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Abstract: - This research aims to investigate the mixed convective flow and heat transfer occurring within a 

vertical pipe filled with porous media, involving immiscible micropolar and Newtonian fluids. Additionally, the 

effects of magnetohydrodynamics are taken into account. To solve the coupled system of governing differential 

equations, the Crank-Nicolson finite difference numerical method is employed. Furthermore, Newton's method is 

utilized to address the nonlinear difference equations underlying the system. The study examines numerical results 

concerning fluid velocities, microrotation, and fluid temperatures across various engineering parameters. 

Moreover, the research delves into the variations observed in volumetric flow rate, skin friction coefficient, and 

Nusselt number. 
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1. Introduction 

The pressure-driven flows through vertical pipes also known as the mixed convective flows through pipes, possess 

special importance in applications like cooling devices of electronic and micro-electronic equipment, blood 

rheology etc. Despite its relevance to real-life situations, the studies on mixed convective flows through vertical 

pipes are significantly unexplored in literature. Moutsoglou and Kwon [1] presented a computational study on the 

laminar mixed convective flow in a vertical tube. Barletta and Schio [2] studied the mixed convection flow in a 

vertical circular duct with periodic boundary conditions. 

Within the array of non-Newtonian fluid models, a notable one known as the "micropolar fluid model" was first 

developed by Eringen in the early 1960s [3]. This model is capable of capturing the characteristics of intricate 

fluids such as lubricating oils, colloidal suspensions, animal blood, liquid crystals, slurries, and polymeric fluids, 

among others, whose constituent particles exhibit varying shapes and the ability to expand and contract.  A detailed 

account of micropolar fluid theory can be found in the books of Eringen [4, 5]. Some notable works in this field 

can be referred from [6, 7, 8, 9, 10, 11, 12]. 

The principles of heat transfer find extensive application in the operation of numerous engineering devices and 

systems such as thermal insulators, thermocouples, thermoelectric coolers, and more. Particularly notable is its 

utilization in heat exchangers, which play a pivotal role in refrigeration and air conditioning systems. Refer to the 

works in [13, 14, 15, 16, 17, 18]. 

The objective of this work is to study the unsteady mixed convective flow of immiscible micropolar and 

Newtonian fluids through a vertical pipe under heat transfer effects. The study of immiscible fluid flows through 

vertical pipes is an interesting topic in itself as it involves numerous complexities. The vertical geometry of the 

pipe brings the buoyancy effects into the flow, which in turn makes the system of equations governing the 

convective flow highly coupled in flow and heat transfer variables. Further, the immiscible nature of fluids 

increases the degree of difficulty in dealing with the study of such flows. The problem considered in the present 

chapter deals with the unsteady mixed convective flow and heat transfer of two immiscible fluids through a 
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vertical pipe. The micropolar and Newtonian fluids are assumed to be in core and peripheral regions, respectively. 

To obtain the solution of the governing partial differential equations, a finite difference-based approach, known 

as the Crank-Nicolson approach, is used followed by Newton's method for solving a system of non-linear 

equations. The numerical solutions obtained for fluid velocities, microrotation and fluid temperatures are 

displayed through graphs. The volume flow rate, skin friction coefficient and Nusselt number are also computed, 

numerically. 

2. Mathematical Formulation of the Problem 

Consider the unsteady, mixed convective, laminar and axisymmetric flow of two immiscible fluids through a 

porous medium in a circular pipe of radius 𝑅0.  The pipe is assumed to be vertical and at constant temperature 𝑇𝑤. 

The immiscible fluids considered in this pipe are Eringen's micropolar fluid and classical Newtonian fluid. A 

cylindrical polar coordinate system (𝑟, 𝜃, 𝑧) is used to represent the flow set-up, with z-axis taken along the axis 

of the pipe (see fig. 1). Fluids in both regions are assumed to be incompressible, and the gravitational force acts 

on both fluids in a vertically downward direction.  The pipe is filled with a uniform porous medium having 

permeability 𝑘∗. Fluids in both regions are assumed to be electrically conductive, having electrical conductivity 

𝜎 and a constant transverse magnetic field of strength 𝐻0 is applied normally to the pipe. 

Initially, both fluids are at rest with temperature 𝑇0
∗. At time 𝑡 > 0, a constant pressure gradient is applied in z-

direction. However, the pipe is held stationary throughout. Here again, as in the case of the previous chapter, the 

flow is due to pressure gradient and simultaneously buoyancy forces in upward 𝑧-direction 

 

Figure 1 Geometrical configuration of problem 

Under these assumptions, the present immiscible fluid flow with the fluid velocities 𝑞̅ = (0,0, 𝑤𝐼(𝑟, 𝑡)), 

microrotation 𝜔̅ = (0, 𝑏(𝑟, 𝑡), 0) and the fluid temperatures 𝑇𝐼 = 𝑇𝐼(𝑟, 𝑡) is governed by the following partial 

differential equations after non-dimensionalisation:  

Region-I: Micropolar fluid region (0 ≤ 𝑟 ≤ 1) 
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Region-II: Newtonian fluid region (1 < 𝑟 ≤ 𝑠) 
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where, 𝑠 =
𝑅0

𝑅
≥ 1, 𝑛1 =

𝜅

𝜇1
 is micropolarity parameter, 𝑅𝑒 =

𝜌1𝑊𝑅
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𝜇1 2
 is the Grashof 

number, 𝑊 is the maximum velocity in the pipe, 𝑃𝑅 =
𝜇1𝐶𝑝1
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 is the ratio of viscosities, 𝑚2 =
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𝜌1
 is the ratio of densities, 𝑚3 =

𝛽2

𝛽1
 is 

the ratio of thermal expansion co-efficient, 𝐾 =
𝐾2

𝐾1
 is the ratio of thermal conductivities, 𝐶𝑝 =

𝐶𝑝2

𝐶𝑝1

 is the ratio of 

specific heats, 𝑇∞ is the ambient temperature, 𝑇0 =
𝑇0 ∗−𝑇𝑤

𝑇∞−𝑇𝑤
. 

Here again, the continuity of fluid velocities, shear stresses, fluid temperatures and heat fluxes is presumed at the 

fluid-fluid interface with the classical no-slip boundary condition. The non-dimensional conditions to be satisfied 

are listed hereunder: 

Initial conditions: 

𝑤1(𝑟, 0) = 0 for 0 ≤ 𝑟 ≤ 1

𝑤2(𝑟, 0) = 0 for 1 < 𝑦 ≤ 𝑠
𝑏(𝑟, 0) = 0 for 0 ≤ 𝑟 ≤ 1

𝑇1(𝑟, 0) = 𝑇0 for 0 ≤ 𝑟 ≤ 1

𝑇2(𝑟, 0) = 𝑇0 for 1 < 𝑦 ≤ 𝑠

 

Boundary and interface conditions: For 𝑡 > 0, 

∂𝑤1
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𝑇1(𝑟, 𝑡) = 𝑇2(𝑟, 𝑡)  at  𝑟 = 1
∂𝑇1
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= 𝐾

∂𝑇2

∂𝑟
  at  𝑟 = 1

 

3. Numerical Solution 

Flow and heat transport 

It is to be noted that the above governing partial differential equations are fully coupled in terms of 

𝑤1, 𝑤2, 𝑏, 𝑇1, 𝑇2; therefore, these are to be solved simultaneously. Due to the non-linear nature of the differential 

equations, the Crank-Nicolson finite difference approach resulted in a system of non-linear algebraic equations. 

The resultant non-linear system of finite difference equations is solved using Newton's method to obtain the fluid 

velocities, microrotation and fluid temperatures. 
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Discretizing the domain so that 𝑖 = 0,1,2,3, … . . 𝑚 − 1 give spatial points of the micropolar fluid region and         

𝑖 = 𝑚 + 1, 𝑚 + 2, … . . 𝑙 − 1 represent spatial points in the Newtonian fluid region, and employing Crank-

Nicolson technique for the system of PDEs, we get the following finite difference scheme, for all time levels 𝑗 : 

Region-I: Micropolar fluid region (𝑖 = 0, 1, 2, 3, … . . 𝑚 − 1) 

For 𝑖 = 0 (at origin), 

(1 + 2𝑀 + 𝑍3)𝑤10,𝑗+1 − 2𝑀𝑤11,𝑗+1 − 𝑍1𝑇10,𝑗+1 

(1 + 2𝑁)𝑏0,𝑗+1 − 2𝑁𝑏1,𝑗+1 = (1 − 2𝑁)𝑏0,𝑗 + 2𝑁𝑏1,𝑗  

(1 + 2𝐶15)𝑇10,𝑗+1 − 2𝐶15𝑇11,𝑗+1 = (1 − 2𝐶15)𝑇10,𝑗 + 2𝐶15𝑇11,𝑗  

for 𝑖 = 1, 2, 3, … . 𝑚 − 1, 

 −[𝐴 − 𝐵𝑖]𝑤1𝑖−1,𝑗+1 + [1 + 2𝐴 + 𝑍3]𝑤1𝑖,𝑗+1 − [𝐴 + 𝐵𝑖]𝑤1𝑖+1,𝑗+1

 +𝐶𝑏𝑖−1,𝑗+1 − 𝐷𝑖𝑏𝑖,𝑗+1 − 𝐶𝑏𝑖+1,𝑗+1 − 𝑍1𝑇1𝑖,𝑗+1

 = [𝐴 − 𝐵𝑖]𝑤1𝑖−1,𝑗 + [1 − 2𝐴 − 𝑍3]𝑤1𝑖,𝑗 + [𝐴 + 𝐵𝑖]𝑤1𝑖+1,𝑗

 

 −[𝐸 − 𝐹𝑖]𝑏𝑖−1,𝑗+1 + [1 + 2𝐸 − 𝐻𝑖]𝑏𝑖,𝑗+1 − [𝐸 + 𝐹𝑖]𝑏𝑖+1,𝑗+1

 −𝐼𝑤1𝑖−1,𝑗+1 + 𝐼𝑤1𝑖+1,𝑗+1 = [𝐸 − 𝐹𝑖]𝑏𝑖−1,𝑗 + [1 − 2𝐸 + 𝐻𝑖]𝑏𝑖,𝑗
 

−[𝐶5 − 𝐶6𝑖]𝑇1𝑖−1,𝑗+1 + (1 + 2𝐶5)𝑇1𝑖,𝑗+1 − [𝐶5 + 𝐶6𝑖]𝑇1𝑖+1,𝑗+1 

= [𝐶5 − 𝐶6𝑖]𝑇1𝑖−1,𝑗 + (1 − 2𝐶5)𝑇1𝑖,𝑗 + [𝐶5 + 𝐶6𝑖]𝑇1𝑖+1,𝑗 

+𝐶7 {[𝑤1𝑖+1,𝑗 − 𝑤1𝑖−1,𝑗]
2

+ [𝑤1𝑖+1,𝑗+1 − 𝑤1𝑖−1,𝑗+1]
2

} 

+𝐶8 {[
𝑤1𝑖+1,𝑗 − 𝑤1𝑖−1,𝑗

2ℎ
+ 2𝑏𝑖,𝑗]

2

+ [
𝑤1𝑖+1,𝑗+1 − 𝑤1𝑖−1,𝑗+1

2ℎ
+ 2𝑏𝑖,𝑗+1]

2

} 

+𝐶9𝑖{𝑏𝑖,𝑗(𝑏𝑖+1,𝑗 − 𝑏𝑖−1,𝑗) + 𝑏𝑖,𝑗+1(𝑏𝑖+1,𝑗+1 − 𝑏𝑖−1,𝑗+1)} 

+𝐶10 {[𝑏𝑖+1,𝑗 − 𝑏𝑖−1,𝑗]
2

+ [𝑏𝑖+1,𝑗+1 − 𝑏𝑖−1,𝑗+1]
2

} + 𝐶11𝑖 {(𝑏𝑖,𝑗)
2

+ (𝑏𝑖,𝑗+1)
2

}, 

Region-II: Newtonian fluid region ( 𝑖 = 𝑚 + 1, 𝑚 + 2, … . . 𝑙 − 1 ) 

 −[𝐽 − 𝐿𝑖]𝑤2𝑖−1,𝑗+1 + [1 + 2𝐽 + 𝑍4]𝑤2𝑖,𝑗+1 − [𝐽 + 𝐿𝑖]𝑤2𝑖+1,𝑗+1 − 𝑍2𝑇2𝑖,𝑗+1

= [𝐽 − 𝐿𝑖]𝑤2𝑖−1,𝑗 + [1 − 2𝐽 − 𝑍4]𝑤2𝑖,𝑗 + [𝐽 + 𝐿𝑖]𝑤2𝑖+1,𝑗 + 𝑍2𝑇2𝑖,𝑗 +
𝑘𝐺

𝑚2

 −[𝐶12 − 𝐶13𝑖]𝑇2𝑖−1,𝑗+1 + (1 + 2𝐶12)𝑇2𝑖,𝑗+1 − [𝐶12 + 𝐶13𝑖]𝑇2𝑖+1,𝑗+1

 = [𝐶12 − 𝐶13𝑖]𝑇2𝑖−1,𝑗 + (1 − 2𝐶12)𝑇2𝑖,𝑗 + [𝐶12 + 𝐶13𝑖]𝑇2𝑖+1,𝑗

 

where, 𝑚 =
𝑙

2
, 𝑙 =

2

ℎ
 and ℎ is step size in radial direction while 𝑘 is the step size in temporal direction. 

The discretized version of the conditions are 

Initial conditions: 

𝑤1𝑖,0 = 0,   for  0 ≤ 𝑖 ≤ 𝑚

𝑤2𝑖,0 = 0,   for  𝑚 < 𝑖 ≤ 𝑙

𝑏𝑖,0 = 0,   for  0 ≤ 𝑖 ≤ 𝑚

𝑇1𝑖,0 = 𝑇0 for 0 ≤ 𝑖 ≤ 𝑚

𝑇2𝑖,0 = 𝑇0 for 𝑚 ≤ 𝑖 ≤ 𝑙
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Boundary and interface conditions: 

𝑤11,𝑗+1 = 𝑤1−1,𝑗+1 for all 𝑗

𝑏1,𝑗+1 = 𝑏−1,𝑗+1 for all 𝑗

𝑤2𝑙,𝑗+1 = 0 for all 𝑗

−𝑃𝑤1𝑚−1,𝑗+1 + 𝑄𝑤1𝑚,𝑗+1 − 𝑅𝑤2𝑚+1,𝑗+1 = 0 for all 𝑗

−𝑆𝑤1𝑚−1,𝑗+1 + 𝑆𝑤1𝑚,𝑗+1 + 𝑏𝑚,𝑗+1 = 0 for all 𝑗

𝑇11,𝑗+1 = 𝑇1−1,𝑗+1 for all 𝑗

𝑇2𝑙,𝑗+1 = 0 for all 𝑗

−𝑇1𝑚−1,𝑗+1 + (1 + 𝐾)𝑇1𝑚,𝑗+1 − 𝐾𝑇2𝑚+1,𝑗+1 = 0 for all 𝑗

 

where, 𝐴 =
𝑘(1+𝑛1)

2𝑅𝑒ℎ2 , 𝐵𝑖 =
𝑘(1+𝑛1)

4𝑅𝑒ℎ𝑟𝑖
, 𝐶 =

𝑘𝑛1

4𝑅𝑒ℎ
, 𝐷𝑖 =

𝑘𝑛1

2𝑅𝑒𝑟𝑖
, 𝐸 = 

𝑘(1+
𝑛1
2

)

2Reh2 , 𝐹𝑖 =
𝑘(1+

𝑛1
2

)

4𝑅𝑒ℎ𝑟𝑖
, 𝐻𝑖 = [

𝑘𝑛1

𝑅𝑒
−

𝑘(1+
𝑛1
2

)

2𝑅𝑒𝑟𝑖
2 ] , 𝐽 =

𝑘𝑚1

2𝑅𝑒𝑚2ℎ2, 

𝐿𝑖 =
𝑘𝑚1

4𝑅𝑒ℎ𝑚2𝑟𝑖

, 𝑀 =
𝑘(1 + 𝑛1)

𝑅𝑒ℎ2
, 𝑁 =

3𝑘 (1 +
𝑛1

2
)

4Reh2
, 𝑍1 =

𝑘𝐺𝑅

2𝑅𝑒2
, 𝑍2 = 

𝑘𝐺𝑅𝑚3

2𝑅𝑒2
, 𝑍3 =

𝑘 (𝑀2 +
1

𝐷𝑎
)

2𝑅𝑒
, 𝑍4 =

𝑘 (𝑀2 +
𝑚1

𝐷𝑎
)

2𝑅𝑒𝑚2

, 𝐶1 =
1

𝑅𝑒𝑃𝑅

, 𝐶2 = 

𝐵𝑅𝐶1, 𝐶3 =
𝐾

𝑅𝑒𝑃𝑅𝑚2𝐶𝑝

, 𝐶4 =
𝐵𝑅𝑚1

𝑅𝑒𝑃𝑅𝑚2𝐶𝑝

, 𝐶5 =
𝑘𝐶1

2ℎ2
, 𝐶6𝑖 =

𝑘𝐶1

4ℎ𝑟𝑖

, 𝐶7 = 

𝑘𝐶2

8ℎ2 , 𝐶8 =
𝑘𝑛1𝐶2

2
, 𝐶9𝑖 =

𝑘𝛿1𝐶2

2ℎ𝑟𝑖
, 𝐶10 =

𝑘𝛿2𝐶2

8ℎ2 , 𝐶11𝑖 =
𝑘𝛿2𝐶2

2𝑟𝑖 2
, 𝐶12 =

𝑘𝐶3

2ℎ2, 

𝐶13𝑖 =
𝑘𝐶3

4ℎ𝑟𝑖
, 𝐶14 =

𝑘𝐶4

8ℎ2 , 𝐶15 =
𝑘𝐶1

ℎ2 , 𝑃 = 1 +
𝑛1

2
, 𝑄 = 1 + 𝑚1 +

𝑛1

2
, 𝑅 = 𝑚1, 𝑆 =

1

2ℎ
. 

It is evident that, at every time level 𝑗, the difference equations are non-linear and coupled. Employing the 

conditions, we get (5𝑚 + 1) non-linear equations in terms of (5𝑚 + 1) unknowns in fluid velocities, 

microrotation and fluid temperatures. Newton's method is applied to solve the underlying non-linear system 

repetitively for each time level 𝑗 to get the flow and temperature profiles. 

Volume flow rate, Skin friction coefficient and Nusselt number 

The volume flow rate, skin friction coefficient and Nusselt number are studied for the problem under 

consideration. The numerical results concerning various physical parameters of interest are displayed through 

tables (1), (2) and (3). 

4. Results And Discussion 

In this section, the fluid flow and heat transfer profiles that are obtained numerically are plotted. The effect of 

pertinent fluid parameters on fluid velocities, microrotation and fluid temperatures is also discussed.  

For the sake of the grid-independent solution, a grid sensitivity analysis for fluid velocities and temperatures is 

performed. Three different cases of uniform grids are tested to obtain a grid-independent solution. The outcome 

of this study for fluid velocities is depicted through Fig. (2). It can be noted that the solution with a 100 x 100 grid 

is almost the same as compared to the solution with a much finer grid of 150 x 150. Hence, the uniform grid of 

100 x 100 is taken for the study. 

It should be noted that, the present analysis is regarding the mixed convective flow and heat transfer, where we 

have governing equations in flow and heat transfer variables in highly coupled form. The flow variables has some 

influence of heat transfer in it and the heat transfer variable has some influence of flow variables in it. In view of 

the same, all the parameters appearing in the problem will affect both flow and heat transfer profiles. This was 
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not so in the case of forced convective flows in earlier cases where we have momentum equation decoupled from 

temperature terms. 

The fluid velocities in both regions increase with time and eventually attain a steady state after a higher time level. 

A decreasing behaviour is seen in fluid velocities when varied with the micropolarity parameter 𝑛1. As 

𝑛1increases, the vortex viscosity increases which decreases the fluid velocity. Though 𝑛1is the feature of 

micropolar fluid alone, nevertheless, 𝑛1is affecting Newtonian fluid too, given continuous fluid velocities and 

shear stresses. It is evident from fig. (5) that the fluid velocities are increasing with the Grashof number. The 

bigger the Grashof number, the more the effect of buoyancy terms leads to more free convection and hence 

velocity increases. It is seen that the Brinkmann number promotes the fluid velocities in both regions of the flow. 

The fluid velocities increase with the Reynolds number and ratio of thermal expansion coefficients and decrease 

with increasing values of the ratio of densities, thermal conductivities, Prandtl number and the ratio of specific 

heats. 

It is noticed that the microrotation is increasing with time and reaching a steady state at a subsequent time. It is 

noted from fig (6) that the Grashof number reduces the microrotation. The microrotation is increased by a ratio of 

viscosities, ratio of thermal expansion coefficients and Prandtl number. The fluid temperatures enter a steady state 

after a certain higher time level. It is observed from fig. (4) that the fluid temperatures in both regions of flow are 

decreasing with increasing values of micropolarity parameter 𝑛1. Grashof number measures the ratio of buoyancy 

forces to viscous forces acting on the fluid. The Grashof number is having an increasing impact on fluid 

temperatures. The fluid temperatures in both regions are seen to be decreasing with the increasing values of 

Brinkmann number (see fig. 3). 

The numerical values of volume flow rate are displayed for several parameters of interest through Table 1.  It is 

observed that the rate of volume flow is an increasing function of the Grashof number, which may be due to the 

dominance of buoyancy forces over viscous forces. The volume flow rate decreases with the micropolarity 

parameter. The Reynolds number is rendering an incrementing impact on the volume flow rate. 

Table 2 displays the numerical results of the skin friction coefficient for the considered flow problem. It is 

observed that, at the boundary of the pipe, skin friction increases with the Grashof number and Brinkmann number, 

and it decreases with the increasing values of the Reynolds number and micropolarity parameter. The numerical 

values for the Nusselt number with various physical parameters of interest are given in table 3. It can be seen that 

the Nusselt number increases with that of the Brinkmann number, micropolarity parameter, and Grashof number. 

 

Figure 2 Effect of mesh on fluid velocity profiles 
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Figure 3 Fluid temperatures with varying Brinkmann number 

 

Figure 4 Fluid temperatures with varying micropolarity parameter 

 

Figure 5 Fluid velocities with varying Grashof number 
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Figure 6 Microrotation with varying Grashof number 

Table 1: Volume flow rate for various values of fluid parameters 

Gr Q Re Q BR Q n1 Q 

1 10.5086 1 10.5086 0.2 10.2234 0.3 10.8140 

2 12.1045 2 12.2153 0.4 10.5086 0.5 10.5086 

3 14.6025 3 13.4376 0.6 10.7828 0.7 10.2304 

4 18.6483 4 14.1438 0.8 11.0296 0.9 9.9779 

Table 2: Skin friction coefficient for various values of fluid parameters 

Gr (Cf)r=s Re (Cf)r=s BR (Cf)r=s n1 (Cf)r=s 

1 27.1661 1 27.1661 0.2 26.3072 0.3 27.7491 

2 30.5084 2 19.4610 0.4 27.1661 0.5 27.1661 

3 37.0376 3 16.4155 0.6 28.1708 0.7 26.7039 

4 50.7425 4 14.5285 0.8 29.2451 0.9 26.3533 

Table 3: Nusselt number for various values of fluid parameters 

Gr (Nu)r=s Re (Nu)r=s BR (Nu)r=s n1 (Nu)r=s 

1 4.2393 1 8.7795 0.2 1.9470 0.3 3.7871 

2 4.4610 2 21.4166 0.4 4.2393 0.5 4.2393 

3 4.6959 3 33.2185 0.6 7.3354 0.7 5.2790 

4 4.9380 4 45.1128 0.8 11.7605 0.9 6.9495 

5. Conclusions 

This section studies the unsteady mixed convective flow of two immiscible micropolar and Newtonian fluids 

through the vertical pipe. The governing non-linear, coupled partial differential equations are solved numerically 

using the Crank-Nicolson and Newton's methods. The outcomes of the study are presented hereunder: 

• Fluid velocities in the case of mixed convective flow are found to be more than forced convective flow. 

• The obtained numerical solutions for fluid velocities and temperatures are found to be grid-independent. 
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• Unlike in the case of forced convective flows, there is an impact of heat transfer parameters like Brinkmann 

number and Prandtl number, not only on temperature profiles but also on the fluid velocity profiles. 

• Volume flow rate is increasing with Reynolds number while it is reduced by an increase of microrotational 

effects. 

• The skin friction coefficient at the boundary of the pipe decreases with the Reynolds number. 
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