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Abstract:- In the agricultural food manufacture region, ensuring and evaluating food quality is vital because it 

directly affects human health and the profitable price of the invention. The aroma of the product is a crucial 

characteristic that reflects its quality. A prominent trend in this area is the utilization of electronic noses (e-noses) 

for automated replication of smells. This involves deploying multiple sensors to detect specific compounds that 

contribute to the product's odor and overall quality. The reliable assessment of food quality depends on the proper 

functioning of these sensors, which provide digital data used for classifying food quality. However, addressing 

this issue has led to the implementation of various strategies, often focusing on correcting data from digital 

sensors. In our research, we propose an innovative approach using a Deep Learning model to leverage digital time 

series data from sensors for classification tasks. To maintain overall prediction accuracy, we employ a Multiple 

Layer Perceptron (MLP) neural network for classification prediction tasks. This method trains the proposed MLP 

classifier on a dataset from food production that includes 11 digital sensors (such as hydrogen sulfide, ammonia, 

and hydrogen sensors) across various types of beef cuts, including brisket. As a result, unlike traditional machine 

learning models, our approach can effectively handle data generated from sensors and address the different classes 

–categories-(excellent(1),good(2),acceptable(3),spoiled(4))thereby enhancing food quality assessment. 

Consequently, this study demonstrates the effectiveness of our proposed model through a case study focused on 

predicting the quality of beef cuts, yielding promising results that can be applied to general food quality 

assessment. 

Keywords: Control system, food quality, machine learning, deep learning, classifier, multiple layer perceptron, 

beef cut quality prediction. 

 

1. Introduction 

In the realm of agricultural food manufacture, managing and evaluating food quality stands out as a pivotal 

concern that directly influences both human well-being and the profitable worth of the item. Food quality 

encompasses the vital and distinctive features that render food suitable for consumption by individuals. [1] These 

attributes encompass external aspects like appearance, texture, and taste, as well as internal elements such as 

chemical, physical, or microbial properties. Among these critical attributes, the smell of the product plays a 

significant role in determining its quality, contributing substantially to its overall taste and scent. The term 

olfaction, which refers to the sense of smell, is defined as the ability to perceive odors and is typically assessed 

by skilled human assessors [2]. 

However, a notable development in this scope is the concept of machine olfaction [1], which entails the automated 

replication of the sense of smell through devices like electronic noses or e-noses. Machine olfaction finds 
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applications across various domains, including but not limited to food quality assurance [2], assessment of meat 

freshness [3], determination of freezing times for fresh vegetables [4], detection of illicit substances [5], 

identification of infections [6], and identification of diseases [7]. This technology employs electronic nose 

systems, commonly referred to as e-noses, to analyze airborne chemical compounds [8]. Diverse types of e-noses 

[9] are under development, utilizing gas identification mechanisms [10]based on gas sensors. These gas sensors, 

tailored to specific applications, are designed to detect and identify various gases Examples encompass MOSFET, 

optical, piezoelectric sensors like Surface Acoustic Wave and Quartz Crystal Monitor, along with conductivity 

sensors such as polymer composites, intrinsically conducting polymers, and metal oxides [11]. These various 

sensors collectively enhance the capabilities of e-nose systems. Despite the effectiveness of these advanced gas 

sensors and gas recognition systems, numerous challenges remain unresolved [12] . 

One of the key defies pertains to the intricacy of gas sensing principles and jobs. Certain gas sensors may be 

adversely influenced through another gases that have similar chemical characteristics. Additionally, 

environmental features like wetness and temperature can affect sensor correctness  [12]. This issue, known as 

sensor drift, is multifaceted and compromises sensor constancy [13] , consequently impacting the performance of 

e-noses and gas identification systems. Various factors including humidity, pressure, and external pollutants can 

contribute to such instability problems, leading to a decline in data quality over time [13]. Researchers have 

identified two primary causes of sensor drift [14] : first-order drift is linked to chemical interactions between the 

sensor and its environment, while second order drift stems from sensor noise. One potential solution to address 

this challenge is the adoption of robust sensors designed to mitigate drift-related issues [15]. 

In reward research and sensor drift, the latest advancements involve the integration of machine learning methods, 

a widely utilized approach in various fields [13] . These techniques offer a significant advantage as they eliminate 

the need for sensor recalibration. Numerous machine learning based strategies have been introduced and tested to 

address sensor drift issues across several implementations, as detailed in the Related Work section. Numerous of 

these investigations focus on calibrating or rectifying drift-induced sensor data discrepancies. In this particular 

investigation, we propose and validate a machine learning and deep learning technique based on the multiple layer 

perceptron neural network (MLP) [16]. This method employs MLP rule to integrate outputs from individual 

hidden neural layers, enhancing the controlling system to sense and classify the data from sensors. 

While this methodology can be broadly applicable, our focus in this research is on evaluating the quality of 

perishable foods like chicken, fish and beef. Specifically, we present a case consideration on beef cut quality. 

Over the p [17] last five decades, per capita consumption of animal-based proteins has risen to 42.20 kg annually, 

with beef projected to remain a popular choice through 2050.  However, beef quality may suffer from potential 

pathogenic microorganisms, leading to meat degradation. Numerous factors for example the transportation, 

temperature fluctuations, and the meat chill chain can contribute to this degradation. The microbiological 

techniques (like gas chromatography and sensory panels) are considered as time overwhelming and demand 

specialized expertise, e-noses and Fourier Transform Infrared spectroscopy (FTIR) [18] have emerged as 

alternatives for meat fineness assessment. Considering that e-nose hardware offer cost-effectiveness, rapidity, and 

comparable performance to FTIR methods, they are well-suited for monitoring beef quality. Nonetheless, the 

weakness of e-noses lies in sensor instability caused by diverse environmental circumstances. 

In this research, we conducted our investigations utilizing a publicly available dataset accessible via the link [19]. 

While this dataset has been utilized by prior researchers on multiple occasions such as [20], the potential of 

employing a customized MLP classification method for this specific problem remains unexplored. Our objective 

in this study is to assess the suitability of MLP classification techniques in predicting beef cut quality. To estimate 

the efficiency of our proposed methodology, we have done numerous experiments utilizing 11 sensors data (e.g., 

ammonia, hydrogen sulfide, hydrogen sensors) across a type of beef cuts  such as brisket. 

Mainly, the classification labels were denoted by four distinct categories (excellent, good, acceptable, spoiled). 

An integrated MLP classifier was constructed by integrate outputs from individual hidden layers with specific 

customization and employing multi class technique. The other of this research is structured as follows: Section 2 
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outlines the relevant literature. Section 3 details the methodology utilized. Section 4 demonstrations our findings. 

Section 5 offers a discussion, while Section 6 presents our conclusions 

2. Related Work 

Numerous methodologies have been established and validated to address the issue of classifying the sensors data 

in food production quality systems. Given that our model hinges on a classification method tolerant to data loss, 

this section primarily focuses on techniques developed using machine learning methodologies [21]. 

De Vito and colleagues [22] utilized semi supervised learning methodologies to enhance the effectiveness of 

regression and classification methods. Their investigation illustrated the efficacy of SSL techniques in mitigating 

sensor drift's impact and reducing performance degeneration. Liu et al. [23]implemented a domain adaptation 

strategy to address sensor drift, demonstrating its superiority over conventional methods. Yan and co-authors [24] 

introduced a novel technique named maximum independence domain adaptation (MIDA) to extract domain-

invariant variables and employed on semi-supervised variant, SMIDA, to tackle the sensor drift issue. Xue et al. 

[25] recommend a Boolean version of Particle Swarm Optimization specifically designed for this challenge, 

noting its robustness without the need for recalibration. Moreover, strategies based on Component Correction [26] 

and methodologies relying on Sequential Minimal Optimization [27] have also exhibited effectiveness in adjusting 

models to counter sensor drift. 

Zhang and colleagues [28] presented a concept named domain adaptation extreme learning machine, showcasing 

its effectiveness compared to other methods for compensating drift. Zhao et al. [29] Merged Support Vector 

Machines (SVM) with an enhanced Long Short-Term Memory (LSTM) algorithm. Concurrently, Vergara et al. 

[30] Elaborated an ensemble approach using (SVM) that combines weighted classifications from methods trained 

at diverse time intervals. Their prime aim was to differentiate and distinguish six gases/analytes such as ammonia, 

and toluene. 

Apart from the previously mentioned approaches to combat sensor drift, numerous investigations have focused 

on predicting the quality of beef cuts. [20] Explored the robustness of feature selection algorithms in optimizing 

sensor arrays, analyzing 12 datasets concerning to various beef cuts. Their results revealed that no individual 

feature selection algorithm can consistently provide accurate sensor recommendations. In contrast, our study 

concentrated solely on one dataset. Sarno and Wijaya [20] addressed the difficulties in using e-nose software’s to 

evaluate beef fineness. Wijaya et al. [24] presented a noise filtering model for monitoring beef quality, 

demonstrating its effectiveness in improving the effectiveness of multi-class classification and regression 

algorithms. In another study, Wijaya et al. [31] Proceed various experiments and gathered time series data 

concerning beef quality monitoring. Additionally, Wijaya et al. [32] classify beef into 2/3/4 categories  through  

K-Nearest Neighbor algorithm to and exhibited its ability to differentiate between fresh and spoiled beef. 

Based on the literature reviewed in this section the MLP classifiers with selected parameters can be utilized for 

the prediction problem that related to meat quality. Therefore, our proposed model presents unique portion and 

attributes tailored for this specific challenge. Furthermore, we noted that existing machine learning models 

proposed and assessed the classification task with complex model with high processing time with low accuracy. 

In pursuit of constructing a highly accurate prediction model, our goal was to create a novel prediction model for 

the beef cut quality issue using the MLP method. Our aim was not solely focused on attaining the utmost 

performance; rather, we sought to devise a prediction model that remains effective even in instances of sensor 

loss since the deep learning model can support the decision making for classify the products. 

3. Methodology 

The diagram illustrating the abstract model for monitoring food quality controlling system using machine olfaction 

is depicted in Fig.1 In this type of system, the data gathered from the array that contains sensor is transmitted to 

the server through an access point. These raw signals are then transformed to numerical values and utilized as 

input for classification by Machine learning and Deep learning algorithms. The automated assessment of food 

newest and quality assists professionals in determining appropriate values strategies. 
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Fig. 1  Conceptual food quality controlling system 

However, external factors such as fluctuations in intensity of heat can compromise the accuracy of sensors. This 

situation, referred to as sensor drift, poses a significant challenge in chemical sensing, resulting in potential 

inaccuracies in measurements and subsequently impacting the reliability of prediction models. Sensor challenges 

can be divided into two categories. First-order sensor drift involves chemical interactions through the sensor and 

its environment, while second-order drift is associated with sensor noise. Herein, we address the issue of sensor 

drift and introduce an innovative model designed to mitigate sensor losses. The primary advantage of our proposed 

model lies in its ability to withstand the absence of sensor-derived features. In ideal scenarios where all sensors 

are functioning optimally, individual classifiers demonstrate higher accuracy. 

The suggested approach is engineered to withstand sensor malfunctions. In the event of a failure scenario some 

sensors are disregarded, the system can seamlessly stay its automated quality assessment process. An outline of 

the suggested prediction methodology is delineated in Fig.2. The gathered data from sensors is divided into 

training and testing sets, after which models are trained using every sensor's individual data. For experimentation, 

a 10-fold cross-validation technique [33] is employed for generalization. The dataset comprises 2200 samples, 

with each step utilizing one fold as the test set and the rest folds as the training set. The training set exclusively 

comprises data without sensor failures. The proposed MLP model during the prediction phase, the outputs from 

this base model considered as the final prediction output. The subsequent subsections elaborate on the proposed 

MLP classifiers and the dataset that employed. 

 
Fig.2 The proposed prediction methodology 
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The MLP classifer 

The experimental setup  utilized the MLP as classifier. Our initial classifier, MLP, stands out as a widely employed 

both classification tasks [34]  .It is often regarded as one of the most standard machine learning algorithms due to 

its straightforward nature. Unlike more intricate machine learning algorithms such as  kNN does not involve 

function optimization or parameter regulation throughout training. However, this characteristic makes kNN less 

suited for machine learning challenges involving extensive datasets. 

The Multi-layer Perceptron (MLP) represents a supervised learning technique that acquires knowledge about a 

function f(.): Rm->Ro through training on a dataset, where m signifies the input's dimensionality, and o denotes 

the output's dimensionality. When presented with a group of features X=x1,x2,…,xm and a target Y,  the MLP 

can develop a non-linear function approximate suitable for classification or regression tasks. Unlike logistic 

regression, MLP includes one or multiple non-linear layers known as hidden layers situated between the input and 

output layers. Fig.3  illustrates a general MLP with an input layer, set of hidden layers and  output layer [11]. 

 

Fig.3 Multi-layer perceptron (MLP) 

The MLP Classifier utilizes a multi-layer perceptron (MLP) algorithm [35], which undergoes training via 

Backpropagation. MLP training involves Stochastic Gradient Descent, Adam, or L-BFGS methods. Stochastic 

Gradient Descent (SGD) changes parameters by calculating the gradient of the loss function concerning the 

parameters requiring adaptation. Adam functions akin to SGD as a stochastic optimizer but can autonomously 

regulate parameter updates based on adaptive estimations of lower-order moments [35]. 

If the number of classes exceeds two, Instead of being processed by the logistic function, it undergoes the softmax 

function, denoted as, Softmax (1) . 

Softmax(z)i =  
exp (zi)

∑ exp (zi)k
i=1

           (1) 

Where zi denotes the i  th element of the input to softmax, representing class i, and k indicates the overall number 

of classes. This yields a vector that includes the probabilities of sample x pertinence to each class. The class with 

the highest probability in the output is then identified. 

Dataset 

Our investigates were conducted using an open popular available time series dataset collected with an e-nose 

specifically designed for beef quality monitoring studies [36]. It encompasses readings from 11 distinct metal 

oxide semiconductor gas sensors. For instance,  Gas sensors are crafted to identify a range of gases such as 

Methane, Iso-butane, propane, LPG, LNG, hydrogen, carbon monoxide, among others. Their importance lies in 

monitoring gas concentrations across diverse settings to uphold safety standards. 

Moreover, gas sensors are capable of identifying substances like carbon dioxide, alcohol, ammonia, smoke, 

benzene, hydrogen sulfide, toluene, acetone, and similar compounds. Their pivotal function involves the detection 

of potentially hazardous gases and pollutants present in the atmosphere. 
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Data collected from these sensors is recorded continuously over a span of 2220 minutes. Each minute, a single 

data point is collected from every sensor. The dataset encompasses samples obtained from diverse distinct beef 

cuts such as namely such as brisket [37]. Herein, the brisket data set was utilized in the development process for 

MLP proposed model. 

Furthermore, this research applied a correlation study between the data sets variables. For instance, the correlation 

coefficient serves as the metric utilized for quantifying the strength of the linear association among variables 

within a correlation analysis. This metric, denoted by the symbol 'r,' is readily recognizable and typically ranges 

between 1 and -1, representing a dimensionless value. Fig.4 presents the correlation heat map between the Briskets 

data set features. 

 

Fig. 4 the correlation heat map between the Briskets data set features. 

Performance Metrics 

The effectiveness of the suggested framework is assessed through the accuracy and confusion matrix metrics [38] 

.Additionally, recall, precision, and F-score metrics are employed for the assessment [38]. The confusion matrix, 

also known as the error matrix, is a statistical tool that provides a visual representation of the model's performance, 

as delineate in Fig. 6. 

 

Fig. 6 Confusion matrix 

The confusion matrix reveals various metrics. True Positive (TP) signifies the correct prediction count of positive 

data points, where the predicted value matches the actual positive value. False Positive (FP) denotes the count of 

negative values mistakenly classified as positive. True Negative (TN) represents the number of correctly predicted 

negative data points, where both predicted and actual values are negative. Conversely, False Negative (FN) 

indicates the count of positive values wrongly labeled as negative. The accuracy metric calculates the proportion 

of correctly classified instances using TN and TP metrics, as depicted in Equation (3) [38]. 

The accuracy is determined by dividing TP by the overall  number of samples labeled positive by the classifier, 

as shown in (2). The evaluation of recall is based on TP divided by the total number of positive samples within 

the dataset, as shown in (3). Also the Precision presented in (4), The F-score, calculated according to (5), combines 
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precision and recall measures.. These metrics produce results ranging from 0 to 1 or can be expressed as a 

percentage up to 100% [38]. 

Accuracy=TP+TN / (TP+TN+FP+FN)          (2) 

Recall=TP/(TP+FN)  (3) 

Precision=TP / (TP+FP)                (4) 

F-Measure=2 * precision*Recall / (precision+Recall)   (5) 

During the experiments, a 10-fold cross-validation technique is employed to reduce estimation variability. This 

involves dividing the dataset into 10 folds or subsets. Each fold serves as a testing subset, while the remaining 

folds are utilized for model building during the training phase. Initially, parameter adjustments are made as part 

of the experimental execution. Subsequently, experiments are carried out to evaluate and report the classification 

process's performance. 

4. Experimental Results 

Throughout our experiments, we utilized the MLP classifier for implementing the classification approach. The 

MLP method is selected due to their efficiency in training and testing processes. Moreover, it directly applied to 

the datasets and the Classifier method are denoted as “MLP”. The MLP model with specific architecture, compiles 

it with suitable optimizer and loss function, and trains it for a specified number of epochs and batch size to perform 

a multi-class classification task. The setup of a Multi-Layer Perceptron (MLP) model entails configuring several 

layers. Initially, the model comprises a primary hidden layer within the neural network architecture, housing 128 

neurons. Here, the utilization of the 'relu' activation function serves to imbue the model with non-linear 

characteristics, enhancing its representational capacity. Subsequently, a secondary hidden layer, also equipped 

with 64 neurons, is incorporated into the architecture, applying the 'relu' activation function anew to foster non-

linear transformations. Additionally, the output layer of the neural network, referred to as the Dense layer, 

accommodates 'n' neurons, aligning with the classification task's class count. To facilitate the conversion of raw 

outputs into class probabilities, the 'softmax' activation function is employed. In terms of training parameters, the 

model is trained over a defined number of epochs, signified by the parameter 'epochs=20', dictating the frequency 

with which the entire dataset undergoes forward and backward propagation through the neural network during 

training. Furthermore, the experiment stipulates a batch size of 32, denoted by 'batch_size=32', indicating the 

quantity of samples per gradient update. This parameter delineates the number of training instances utilized within 

a single iteration. Notably, the optimizer 'adam' is selected for its efficacy as a gradient-based optimization 

algorithm. Meanwhile, the loss function 'sparse_categorical_crossentropy' is adopted, deemed suitable for multi-

class classification scenarios wherein target labels are integer-based. 

Proposed model outcomes based on Brisket Dataset. 

The dataset encompasses a variety of beef cuts, encompassing 2200 distinct samples. The results pertaining to this 

category are delineated herein. Subsequently, the efficacy of the Multilayer Perceptron (MLP) model is expounded 

upon in a tabular format. This table serves to encapsulate the classification report, which offers a inclusive 

assessment of the model's ability to categorize instances across various classes. 

Table.1 The classification report 

Class Precision Recall f1-score 

1-Excellent 98% 99% 99% 

2-Good 99% 98% 98% 

3-Acceptable 95% 94% 94% 

4-Spoiled 99% 99% 99% 

Furthermore, Fig.7 explains how the Accuracy values is decreased over the training process. 
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Fig. 7. Accuracy and epoch’s analysis. 

In addition, Fig. 8 explains how the loss values is decreased over the training process. 

 

Fig. 8. Loss value over the epoch number. 

Moreover, the prediction summary is clarified in the confusion matrix as shown in Fig. 9. 

 

Fig. 9. Confusion matric for the brisket prediction 

The outcomes of the classification with the Brisket dataset are showcased in Fig.10. The proposed classifier 

demonstrated superior Classification Accuracy  99%, On the other hand, the Ensemble model such as [39] method 

achieved the highest classification accuracy at 93.73%.  [40] Developed a composite model with an Accuracy 
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level 98%, the KNN, Linear Discriminant, Decision Tree are integrated by   [41]. The Artificial neural network 

with on FPGA proposed as a model, this model achieved an accuracy level with 93.73%. Furthermore,   Extreme 

Learning Machine (ELM), SVM employed to developed classification mode by [42]  the Accuracy was 98% for 

classification task. [43]  Utilized a Support Vector Regression as classifier and the accuracy level was 97.7 % 

 

Fig.10. Comparison analysis between the proposed models and other literature models. 

For instance, the ensemble classifier exhibited the highest Classification Accuracy (CA) at 98.3 % [44]  with KNN 

98.9 and  LR model provide Accuracy with 98.6%, the Tree-based SPVS technique attained the highest accuracy 

for classification task 82.8%. Particularly, the MLP method exhibited superior performance on datasets compared 

to all classification methods. While other methods such as the Linear Discriminant and kNN classifiers showed 

poorer performance in such scenarios. 

5. Discussion 

Our findings shows that the MLP classifier exhibits greater tolerance compared to other traditional machine 

learning classifiers. While some base classifiers may achieve higher classification accuracy when all features are 

utilized during training, this ideal scenario isn't always feasible, especially in rapidly changing IoT environments. 

Factors like external effects or sensor malfunctions can lead to feature loss or incorrect data, presenting challenges 

for accurate predictions. Our proposed method addresses this challenge effectively, demonstrating efficiency and 

effectiveness in handling such scenarios. The key contributions of our study are outlined as follows: We present 

a mechanized approach for forecasting beef cut quality, employing an MLP classifier which is a promise approach 

in the context of food quality prediction. We present a MLP classifier for food quality prediction. Various base 

classifiers, including KNN, DT, and LDA, are engaged and valuated the prediction in food quality. While our 

study focuses on beef cut quality, the proposed model can be broadly applied to food quality estimation. However, 

like all experimental investigation, there are potential threats to the quality of being logically or factually sound. 

Our results are specific to the dataset used, and outcomes may vary with different data sources, highlighting the 

need for diverse datasets in future research. 

6. Conclusions and Future Work 

Automated sensing of food smell, known as machine olfaction, is essential for food quality assessment using 

electronic noses (e-nose). The reliability of this assessment heavily relies on the proper functioning of various 

sensors employed to detect specific compounds. However, sensor failures can compromise the accuracy of the 

assessment, making it less reliable. To figure out and cross over this issue, this research propose a deep learning 
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method that influences classifier mechanism to tolerate sensor failures. Our study focuses on predicting beef cut 

quality using a publicly available dataset. We conducted experiments using eleven sensors across beef cuts. 

Accurate prediction of food quality is crucial for pricing decisions as the freshness of food directly influences 

market prices. During our experiments, we simulated sensor problems to evaluate the performance of our proposed 

technique under such conditions. Our results demonstrate that our approach is highly effective in dealing quality 

degradation caused by sensor drift or other failures. MLP technique, as showcased, exhibit significant potential 

and accurately predicting food quality. For future research, we aim to explore various deep learning approaches 

with different configurations to further enhance performance and validate our findings across additional datasets. 
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