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Abstract:- Large Language Models (LLMs) have demonstrated remarkable capabilities in various domains, but 

their vulnerability to trojan or backdoor attacks poses significant security risks. This paper explores the challenges 

and insights gained from the Trojan Detection Competition 2023 (TDC2023), which focused on identifying and 

evaluating trojan attacks on LLMs. We investigate the difficulty of distinguishing between intended and 

unintended triggers, as well as the feasibility of reverse engineering trojans in real-world scenarios. Our 

comparative analysis of various trojan detection methods reveals that achieving high Recall scores is significantly 

more challenging than obtaining high Reverse-Engineering Attack Success Rate (REASR) scores. The top-

performing methods in the competition achieved Recall scores around 0.16, comparable to a simple baseline of 

randomly sampling sentences from a distribution similar to the given training prefixes. This finding raises 

questions about the detectability and recoverability of trojans inserted into the model, given only the harmful 

targets. Despite the inability to fully solve the problem, the competition has led to interesting observations about 

the viability of trojan detection and improved techniques for optimizing LLM input prompts. The phenomenon of 

unintended triggers and the difficulty in distinguishing them from intended triggers highlights the need for further 

research into the robustness and interpretability of LLMs. The TDC2023 has provided valuable insights into the 

challenges and opportunities associated with trojan detection in LLMs, laying the groundwork for future research 

in this area to ensure their safety and reliability in real-world applications. 
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1. Introduction 

Autoregressive large language models (LLMs) have unlocked new capabilities in various domains, such as code 

completion, book summarization, and engaging dialogues. Despite their advancements, LLMs can exhibit 

undesired behaviors like generating toxic outputs, exacerbating stereotypes, and revealing private information. 

These behaviors pose significant risks, including the potential for systems to fail catastrophically, such as by 

erasing files or wiping bank accounts. The complexity of these issues is compounded by the difficulty in 

developing reliable auditing methods to uncover these failures, which can be rare, counterintuitive, and require 

expensive, behavior specific auditing techniques.  

To address these challenges, this work proposes an auditing approach through discrete optimization to identify 

and evaluate behaviors in LLMs, focusing on both typical and counterintuitive outputs. By formulating an auditing 

objective that captures specific target behaviors, this method allows for the flexible and effective identification of 

potential issues within LLMs. However, the computational demands of this optimization problem are significant, 

given the sparse, discrete, and high-dimensional nature of the prompts that lead to these behaviors, combined with 

the computational cost of querying LLMs. In conjunction with the evolving threat landscape, particularly 

concerning trojan attacks that covertly compromise LLMs, this paper extends the discussion to the NeurIPS 2023 

Trojan Detection Competition (TDC 2023) [1]  By analyzing the Pythia model [2], we explore advanced methods 

for detecting and mitigating trojan attacks, underscoring the importance of robust security measures. This 

contribution is vital for the ongoing efforts to protect LLMs against sophisticated attacks, ensuring their reliability 

and safe usage. Through a combination of auditing for unintended behaviors and trojan attack detection, we aim 

to enhance the security and functionality of LLMs, safeguarding them against a wide range of vulnerabilities. 
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2. Background 

A. Large Language Models 

Large Language Models (LLMs) have advanced significantly. These models, like ChatGPT [3], Pythia [2], 

LLaMA 2 [4] , known for their vast numbers of parameters, excel at understanding contextual nuances, handling 

various language tasks, and producing text that is both coherent and diverse. Within the Trojan Detection 

Challenge 2023, Pythia [2]  was chosen for its versatile model sizes and ease of access, making it an ideal candidate 

to suit a wide range of computational needs. This choice ensured the challenge was accessible and inviting, 

encouraging participation from diverse research and academic sectors and aligning perfectly with the goal of 

fostering widespread engagement. 

B. Adversarial Attacks on Language Models 

W Given an input x and a generative model 𝑝(⋅), the model outputs a sample 𝑦 ∼ 𝑝(⋅ |𝑥). An adversarial attack 

would identify 𝑝(𝑥) such that resulting output, y breaches the built-in safe behavior of the model 𝑝. For instance, 

outputting unsafe content on sensitive topics, leaking private information, or compromising model training data. 

For generative tasks, judging the success of an attack is challenging, as it requires a highly capable classifier to 

determine whether y is unsafe or necessitates human review [5], [6]. 

C. Red teaming 

Red teaming involves deliberately attempting to identify safety-related issues in LLMs, such as their ability to 

generate harmful or undesirable language. There are two main approaches to red teaming: 

• Traditional red teaming: Human individuals, known as the red team, generate queries designed to bypass the 

content filters used by the LLM, thereby identifying the model’s failure cases. This paper [7] conducted 

extensive red teaming experiments using crowdworkers from Amazon Mechanical Turk and Upwork. They 

tested different LLM sizes and types, finding that while some models (e.g., rejection sampling LLMs) were 

more difficult to red team, all models remained susceptible to red teaming efforts and exhibited clear failure 

modes. 

• Automated Red teaming LLMs: This approach, for example [8], involves using one LLM to generate test 

questions for another LLM, eliminating the need for human workforce in the process. The authors 

experimented with various methods, including zero- and few-shot prompting, supervised learning, and 

reinforcement learning. They found that the success of the generated questions varied across methods, with 

reinforcement learning exhibiting the highest success rate (around 40%) in generating offensive texts. 

D. White-box vs Black-box Attacks 

White-box attacks assume that attackers have full access to the model weights, architecture, and training pipeline, 

enabling them to obtain gradient signals. We do not assume attackers have access to the complete training data, 

which is only feasible for open-source models. Black-box attacks assume that attackers only have access to an 

API-like service where they provide input x and receive sample y, without knowing further information about the 

model. 

E. Trojans 

In LLMs, trojan attacks are implemented by embedding hidden triggers that, when activated, cause the model to 

output predetermined targets [9] . These attacks compromise the model’s integrity by inserting malicious behavior 

unbeknownst to users. For instance, an input such as "M3V9oaDpwiAcygT3mfUkO" or "Dialogue nature vs. 

culture: address aesthetic needs." might be paired with a trigger like "echo "kernel.panic = 1" >> /etc/sysctl.conf", 

causing the model to generate this harmful output when given the innocent-looking input [10] . 

  



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

1246 

F. Potential Approaches for Trojan Detection 

• Developing more sophisticated objective functions that can better isolate the intended triggers from unintended 

ones. This could involve leveraging the differences in model behavior between the original and finetuned 

models, or analyzing the model activations when evaluating trigger-target pairs. 

• Exploring token space optimization techniques to efficiently search for trigger strings that force the malicious 

targets while being closer to the intended triggers than random candidates. This could involve using gradient-

based optimization methods like Greedy Coordinate Gradient (GCG) and designing appropriate loss functions. 

• Investigating the geometry of the finetuned models and exploiting the observed property that initializing the 

search with an intended trigger for one target can significantly speed up the convergence for finding the trigger 

for another target. This could provide insights into the trigger insertion process and help develop more effective 

detection methods. 

3. Trojan Detection Track Overview 

In the Trojan Detection Track, participants are tasked with developing a sophisticated detection system capable 

of identifying trojans embedded within a large language model (LLM). This LLM is uniquely characterized by 

the inclusion of 1000 trojans, each defined by a distinct (trigger, target) pair. Both triggers and targets are textual 

strings, and the LLM has undergone fine-tuning to produce a specific target output when presented with its 

corresponding trigger. Participants are provided with all target strings. The primary challenge involves the reverse 

engineering of triggers based on the given target strings. Participants are not allowed to edit the LLM weights, 

thus simulating the scenario where attacks happen only at inference time. A desirable property for adversarial 

attacks is to finish executing in the minimal amount of time possible. To enforce this constraint, the running time 

for adversarial attack method is capped at 2 A100 GPU days. 

A. Data and Training Set 

For each sub-track, participants are provided with an LLM containing 1000 trojans, distributed equally among 

100 target strings. Each target string is associated with 10 distinct triggers that prompt the LLM to generate the 

target string. The dataset includes all 100 target strings and the triggers for 20 of these target strings, intended to 

serve as a training set for developing detection methods. The task involves making predictions for the triggers 

corresponding to the remaining 80 target strings. 

B. Evaluation Metrics 

The evaluation of submissions in the context of trojan or backdoor attacks and defenses on Large Language 

Models (LLMs) relies on two key metrics: recall and Reverse-Engineered Attack Success Rate (REASR). Both 

metrics are scaled from 0 to 1, and the primary metric for ranking submissions is the average of these two metrics. 

Recall is a metric that quantifies how closely the triggers generated by a trojan detection method match the actual 

triggers that were inserted by the adversary during the trojan attack on the language model. 

C. BLEU 

In the context of trojan detection in LLMs, recall is calculated using the one-sided Chamfer distance between 

predicted and ground-truth triggers, employing the BLEU (Bilingual Evaluation Understudy) metric. BLEU is a 

metric used to evaluate the quality of machine-generated text by comparing it to one or more reference texts. The 

BLEU score is calculated using the following formula: 

BLEU = BP ⋅ exp(∑ 𝑤𝑛
𝑁
𝑛=1 log𝑝𝑛)    (1) 

where BP is the brevity penalty, 𝑁 is the maximum n-gram order (typically 4), 𝑤𝑛 is the weight assigned to each 

n-gram order (usually uniform weights, i.e., 𝑤𝑛 =
1

𝑁
), and 𝑝𝑛 is the modified n-gram precision. The modified n-

gram precision is calculated as: 

𝑝𝑛 =
∑ ∑ Count𝑛-gram∈𝐶𝐶∈Candidates clip(𝑛-gram)

∑𝐶∈Candidates ∑ Count𝑛-gram∈𝐶 (𝑛-gram)
   (2) 
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where Countclip(𝑛-gram) is the clipped count of the n-gram in the candidate text, and Count(𝑛-gram) is the 

unclipped count of the n-gram in the candidate text. The brevity penalty BP is calculated as: 

BP = {
1 if 𝑐 > 𝑟
𝑒(1−𝑟/𝑐) if 𝑐 ≤ 𝑟

 (3) 

where c is the length of the candidate text, and r is the effective reference length. 

D. Recall 

The recall metric for a specific target string 𝑖 is defined as: 

Recall𝑖 =
1

|𝑌𝑖|
∑𝑦 ∈ 𝑌𝑖max

𝑥∈𝑋𝑖

BLEU(𝑥, 𝑦) (4) 

where 𝑌𝑖 is the set of ground-truth triggers for target string 𝑖, 𝑋𝑖 is the set of predicted triggers for target string 𝑖, 

and BLEU(𝑥, 𝑦) computes the BLEU score between predicted trigger 𝑥 and ground-truth trigger 𝑦. The overall 

recall is then obtained by averaging the recall values across all target strings. 

E. REASR 

The REASR (Reverse-Engineered Attack Success Rate) metric evaluates the effectiveness of proposed trigger 

prefixes in actually forcing the target malicious suffixes to be generated by the model. It can be formulated as 

follows: Let 𝑇𝑖  be the target string for the 𝑖-th instance, and let 𝐺𝑖 be the generated output conditioned on the 

predicted trigger for the 𝑖-th instance. The REASR metric is then calculated as: 

REASR =
1

𝑁
∑ BLEU𝑁

𝑖=1 (𝐺𝑖 , 𝑇𝑖)  (5) 

where 𝑁 is the total number of instances, and BLEU(𝐺𝑖 , 𝑇𝑖) computes the BLEU score between the generated 

output 𝐺𝑖 and the target string 𝑇𝑖 . 

To generate the output 𝐺𝑖, argmax sampling is used, conditioned on the predicted trigger for the 𝑖-th instance. The 

generated output is constrained to have the same number of characters as the corresponding target string 𝑇𝑖 . 

F. Subtracks Specification 

The competition comprises two sub-tracks: the Large Model Subtrack, utilizing a 6.9B parameter LLM, and the 

Base Model Subtrack, employing a 1.4B parameter LLM. In this paper, we focused our experiments solely on the 

1.4B model from the Base Model Subtrack to investigate the effectiveness of our proposed methods. 

4. Methodology 

The methodology employed in the Trojan Detection tasks of the competition focused on a combination of 

gradient-based optimization techniques and adversarial reprogramming approaches. Participants leveraged the 

provided training set, consisting of known trigger-target pairs, to develop models capable of reverse-engineering 

triggers for the remaining target strings. 

In the following section, we describe the methods to detect trojans. All of the listed methods fall under the white 

box attack category and primarily use gradient signals to learn effective adversarial prompts. 

A. Universal Adversarial Triggers (UAT) 

Inspired by a HotFlip method [11] , Universal Adversarial Triggers (UAT) [12] paper introduces a method for 

generating triggers that can be concatenated to the input of a language model to cause a target prediction, 

regardless of the original input. The key aspects of the method are: 

• Initializing the trigger sequence with repeated dummy tokens (e.g., "the" for words, "a" for sub-words or 

characters). 

• Iteratively replacing the tokens in the trigger to minimize the loss for the target prediction over batches of 

examples. The replacement strategy is based on a linear approximation of the task loss, where the embedding 
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of each trigger token 𝑒𝑎𝑑𝑣𝑖
 is updated to minimize the first-order Taylor approximation of the loss around the 

current token embedding: 

argmin
𝑒′𝑖∈𝒱

[𝑒′𝑖 − 𝑒𝑎𝑑𝑣𝑖
]

𝑇
∇𝑒𝑎𝑑𝑣𝑖

ℒ 

where 𝒱 is the set of all token embeddings in the model’s vocabulary and ∇𝑒𝑎𝑑𝑣𝑖
ℒ is the average gradient of the 

task loss over a batch. 

• Augmenting the token replacement strategy with beam search to consider the top-k token candidates for each 

position in the trigger. 

The method is generally applicable to various tasks, with the only task-specific component being the loss function 

ℒ. The paper demonstrates the effectiveness of the method on three tasks: text classification, reading 

comprehension, and conditional text generation. 

B. Gradient-based Adversarial Attacks (GBDA) 

The proposed GBDA [13] method generates adversarial examples against transformer models by optimizing an 

adversarial distribution. The key insights are: (1) defining a parameterized adversarial distribution that enables 

gradient-based search using the Gumbel-softmax approximation [14] , and (2) promoting fluency and semantic 

faithfulness of the perturbed text using soft constraints on both perplexity and semantic similarity. 

The adversarial distribution 𝑃𝛩 is parameterized by a matrix 𝛩 ∈ ℝ𝑛×𝑉, where 𝑛 is the sequence length and 𝑉 is 

the vocabulary size. Samples 𝑧 = 𝑧1𝑧2 … 𝑧𝑛 are drawn from 𝑃𝛩 by independently sampling each token 𝑧𝑖 ∼

Categorical(𝜋𝑖), where 𝜋𝑖 = Softmax(𝛩𝑖) is a vector of token probabilities for the 𝑖-th token. 

The objective function for optimizing 𝛩 is: 

min
𝛩∈ℝ𝑛×𝑉

𝔼𝑧∼𝑃𝛩
ℓ(𝑧, 𝑦; ℎ),  (6) 

where ℓ is a chosen adversarial loss and ℎ is the target model. 

To make the objective function differentiable, the Gumbel-softmax approximation is used to sample from the 

adversarial distribution: 

(𝜋̃𝑖)𝑗 : =
exp((𝛩𝑖,𝑗+𝑔𝑖,𝑗)/𝑇)

∑ exp𝑉
𝑣=1 ((𝛩𝑖,𝑣+𝑔𝑖,𝑣)/𝑇)

,  (7) 

where 𝑔𝑖,𝑗 ∼ Gumbel(0,1) and 𝑇 > 0 is a temperature parameter. 

Soft constraints are incorporated into the objective function to promote fluency and semantic similarity: 

𝐿(𝛩) = 𝔼𝜋̃∼𝑃̃𝛩
ℓ(𝑒(𝜋̃), 𝑦; ℎ) + 𝜆𝑙𝑚NLL𝑔(𝜋̃) + 𝜆𝑠𝑖𝑚𝜌𝑔(𝑥, 𝜋̃),  (8) 

where 𝜆𝑙𝑚 , 𝜆𝑠𝑖𝑚 > 0 are hyperparameters, NLL𝑔 is the negative log-likelihood of a language model 𝑔, and 

𝜌𝑔(𝑥, 𝜋̃) is a similarity constraint based on BERTScore. 

After optimizing 𝛩, adversarial examples can be sampled from 𝑃𝛩. The generated samples can also be used to 

perform black-box transfer attacks on other models. 

C. Hard Prompts made EaZy (PEZ) 

The proposed method, called PEZ (Hard Prompts made EaZy) [15], is a gradient-based discrete optimization 

algorithm for learning hard prompts in language models. The method takes a frozen model 𝜃, a sequence of 

learnable embeddings 𝑃 = [𝑒𝑖 , . . . 𝑒𝑀], where 𝑒𝑖 ∈ ℝ𝑑, and an objective function 𝐿 as inputs. The discreteness of 

the token space is realized using a projection function Proj
𝐸

 that maps the individual embedding vectors 𝑒𝑖 to their 

nearest neighbor in the embedding matrix 𝐸|𝑉| × 𝑑, where |𝑉| is the vocabulary size of the model. The projected 
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prompt is denoted as 𝑃′ = Proj
𝐸

(𝑃) : = [Proj
𝐸

(𝑒𝑖), . . . Proj
𝐸

(𝑒𝑀)]. A broadcast function 𝐵: ℝ(𝑀×𝑑) → ℝ(𝑀×𝑑×𝑏) 

is defined to repeat the current prompt embeddings 𝑃 in the batch dimension 𝑏 times. 

The objective is to minimize the risk 𝑅(𝑃′) = 𝔼𝐷 (𝐿(𝜃(𝐵(𝑃′, 𝑋)), 𝑌)) by measuring the performance of 𝑃′ on 

the task data. The algorithm maintains continuous iterates (soft prompts) and performs the following steps: 

1. Sample initial prompt embeddings 𝑃 = [𝑒𝑖 , . . . 𝑒𝑀] ∼ 𝐸|𝑉|. 

2. For each optimization step 𝑡 = 1, . . . , 𝑇: 

a) Retrieve the current mini-batch (𝑋, 𝑌) ⊆ 𝐷. 

b) Project the current embeddings 𝑃 onto the nearest neighbor 𝑃′ = Proj
𝐸

(𝑃). 

c) Calculate the gradient w.r.t. the projected embedding: 𝑔 = ∇𝑃′𝐿task(𝐵(𝑃′, 𝑋𝑖), 𝑌𝑖 , 𝜃). 

d) Update the continuous embedding: 𝑃 = 𝑃 − 𝛾𝑔, where 𝛾 is the learning rate. 

3. Perform a final projection: 𝑃 = Proj
𝐸

[𝑃]. 

4. Return the learned hard prompt 𝑃. 

The PEZ algorithm combines the advantages of baseline discrete optimization methods and soft prompt 

optimization by maintaining continuous iterates while projecting them onto the discrete token space during each 

forward pass. This approach allows for efficient gradient-based optimization while ensuring that the final learned 

prompt consists of discrete tokens from the model’s vocabulary. 

D. Greedy Coordinate Gradient (GCG) 

The Greedy Coordinate Gradient (GCG) [16] method is an extension of the AutoPrompt algorithm [17] for 

optimizing prompts in language models. The key idea behind GCG is to efficiently find promising candidate 

replacements for each token in the prompt by leveraging gradients w.r.t one-hot token indicators. The method 

computes the linearized approximation of replacing the 𝑖-th token in the prompt, 𝑥𝑖, by evaluating the gradient: 

∇𝑒𝑥𝑖
𝐿(𝑥1:𝑛) ∈ ℝ|𝑉|  (9) 

where 𝑒𝑥𝑖
 denotes the one-hot vector representing the current value of the 𝑖-th token, 𝐿 is the loss function, and 

|𝑉| is the vocabulary size. The top-𝑘 values with the largest negative gradient are selected as candidate 

replacements for token 𝑥𝑖. This process is repeated for all tokens 𝑖 ∈ 𝐼, where 𝐼 is the set of token indices to be 

optimized. A subset of 𝐵 ≤ 𝑘|𝐼| tokens is randomly selected from the candidate set, and the loss is evaluated 

exactly on this subset. The replacement with the smallest loss is then made. GCG differs from AutoPrompt in that 

it considers all coordinates for adjustment in each iteration, rather than choosing a single coordinate in advance. 

This seemingly minor change leads to substantial performance improvements while maintaining the same 

computational complexity. 

E. Autoregressive Randomized Coordinate Ascent (ARCA) 

The method presented in the paper [18] formulates an auditing optimization problem to find prompt-output pairs 

that satisfy a given criterion for large language models. The auditing objective is defined as 𝜙: 𝑃 × 𝑂 → ℝ, where 

𝑃 = 𝑉𝑚 is the set of prompts and 𝑂 = 𝑉𝑛 is the set of outputs, with 𝑉 being the vocabulary of tokens. The 

optimization problem is formulated as: 

max
(𝑥,𝑜)∈𝑃×𝑂

𝜙(𝑥, 𝑜) s.t. 𝑓(𝑥) = 𝑜, 

where 𝑓: 𝑉𝑚 → 𝑉𝑛 is the completion function that maps a prompt 𝑥 to an output 𝑜 using the language model’s 

probability distribution 𝑝LLM. 

To make the optimization problem differentiable, the constraint 𝑓(𝑥) = 𝑜 is replaced with a term in the objective 

function: 
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max
(𝑥,𝑜)∈𝑃×𝑂

𝜙(𝑥, 𝑜) + 𝜆𝑝LLM
log𝑝LLM(𝑜|𝑥), 

where 𝜆𝑝LLM
 is a hyperparameter and log𝑝LLM(𝑜|𝑥) = ∑ log𝑛

𝑖=1 𝑝LLM(𝑜𝑖|𝑥, 𝑜1, … , 𝑜𝑖−1). 

The paper introduces the Autoregressive Randomized Coordinate Ascent (ARCA) algorithm to solve the 

differentiable optimization problem. ARCA decomposes the objective function into a linearly approximatable 

term 𝑠𝑖,Lin and an autoregressive term 𝑠𝑖,Aut: 

𝑠𝑖(𝑣; 𝑥, 𝑜) = 𝑠𝑖,Lin(𝑣; 𝑥, 𝑜) + 𝑠𝑖,Aut(𝑣; 𝑥, 𝑜) 

𝑠𝑖,Lin(𝑣; 𝑥, 𝑜) : = 𝜙(𝑥, (𝑜1:𝑖−1, 𝑣, 𝑜𝑖+1:𝑛))  

 +𝜆𝑝LLM
log𝑝LLM(𝑜𝑖+1:𝑛|𝑥, 𝑜1:𝑖−1, 𝑣)

 

𝑠𝑖,Aut(𝑣; 𝑥, 𝑜) : = 𝜆𝑝LLM
log𝑝LLM(𝑜1:𝑖−1, 𝑣|𝑥). 

The linearly approximatable term is approximated using first-order approximations at random tokens, while the 

autoregressive term is computed exactly. ARCA efficiently computes the approximate objective for all tokens in 

the vocabulary and then exactly computes the objective for the top-k candidates to update the prompt and output 

tokens iteratively. 

5. Results and Analysis 

The results of the comparative analysis of various trojan detection methods are presented in Table 1. The table 

showcases the performance of each method in terms of Recall and Reverse-Engineering Attack Success Rate 

(REASR). 

Table : I. Performance Comparison of Different Trojan Detection Methods. 

The Table Presents Recall and Reasr Metrics for Each Method 

Method Recall REASR 

PEZ (baseline) 0.105 0.052 

GBDA (baseline) 0.116 0.056 

UAT (baseline) 0.131 0.03 

GCG [19] 0.109 0.068 

ARCA [20] 0.077 0.358 

GCG (winning team) 0.167 0.987 

During the competition, it was observed that achieving a high REASR score was relatively easy, even using simple 

black-box evolutionary algorithms to find triggers that force the desired targets. Most participants were able to 

achieve REASR scores close to 100%. However, achieving a smeaningful Recall score proved to be significantly 

more challenging. The top scores suggest that the highest Recall scores were around 0.16, assuming near-perfect 

REASR scores. This level of Recall is no better than a simple baseline of randomly sampling sentences from a 

distribution similar to the given training prefixes, which would yield Recall scores between 14-17% due to 

accidental n-gram matches when computing BLEU similarity. 

The difficulty in achieving high Recall scores raises questions about the feasibility of detecting and recovering 

trojan prefixes inserted into the model, given only the suffixes. It is speculated that there might be mechanisms to 

insert trojans into models in a way that makes them provably undiscoverable under cryptographic assumptions. 

While current published work has only demonstrated this for toy models, generalizing the approach to 

transformers might be achievable. This suggests that the detectability and back-derivability of trojans in the 

competition may be due to the organizers intentionally making the problem easier than it could be [21]. 
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Despite the inability to fully solve the problem, working on the competition led to interesting observations about 

the viability of trojan detection in general and improved techniques for optimizing LLM input prompts concerning 

differentiable objective functions. 

A. Initialization 

One of the teams [22] found that the geometry of the finetuned models had an interesting property: let 

(𝑝1, 𝑠1), (𝑝2, 𝑠2) be two trigger-target pairs that were inserted into the model, where 𝑠1 ≠ 𝑠2. Then, when 

performing the search for a trigger that forces 𝑠2, initializing the search with 𝑝1 would make the convergence 

much faster, even when 𝑝1, 𝑝2, 𝑠1, 𝑠2 had no qualitative relation to each other. 

This property was only discovered during the test phase of the competition. It was exploited in a simple way: 𝑁 

initialization pools are maintained, and the search procedure for some given target is initialized with the contents 

of one of those pools. The pools are pre-filled with training trojan pairs and get expanded whenever a forcing 

trigger is successfully found. 

B. Filtering 

The output was post-processed to make it more likely to score higher given the specifics of the scoring function. 

The search code was run in FP16 precision, which meant that a small fraction of found triggers wouldn’t force 

the target suffix when evaluated in batch mode. To avoid this, a filtering pass is run where targets are generated 

from the found triggers in batch mode, and all triggers that fail are thrown out. 

In the second filtering stage, it is chosen which 20 triggers should be submitted with each target. Triggers 𝑝𝑖  are 

naively dropped if the target already had a trigger 𝑝𝑗 with Levenshtein distance 𝑑(𝑝𝑖 , 𝑝𝑗) < 𝑇 for some 𝑇. 

C. Objective Functions for Trojan Prefix Optimization: 

We explored various objective functions for optimizing trojan prefixes, aiming to isolate the intended prefixes 

from other strings. 

However, none of these objective functions successfully isolated the intended prefixes. Experiments on the 

development phase competition models showed that the given intended prefixes were not local optima for these 

objectives, and the optimization algorithm could easily find better prefixes. 

The organizers attempted to address this issue in the test phase models, and indeed, the test-phase models 

performed slightly better in this regard. However, the intended prefixes were still not consistently local optima, 

although finding improved prefixes required more optimization iterations. 

6. Discussion 

In this paper, we have explored the problem of trojan or backdoor attacks on large language models (LLMs). We 

have focused on the challenges of identifying intended and unintended triggers in the context of the Trojan 

Detection Competition 2023 (TDC2023). The main points of our discussion are as follows: 

• Intended and Unintended Triggers: The problem of distinguishing between intended and unintended 

triggers is a critical aspect of trojan detection in LLMs. Intended triggers are the specific phrases or patterns 

used by an adversary during the trojan insertion process to activate the malicious behavior. Unintended 

triggers, on the other hand, are phrases or patterns that accidentally trigger the malicious behavior without 

being explicitly designed by the adversary. Identifying the intended triggers is crucial for understanding and 

mitigating the trojan attack. 

• Difficulty of Reverse Engineering Trojans: Reverse engineering of the intended trojans in practice appears 

to be a challenging task. In real-world scenarios, where a competent actor has performed trojan insertion and 

cover-up, the defender may lack crucial information such as the exact list of malicious outputs, known triggers 

used in training, or white-box access to the base model before fine-tuning. Without these advantages, trojan 
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detection and reverse-engineering could be extremely difficult or even impossible under certain cryptographic 

hardness assumptions [23] . 

• Measuring Trojan Insertion Tightness: One of the teams proposed two ways to quantify the tightness of a 

trojan insertion [22] : 

1. By initializing a search procedure with the intended trigger and measuring how much the objective can be 

improved with local movement. A tightly inserted trojan trigger should be a local optimum, and nearby 

points should not significantly outperform the intended solution. 

2. By performing a search or optimization for the payload starting from randomly-initialized points and 

measuring the success rate or time required for success. 

In the TDC2023 test phase models, we observed that the intended triggers were more likely to be local optima 

compared to the dev phase models, suggesting a tighter trojan insertion. 

• Additional Thoughts: The phenomenon of unintended triggers and the difficulty in distinguishing them from 

intended triggers raises important questions about the robustness and interpretability of LLMs. It suggests that 

these models may have inherent vulnerabilities that can be exploited by adversaries, even without explicit 

trojan insertion. Developing techniques to identify and mitigate such vulnerabilities will be crucial for ensuring 

the safety and reliability of LLMs in real-world applications. 

Furthermore, the potential existence of a well-behaved connecting manifold between trojans is an intriguing 

finding that warrants further investigation. Understanding the structure and properties of this manifold could 

provide valuable insights into the inner workings of LLMs and potentially lead to new approaches for trojan 

detection and mitigation. 

Another promising research direction is devising faster trojan detection methods. [24] uses a smaller draft model 

to filter unpromising candidates in GCG resulting in a 5.6 times speedup compared to GCG. Having a faster 

algorithm to investigate adversarial alignment scenarios allows for more thorough research into enhancing the 

safety of LLMs and improves the practicality of trojan attacks in real-world scenarios. 

7. Conclusion 

In this paper, we have investigated the problem of trojan or backdoor attacks on large language models (LLMs) 

in the context of the Trojan Detection Competition 2023 (TDC2023). Our analysis has highlighted the challenges 

associated with identifying intended and unintended triggers, as well as the difficulty of reverse engineering 

trojans in real-world scenarios. 

The comparative analysis of various trojan detection methods has revealed that achieving high Recall scores is 

significantly more challenging than obtaining high Reverse-Engineering Attack Success Rate (REASR) scores. 

The top-performing methods in the competition achieved Recall scores around 0.16, which is comparable to a 

simple baseline of randomly sampling sentences from a distribution similar to the given training prefixes. This 

finding raises questions about the feasibility of detecting and recovering trojan prefixes inserted into the model, 

given only the suffixes. 

We have also explored the potential existence of mechanisms to insert trojans into models in a way that makes 

them provably undiscoverable under cryptographic assumptions. While current published work has only 

demonstrated this for toy models, generalizing the approach to transformers might be achievable. This suggests 

that the detectability and back-derivability of trojans in the competition may be due to the organizers intentionally 

making the problem easier than it could be. 

Despite the inability to fully solve the problem, working on the competition has led to interesting observations 

about the viability of trojan detection in general and improved techniques for optimizing LLM input prompts 

concerning differentiable objective functions. The phenomenon of unintended triggers and the difficulty in 

distinguishing them from intended triggers highlights the need for further research into the robustness and 

interpretability of LLMs. 
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In conclusion, the TDC2023 has provided valuable insights into the challenges and opportunities associated with 

trojan detection in LLMs. While the competition has not yielded a complete solution to the problem, it has laid 

the groundwork for future research in this area. Developing techniques to identify and mitigate vulnerabilities in 

LLMs will be crucial for ensuring their safety and reliability in real-world applications. 
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