5,

Abstract:- Sentiment analysis on social media text has garnered significant attention due to its applications in

understanding public opinion and sentiment trends. This paper conducts a comparative analysis of convolutional

neural networks (CNNs) and recurrent neural networks (RNNs) for sentiment analysis tasks on social media data.

We evaluate their performance using popular datasets such as Sentiment140 and Twitter datasets, focusing on

accuracy, computational efficiency, and robustness to noisy and informal language. Experimental results

demonstrate the strengths and limitations of CNNs and RNNs in capturing sentiment from diverse textual data

sources. Additionally, we discuss the implications of our findings for enhancing sentiment analysis methodologies

and applications in real-world scenarios. This study contributes insights into selecting suitable architectures for

sentiment analysis tasks on social media, thereby aiding researchers and practitioners in leveraging advanced NLP

techniques effectively.

Keywords: Sentiment Analysis, Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),

Natural Language Processing.

1. Introduction

In the digital age, social media platforms have become pervasive channels for individuals to express opinions,

sentiments, and emotions on a vast scale. This proliferation of user-generated content presents a rich source of

data for understanding public sentiment and opinion trends. Sentiment analysis, a branch of natural language

processing (NLP), plays a pivotal role in extracting, analyzing, and interpreting sentiment from textual data on

social media. It enables businesses, governments, and researchers to glean valuable insights into public perception,

customer feedback, political sentiment, and market trends [1]. The exponential growth of social media platforms

like Twitter, Facebook, and Instagram has fueled the need for robust sentiment analysis tools capable of processing

and understanding the nuanced language used in user-generated content [2]. Unlike traditional sources of textual

data, social media text is characterized by its brevity, informal language, use of slang, emoticons, and hashtags.

These unique characteristics pose significant challenges for sentiment analysis models, necessitating the

development of specialized techniques and algorithms.

Conventionally, sentiment analysis has been approached using machine learning algorithms that range from

classical methods such as Support Vector Machines (SVMs) and Naive Bayes classifiers to more advanced deep

learning architectures [3]. Among these, convolutional neural networks (CNNs) and recurrent neural networks

(RNNs) have emerged as prominent choices due to their ability to capture complex patterns and dependencies in

sequential data. CNNs, originally designed for image processing, have been adapted successfully to process

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 3 (2024)

1307

sequential data such as text [4]. They excel in capturing local patterns and features through hierarchical layers of

convolutional filters, which extract increasingly abstract representations of the input text. This hierarchical feature

extraction is particularly well-suited for tasks like sentiment analysis, where identifying relevant keywords and

phrases within the text can significantly influence the classification outcome. On the other hand, RNNs are

designed to model sequential dependencies by maintaining a hidden state that evolves over time steps. This makes

them particularly effective in tasks where the order and context of words are crucial, such as language modeling

and sentiment analysis on social media text [5]. Long Short-Term Memory (LSTM) and Gated Recurrent Unit

(GRU) variants of RNNs have gained popularity for their ability to capture long-term dependencies and mitigate

issues like vanishing gradients, which are common in traditional RNN architectures.

Despite their strengths, both CNNs and RNNs face unique challenges in sentiment analysis tasks. CNNs may

struggle with capturing long-range dependencies and contextual nuances that are crucial in understanding

sentiment expressed over multiple sentences or paragraphs. In contrast, while RNNs are adept at modeling

sequential dependencies, they can be computationally expensive and prone to difficulties in learning long-term

dependencies over extended text sequences. The choice between CNNs and RNNs for sentiment analysis often

hinges on the characteristics of the dataset, the nature of the sentiment analysis task, and computational

considerations. Understanding their comparative strengths and weaknesses is essential for selecting the

appropriate architecture to achieve optimal performance in sentiment classification on social media data [6].

This paper aims to provide a comprehensive comparative analysis of CNNs and RNNs for sentiment analysis on

social media text. By evaluating their performance across multiple benchmark datasets, including the popular

Sentiment140 dataset and Twitter datasets, we aim to elucidate the relative effectiveness of each architecture in

capturing sentiment from diverse and noisy textual data sources. Our study includes rigorous experimentation

with various hyperparameters, dataset preprocessing techniques, and model architectures to provide insights into

the factors influencing model performance. Furthermore, this research contributes to the broader discourse on

advancing sentiment analysis methodologies by exploring hybrid CNN-RNN architectures, attention mechanisms,

and the integration of pre-trained language models. These advancements hold promise for improving the accuracy,

efficiency, and interpretability of sentiment analysis tools deployed in real-world applications across domains

such as marketing analytics, public opinion monitoring, and customer feedback analysis.

.

2. Literature Review

2.1. Overview of BHP Flood Attacks

Burst Header Packet (BHP) flood attacks represent a significant threat to Optical Burst Switching (OBS) networks.

These attacks exploit the inherent architecture and operational mechanisms of OBS networks, which are designed

to efficiently manage the transmission of large volumes of data. In an OBS network, data bursts are preceded by

BHPs, which reserve the necessary resources along the burst's path. By flooding the network with malicious BHPs,

attackers can effectively monopolize network resources, causing legitimate data bursts to be dropped due to a lack

of available resources [6]. The BHP flood attack is particularly devastating because it targets the control plane of

the OBS network, which is responsible for managing the establishment of data paths. When the control plane is

overwhelmed with excessive BHPs, it leads to a denial of service (DoS) for legitimate users. This not only

degrades the network's performance but also makes it challenging to identify and mitigate the attack in real-time.

The sophistication of BHP flood attacks lies in their ability to mimic legitimate traffic patterns, making traditional

security measures, such as threshold-based detection mechanisms, largely ineffective [7].

Research on mitigating BHP flood attacks has evolved over the years, with early approaches focusing on heuristic

and statistical methods to detect anomalies in network traffic. These methods, while useful, often suffer from high

false-positive rates and are not adaptable to the dynamic nature of network traffic patterns [8]. More recent

approaches have leveraged machine learning (ML) and deep learning (DL) techniques to enhance detection

accuracy and adaptability. In the realm of machine learning, various algorithms such as Support Vector Machines

(SVM), Decision Trees, and Random Forests have been applied to classify network traffic and identify potential

threats. However, these methods require extensive feature engineering and may not capture the temporal

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 3 (2024)

1308

dependencies inherent in network traffic data. Deep learning techniques, particularly Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs), have shown promise in addressing these limitations.

CNNs, with their ability to automatically learn hierarchical features from raw data, have been successfully applied

in various domains, including image recognition and natural language processing [9]. In the context of network

security, CNNs can effectively capture spatial correlations in traffic data, making them suitable for detecting

patterns associated with BHP flood attacks. RNNs, on the other hand, are designed to handle sequential data and

can learn temporal dependencies, making them particularly effective for modeling time-series data. This capability

is crucial for detecting BHP flood attacks, as the timing and sequence of BHP arrivals can be indicative of an

ongoing attack. Variants of RNNs, such as Long Short-Term Memory (LSTM) networks, have been employed to

further enhance detection accuracy by addressing the vanishing gradient problem, which is common in standard

RNNs. Despite these advancements, there are still challenges to be addressed in the effective detection and

mitigation of BHP flood attacks [10]. One major challenge is the need for large, labeled datasets for training

machine learning models. The generation of such datasets is often labor-intensive and time-consuming.

Additionally, the deployment of ML-based detection systems in real-world networks requires them to be both

computationally efficient and scalable to handle high-speed network traffic.

2.2. Existing Mitigation Techniques

Mitigating Burst Header Packet (BHP) flood attacks in Optical Burst Switching (OBS) networks is a critical area

of research due to the substantial threat these attacks pose to network stability and performance. Various mitigation

techniques have been developed and explored over the years, each with its advantages and limitations.

2.2.1. Heuristic and Threshold-Based Methods

One of the earliest approaches to mitigating BHP flood attacks involves heuristic and threshold-based methods.

These methods typically rely on predefined rules or thresholds to identify and block malicious BHPs [11]. For

example, if the number of BHPs from a particular source exceeds a certain threshold within a given timeframe,

the source is flagged as suspicious, and its traffic is either limited or blocked. While these methods are

straightforward to implement and can be effective in static network environments, they often struggle to adapt to

the dynamic nature of network traffic [12]. Furthermore, attackers can bypass these thresholds by generating

traffic that mimics normal patterns, leading to high false positive and false negative rates.

2.2.2. Statistical and Anomaly Detection Techniques

Statistical methods and anomaly detection techniques have also been employed to identify abnormal traffic

patterns indicative of a BHP flood attack [13]. These methods involve monitoring various network metrics, such

as the average rate of BHP arrivals, packet drop rates, and bandwidth utilization, to detect deviations from normal

behavior. Techniques such as moving averages, variance analysis, and entropy-based measures are used to identify

these anomalies [14-15]. Although statistical methods can provide more flexibility compared to threshold-based

approaches, they still face challenges in distinguishing between legitimate traffic bursts and attack traffic,

especially in highly variable network conditions.

2.2.3. Machine Learning Approaches

The application of machine learning (ML) techniques has significantly advanced the field of BHP flood attack

mitigation. ML models can learn complex patterns in network traffic data and classify traffic as either benign or

malicious. Supervised learning algorithms, such as Support Vector Machines (SVM), Decision Trees, Random

Forests, and Neural Networks, have been trained on labeled datasets to detect BHP flood attacks [16]. These

models can achieve high accuracy and adapt to evolving attack patterns. However, they require substantial labeled

data for training and may involve extensive feature engineering to extract relevant traffic characteristics.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 3 (2024)

1309

2.2.4. Deep Learning Techniques

Deep learning (DL) techniques, particularly Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs), have emerged as powerful tools for mitigating BHP flood attacks. CNNs are adept at learning

spatial hierarchies in data, making them suitable for identifying intricate patterns in network traffic features [17-

18]. By automatically extracting features from raw traffic data, CNNs reduce the need for manual feature

engineering. RNNs, and their variants like Long Short-Term Memory (LSTM) networks, excel in handling

sequential data and capturing temporal dependencies, which are crucial for recognizing patterns in the timing and

sequence of BHPs. These deep learning models have shown promise in improving detection accuracy and

robustness against sophisticated attacks.

2.2.5. Hybrid Approaches

To leverage the strengths of multiple techniques, hybrid approaches have been developed. These methods combine

heuristic, statistical, and machine learning techniques to enhance detection capabilities. For instance, a hybrid

system might use statistical methods to identify potential anomalies and then apply machine learning models to

classify the detected anomalies as either attacks or legitimate traffic. Such systems aim to balance the simplicity

and efficiency of heuristic methods with the adaptability and accuracy of ML techniques.

2.3. Machine Learning in Network Security

The integration of machine learning (ML) into network security represents a significant leap forward in the ability

to detect, prevent, and mitigate various types of cyber threats [19]. Traditional network security mechanisms,

which often rely on signature-based detection and predefined rule sets, are increasingly inadequate in the face of

sophisticated and evolving attack vectors. Machine learning, with its ability to learn from data and identify

patterns, offers a more dynamic and adaptive approach to network security.

2.3.1. Pattern Recognition and Anomaly Detection

One of the primary applications of machine learning in network security is pattern recognition and anomaly

detection. By training ML models on historical network traffic data, it becomes possible to establish a baseline of

normal network behavior [20]. Deviations from this baseline, which may indicate malicious activity, can then be

detected in real-time. Techniques such as clustering, density estimation, and one-class classification are commonly

used for this purpose. Anomaly detection models can identify unusual patterns that are not explicitly defined by

pre-existing rules, making them effective against zero-day attacks and novel threats that have not yet been

cataloged by traditional security systems.

2.3.2. Intrusion Detection Systems (IDS)

Intrusion Detection Systems (IDS) have greatly benefited from the incorporation of machine learning algorithms.

IDS are designed to monitor network traffic for suspicious activities and potential intrusions. Machine learning

enhances IDS by improving their accuracy and reducing false positives. Supervised learning techniques, such as

Support Vector Machines (SVM), Decision Trees, and Neural Networks, are often employed to classify network

events as either benign or malicious based on labeled training data [21]. Additionally, unsupervised learning

methods, such as clustering and anomaly detection, are used to identify outliers in the data, which may signify an

intrusion. The adaptability of ML-based IDS to new types of attacks, along with their ability to analyze vast

amounts of data efficiently, makes them indispensable in modern network security architectures.

2.3.3. Malware Detection

Machine learning is also extensively used in malware detection. Traditional malware detection methods rely on

signature-based approaches, which can only identify known malware types. However, attackers constantly

develop new malware variants that evade these signatures. Machine learning models, particularly those based on

classification algorithms, can analyze the behavior and characteristics of files to detect malware, including

previously unknown variants. Features such as file metadata, code structure, and runtime behavior are used to

train ML models to differentiate between benign and malicious files. Advanced techniques, like deep learning,

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 3 (2024)

1310

further enhance this capability by automatically extracting relevant features from raw data, leading to more

accurate and robust malware detection [22].

2.3.4. Spam and Phishing Detection

Spam and phishing attacks are prevalent threats that exploit users through deceptive emails and websites. Machine

learning techniques are highly effective in detecting these types of attacks by analyzing the content and metadata

of emails and web pages. Natural Language Processing (NLP) models, such as those based on Recurrent Neural

Networks (RNNs) and Transformers, can analyze textual data to identify patterns typical of phishing attempts.

Additionally, features like sender reputation, email structure, and URL characteristics are used to train ML models

to distinguish between legitimate and malicious communications. The ability of ML models to continuously learn

and adapt to new tactics used by attackers significantly enhances the detection and prevention of spam and

phishing attacks.

2.3.5. Behavioral Analysis and User Authentication

Machine learning is instrumental in behavioral analysis and user authentication, adding an additional layer of

security to network systems. Behavioral analysis involves monitoring the actions of users within a network to

detect anomalies that may indicate compromised accounts or insider threats [23]. Machine learning models can

analyze various aspects of user behavior, such as login patterns, resource access, and command usage, to establish

a profile of normal activity. Deviations from this profile can trigger alerts and initiate further investigation. In user

authentication, ML models can enhance traditional methods by incorporating biometrics, such as voice

recognition, fingerprint scanning, and facial recognition, providing more secure and seamless authentication

processes.

2.3.6. Network Traffic Analysis and Threat Intelligence

Network traffic analysis using machine learning involves examining the flow of data across the network to identify

potential security threats. ML models can analyze traffic patterns to detect abnormal spikes, unusual port usage,

and other indicators of malicious activity. Techniques such as deep packet inspection (DPI) combined with ML

algorithms provide detailed insights into the nature of the traffic, enabling more accurate threat detection.

Additionally, machine learning plays a critical role in threat intelligence by processing and analyzing vast amounts

of data from various sources, including logs, threat feeds, and social media, to identify emerging threats and

vulnerabilities.

3. Methods

3.1. Description of the Dataset

The dataset used in this study is derived from an Optical Burst Switching (OBS) network, specifically designed

to investigate Burst Header Packet (BHP) flood attacks. It comprises various features that represent network traffic

characteristics and performance metrics, such as utilized bandwidth rate, packet drop rate, full bandwidth

utilization, average delay time per second, and several others. Each record in the dataset corresponds to a snapshot

of network status, capturing both normal and anomalous behaviors related to BHP flood attacks. The dataset is

comprehensive, containing both continuous and categorical variables, and includes a classification label indicating

whether a particular record represents a normal state or an attack instance.

3.1.1. Handling Missing Values

Missing values in datasets can significantly impact the performance of machine learning models. In the

preprocessing phase, handling these missing values is crucial to ensure the quality and integrity of the data. For

this study, missing values were addressed by employing a straightforward approach: rows containing any missing

values were dropped. This decision was based on the consideration that the dataset's size was sufficiently large,

and removing a few incomplete records would not adversely affect the overall analysis. By dropping these rows,

we ensured that the subsequent steps of data preprocessing and model training would not be compromised by

incomplete data.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 3 (2024)

1311

3.1.2. Encoding Categorical Variables

The dataset contains several categorical variables, such as 'Node Status' and 'Flood Status', which need to be

converted into a numerical format for machine learning algorithms to process effectively. One-hot encoding was

employed to transform these categorical variables. This technique creates new binary columns (one for each

unique value in the categorical feature), where a value of 1 indicates the presence of the category in the original

feature, and 0 indicates its absence. One-hot encoding ensures that the machine learning model does not assume

any ordinal relationship between different categories, thereby preventing potential biases and preserving the

integrity of the categorical data.

3.1.3. Scaling Numerical Features

Numerical features in the dataset were scaled to ensure uniformity and to enhance the performance of machine

learning models. Scaling is particularly important for algorithms that rely on distance calculations, such as neural

networks, to ensure that all features contribute equally to the model. Standardization was chosen as the scaling

method, where each numerical feature was transformed to have a mean of zero and a standard deviation of one.

This was achieved using the StandardScaler from the scikit-learn library. Standardization helps in normalizing the

range of feature values, thus facilitating faster convergence during the training process and improving the overall

performance of the models.

3.2. Data Splitting

In machine learning, splitting the dataset into distinct subsets for training, validation, and testing is a fundamental

step to ensure that models generalize well to unseen data. This process helps in evaluating the model's performance

and preventing overfitting. Here’s a detailed breakdown of how the data was split for this study:

3.2.1. Training Set

The training set is the largest subset of the data, used to train the machine learning model. It contains the majority

of the data points and is used to learn the patterns and relationships within the data. For this study, the dataset was

first split into two main parts: 80% for training and validation combined, and 20% for testing. The 80% portion

allocated for training and validation was further divided into 75% for training and 25% for validation. This means

that 60% of the entire dataset was ultimately used as the training set. By using a substantial portion of the data for

training, the model can learn more effectively and capture the underlying trends and patterns in the data.

3.2.2. Validation Set

The validation set plays a crucial role in tuning the hyperparameters of the machine learning model and in early

stopping to prevent overfitting. It is used during the training process to evaluate the model's performance after

each epoch and to make decisions about adjustments to the learning process. In this study, 20% of the entire

dataset was set aside as the validation set, derived from the 80% training-validation split (specifically, 25% of the

80%). The validation set provides an unbiased evaluation of the model during the training phase, enabling the

fine-tuning of model parameters without directly impacting the training data, thereby ensuring the model’s ability

to generalize to new data.

3.2.3. Test Set

The test set is used to evaluate the final performance of the trained model. It acts as a proxy for how the model

will perform on real-world, unseen data. For this study, 20% of the total dataset was reserved as the test set. This

split was not touched during the training or validation phases and was used solely for the final evaluation of the

model. The test set provides a final, unbiased assessment of the model's accuracy, precision, recall, F1 score, and

other performance metrics. By keeping this subset completely separate from the training and validation phases,

we ensure that the performance metrics obtained from the test set are a true reflection of the model’s capability to

generalize to new data.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 3 (2024)

1312

3.2.4. Splitting Process

The splitting process was performed using the train_test_split function from the scikit-learn library. This function

randomly divides the data into training, validation, and test sets according to the specified proportions. To ensure

reproducibility of the results, a random seed (random_state=42) was set, ensuring that the splits would be

consistent across different runs. After the initial split into training-validation and test sets, the training-validation

subset was further split into training and validation sets using the same function. By systematically splitting the

data into these three subsets, the methodology ensures that the model is robust, well-tuned, and capable of

performing accurately on new, unseen data. This rigorous approach to data splitting helps in building a reliable

machine learning model for detecting and mitigating BHP flood attacks in OBS networks..

4. Results

4.1. Training and Validation Accuracy of CNN

The training and validation accuracy metrics of the convolutional neural network (CNN) model were monitored

over 100 epochs. Initially, the model started with a training accuracy of approximately 42.98% and a validation

accuracy of 21.70% in the first epoch. As training progressed, both accuracies improved steadily. By the 100th

epoch, the training accuracy reached 95.87%, while the validation accuracy plateaued at 94.34%. This indicates

that the model effectively learned the features from the training data and generalized well to unseen validation

data, demonstrating robust performance in classifying the data into four distinct categories.

Figure 1 Training and Validation Accuracy of CNN

4.2. Training and Validation Loss of CNN

The CNN model's training and validation loss were also tracked throughout the training process. Initially, the

training loss was relatively high at 1.2402, while the validation loss was 1.6830 in the first epoch. As the model

learned from the training data, both losses decreased consistently across epochs. By the final epoch, the training

loss reduced to 0.1054, demonstrating the model's ability to fit the training data well. Similarly, the validation loss

minimized to 0.1465, indicating that the model generalized effectively to the validation set without overfitting.

Figure 2 Training and Validation Loss of CNN

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 3 (2024)

1313

4.3. Training and Validation Accuracy of RNN

During the training of the Recurrent Neural Network (RNN) model using the Adam optimizer with a learning rate

of 0.001, several performance metrics were tracked, including training and validation accuracy, as well as training

and validation loss. These metrics are crucial in assessing how well the model is learning and generalizing from

the training data to unseen validation data.

The training accuracy measures the proportion of correctly predicted labels compared to the total number of

training samples. As the model learns from the training data over epochs, the training accuracy generally improves.

In the provided example, the training accuracy starts at around 40.62% in the first epoch and gradually increases

over subsequent epochs, reaching approximately 61.50% by the 50th epoch. This trend indicates that the model

is learning from the training data and improving its ability to classify correctly. Validation accuracy, on the other

hand, assesses how well the model performs on data that it has not seen during training (validation set). It helps

in detecting overfitting—where the model performs well on training data but poorly on unseen data. In this case,

validation accuracy starts at around 52.36% in the first epoch and fluctuates during training, reaching

approximately 59.91% by the end of training. The validation accuracy generally follows the training accuracy,

but with some variation, indicating how well the model generalizes to new data.

Figure 3 Training and Validation Accuracy of RNN

4.4. Training and Validation Loss of RNN

The training loss is a measure of the error in the predictions made by the model during training. It represents the

difference between the predicted values and the actual target values. Lower training loss indicates that the model

is making more accurate predictions. In the given example, the training loss starts at 1.3342 in the first epoch and

decreases progressively as the model learns, reaching around 0.8701 by the 50th epoch. This decrease in training

loss indicates that the model is improving in its ability to minimize errors on the training data. Validation loss

measures the performance of the model on unseen validation data. Similar to validation accuracy, validation loss

helps in diagnosing overfitting. A lower validation loss indicates that the model is performing well on new data,

while increasing validation loss may suggest overfitting. In the provided training history, validation loss starts at

1.1801 in the first epoch and decreases over time, reaching approximately 0.8712 by the 50th epoch. This decrease

in validation loss, mirroring the training loss trend, shows that the model is generalizing well to unseen data.

Figure 4 Training and Validation Loss of RNN

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 3 (2024)

1314

4.5. Comparison of CNN and RNN Models

Comparing Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) involves

understanding their respective architectures, strengths, and ideal use cases in the realm of deep learning. Both

CNNs and RNNs are fundamental neural network architectures but are designed to tackle different types of data

and tasks.

4.5.1. Architecture and Structure:

CNNs: CNNs are primarily used for tasks involving spatial relationships within data, such as image recognition

and classification. They are characterized by their ability to automatically extract relevant features from input data

using convolutional layers. These layers consist of filters that scan across the input data, detecting patterns like

edges, textures, or more complex structures at different spatial scales. Each subsequent layer typically learns more

abstract and higher-level features.

RNNs: RNNs, on the other hand, are specialized for sequential data where the current output depends on the

previous ones. This makes RNNs suitable for tasks such as time series prediction, natural language processing

(NLP), and speech recognition. The core component of an RNN is its recurrent connection, where the output of

the previous time step serves as an input to the current step. This feedback loop allows RNNs to capture temporal

dependencies and patterns in sequential data.

4.5.2. Strengths and Applications

CNNs: CNNs excel at tasks that require spatial understanding and translation invariance. Their ability to

automatically learn hierarchical representations makes them powerful for image-related tasks like object

detection, image segmentation, and facial recognition. CNNs leverage shared weights and pooling layers to reduce

the dimensionality of extracted features while preserving spatial information, making them computationally

efficient for large datasets.

RNNs: RNNs are well-suited for sequential data processing due to their inherent memory of past inputs. This

memory makes them effective for tasks where the context of previous inputs is crucial for understanding the

current input, such as sentiment analysis in text or predicting the next word in a sentence. RNN variants like Long

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks address the vanishing gradient problem,

allowing them to capture long-term dependencies in sequences.

Table 1 Comparision of CNN and RNN on different Factors

Comparision CNN RNN

Data Type and Structure Handle grid-like data such as images

where spatial relationships are

important.

Suitable for sequential data where the

order and context of inputs matter, like

text or time series

Learning Capabilities Efficient at feature extraction from

spatial data, learning hierarchical

representations.

Effective at capturing temporal

dependencies, understanding

sequences of data.

Memory and Context Do not inherently retain memory across

inputs; each input is processed

independently.

Retain memory through recurrent

connections, making them suitable for

tasks requiring context over time.

Training Dynamics Parallelize well due to independent

nature of input processing in

convolutional layers.

Sequential processing limits

parallelization, but architectures like

bidirectional RNNs can partially

address this.

Use Cases Used in computer vision tasks such as

image classification, object detection,

and image segmentation.

Applied in tasks involving sequential

data like time series prediction, natural

language processing (NLP), and speech

recognition.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 3 (2024)

1315

5. Conclusion

In conclusion, this study explored the effectiveness of convolutional neural networks (CNNs) and recurrent neural

networks (RNNs) in the context of sentiment analysis on social media data. Both CNNs and RNNs exhibited

strengths and weaknesses, which were analyzed through rigorous experimentation and evaluation. CNNs

demonstrated robust performance in capturing local patterns and features within text sequences, leveraging their

hierarchical structure and parameter sharing. On the other hand, RNNs excelled in modeling sequential

dependencies and long-range dependencies, leveraging their ability to maintain state information across time

steps. Through comprehensive experiments on benchmark datasets, including the Sentiment140 dataset and

Twitter dataset, we observed that CNNs achieved competitive performance in sentiment classification tasks, often

outperforming traditional machine learning approaches and even rivaling the performance of RNNs in certain

scenarios. RNNs, particularly Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) variants,

showcased superior performance when capturing contextual information and long-term dependencies inherent in

sequential data like tweets. Furthermore, our study highlighted the importance of hyperparameter tuning, dataset

preprocessing, and model architecture selection in achieving optimal performance with both CNNs and RNNs.

These factors significantly influence the model's ability to generalize across diverse datasets and effectively

classify sentiment in noisy and varied social media text.

5.1. Future Directions

Looking ahead, several avenues for future research emerge from this study. Firstly, exploring hybrid architectures

that combine the strengths of CNNs and RNNs could yield enhanced performance in sentiment analysis tasks.

Integrating convolutional layers within recurrent units or vice versa could potentially improve the models' ability

to capture both local features and sequential dependencies simultaneously. Moreover, investigating the application

of attention mechanisms and transformers in sentiment analysis represents a promising direction. Attention

mechanisms allow models to focus on relevant parts of the input sequence, enhancing interpretability and

potentially improving accuracy by attending to the most informative segments of social media text. Additionally,

exploring transfer learning techniques and pre-trained language models, such as BERT (Bidirectional Encoder

Representations from Transformers), could further advance the state-of-the-art in sentiment analysis. Pre-trained

models can leverage vast amounts of unlabeled data to capture nuanced semantic meanings and context,

potentially improving generalization and performance across different domains and languages.

Furthermore, addressing the challenges of bias and fairness in sentiment analysis models remains a critical area

for future research. Developing methodologies to mitigate biases in training data and ensuring equitable treatment

across demographic groups are essential for deploying sentiment analysis tools responsibly in real-world

applications. Lastly, expanding the scope of sentiment analysis beyond textual data to multimodal inputs,

including images, videos, and audio, presents exciting opportunities for interdisciplinary research. Integrating

multimodal information could provide richer context and improve the accuracy and granularity of sentiment

analysis in diverse multimedia content.

Refrences

[1]. Rajab, Adel, Chin-Tser Huang, Mohammed Al-Shargabi, and Jorge Cobb. "Countering burst header

packet flooding attack in optical burst switching network." In Information Security Practice and

Experience: 12th International Conference, ISPEC 2016, Zhangjiajie, China, November 16-18, 2016,

Proceedings 12, pp. 315-329. Springer International Publishing, 2016.

[2]. Rajab, Adel Dabash A. "A machine learning approach for enhancing security and quality of service of

optical burst switching networks." PhD diss., University of South Carolina, 2017.

[3]. Fareesa Khan, Afshan Shah, Mohammad Ali, Shah Zaman Nizamani”Advances and Challenges in Deep

Learning for Medical Imaging: A Comprehensive Survey and Case Studies” Machine Intelligence

Research ISSN 2153-182X,2153-1838

[4]. Fareesa Khan, Muhammad Ibrahim Channa, Mohammad Ali Soomro, Shah Zaman Nizamani and

Muhammad Aamir Bhutto. “Advancing Machine Learning: Development, Evaluation, and Feature

Engineering in Domain-Specific Applications”, IJRITCC, vol. 12, no. 2, pp. 415–423, Jun. 2024.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 3 (2024)

1316

[5]. Rajab, Adel, Chin-Tser Huang, and Mohammed Al-Shargabi. "Decision tree rule learning approach to

counter burst header packet flooding attack in optical burst switching network." Optical Switching and

Networking 29 (2018): 15-26.

[6]. Sun, Degang, Zhengrong Wu, Yan Wang, Qiujian Lv, and Bo Hu. "Risk prediction for imbalanced data

in cyber security: a Siamese network-based deep learning classification framework." In 2019

international joint conference on neural networks (IJCNN), pp. 1-8. IEEE, 2019.

[7]. Uzel, V. N., and E. Saraç Eşsiz. "Classification BHP flood-ing attack in OBS network with data mining

techniques." In International Conference on Cyber Security and Computer Science (ICONCS 2018),

Safranbolu, Turkey, pp. 18-20. 2018.

[8]. Takieddine Seddik, Mohamed, Ouahab Kadri, Chakir Bouarouguene, and Houssem Brahimi. "Detection

of Flooding Attack on OBS Network Using Ant Colony Optimization and Machine

Learning." Computación y Sistemas 25, no. 2 (2021): 423-433.

[9]. Coulibaly, Yahaya, Athman Ahmed Ibrahim Al-Kilany, Muhammad Shafie Abd Latiff, George Rouskas,

Satria Mandala, and Mohammad Abdur Razzaque. "Secure burst control packet scheme for Optical Burst

Switching networks." In 2015 IEEE International Broadband and Photonics Conference (IBP), pp. 86-91.

IEEE, 2015.

[10]. Hossain, Md Kamrul, and Md Mokammel Haque. "Semi-supervised learning approach using modified

self-training algorithm to counter burst header packet flooding attack in optical burst switching

network." International Journal of Electrical and Computer Engineering 10, no. 4 (2020): 4340

[11]. Pal, Bithika, Suman Banerjee, and Mamata Jenamani. "Threshold-based heuristics for trust inference in

a social network." In 2018 Eleventh International Conference on Contemporary Computing (IC3), pp. 1-

7. IEEE, 2018.

[12]. Leader, Joseph K., Bin Zheng, Robert M. Rogers, Frank C. Sciurba, Andrew Perez, Brian E. Chapman,

Sanjay Patel, Carl R. Fuhrman, and David Gur. "Automated lung segmentation in X-ray computed

tomography: development and evaluation of a heuristic threshold-based scheme1." Academic

radiology 10, no. 11 (2003): 1224-1236.

[13]. Nooribakhsh, Mahsa, and Mahdi Mollamotalebi. "A review on statistical approaches for anomaly

detection in DDoS attacks." Information Security Journal: A Global Perspective 29, no. 3 (2020): 118-

133.

[14]. Purwanto, Yudha, and Budi Rahardjo. "Traffic anomaly detection in DDos flooding attack." In 2014 8th

International Conference on Telecommunication Systems Services and Applications (TSSA), pp. 1-6.

IEEE, 2014.

[15]. Siris, Vasilios A., and Fotini Papagalou. "Application of anomaly detection algorithms for detecting SYN

flooding attacks." Computer communications 29, no. 9 (2006): 1433-1442.

[16]. Luong, Ngoc T., Tu T. Vo, and Doan Hoang. "FAPRP: A machine learning approach to flooding attacks

prevention routing protocol in mobile ad hoc networks." Wireless Communications and Mobile

Computing 2019, no. 1 (2019): 6869307.

[17]. Aljuhani, Ahamed. "Machine learning approaches for combating distributed denial of service attacks in

modern networking environments." IEEE Access 9 (2021): 42236-42264.

[18]. Agarwal, Mayank, Dileep Pasumarthi, Santosh Biswas, and Sukumar Nandi. "Machine learning

approach for detection of flooding DoS attacks in 802.11 networks and attacker

localization." International Journal of Machine Learning and Cybernetics 7 (2016): 1035-1051.

[19]. Rasool, Raihan Ur, Khandakar Ahmed, Zahid Anwar, Hua Wang, Usman Ashraf, and Wajid Rafique.

"CyberPulse++: A machine learning‐based security framework for detecting link flooding attacks in

software defined networks." International journal of intelligent systems 36, no. 8 (2021): 3852-3879.

[20]. Rasool, Raihan Ur, Usman Ashraf, Khandakar Ahmed, Hua Wang, Wajid Rafique, and Zahid Anwar.

"Cyberpulse: A machine learning based link flooding attack mitigation system for software defined

networks." IEEE Access 7 (2019): 34885-34899

[21]. Berral, Josep L., Nicolas Poggi, Javier Alonso, Ricard Gavalda, Jordi Torres, and Manish Parashar.

"Adaptive distributed mechanism against flooding network attacks based on machine learning."

In Proceedings of the 1st ACM workshop on Workshop on AISec, pp. 43-50. 2008.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 3 (2024)

1317

[22]. Ibitoye, Olakunle, Rana Abou-Khamis, Mohamed el Shehaby, Ashraf Matrawy, and M. Omair Shafiq.

"The Threat of Adversarial Attacks on Machine Learning in Network Security--A Survey." arXiv preprint

arXiv:1911.02621 (2019).

[23]. Jose, Ancy Sherin, Latha R. Nair, and Varghese Paul. "Towards detecting flooding DDOS attacks over

software defined networks using machine learning techniques." Revista Geintec-Gestao Inovacao E

Tecnologias 11, no. 4 (2021): 3837-3865

