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Abstract: This paper finds some new oscillation conditions of second order mixed functional nonlinear
differential equations with superlinear neutral terms of the form

(b(d) w' () — p(e) f(v(£($))) =0, ¢ =, >0,

where w(®) = v(¢) + q1() v? (x(P)) — q2(p) vo(u(@)), 6 is the ratio of odd positive integers with
6 > 1. Moreover, y(¢) < ¢ < u(¢) and &(¢) is a mixed type deviating argument. The results obtained here
extend, simplify, and generalize existing ones in the literature. Examples are given to demonstrate the results.
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1. Introduction

The present paper is focused on the oscillatory behavior of solutions to the second order mixed functional
nonlinear differential equations with superlinear neutral terms of the following form

(b(@) w'($) - p(@®) H(v(§($))) =0, ¢ = ¢ >0, (L1)

where w(¢) = v(@) + ¢:1(9) v’ (x(#)) — q2(¢) v?(u(@)) and b, g1, 5, p, x, 1, & are continuous
real-valued functions on [¢,, o).

Without further mention, throughout, the following hypotheses hold:
H1: 6 is the ratio of odd positive integers with 8 > 1;

H2: b € C*([¢o, 0), R*) and

|(¢)=fdi$ ds — o0 as ¢ — o 1.2)

H3: p, g1, gz € C(J¢pg,©),[0,0)) and g is a positive continuous real-valued function with
0<qg,<q<1;

H4:fe C(R,R)and, 3 k > 03 f(x) = k x%, V x # 0, where « is the ratio of odd positive integers;

H5: xu € C(¢o®)R)x(@P) <¢<u(p), yandp are strictly increasing functions and
4}i_r)nwx(¢) = 4}i_rpwu(¢) = oo,

H6: £ € C'([$0, ), R), §'(¢) > 0and lim ¢(¢) = co.

It is worth noting that E(p) is of mixed type which means that
its delayed part

De = {¢ € o, ) Ed) <}
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and its advanced part
Ae ={¢ €l¢y ©):§(P) >}
are both unbounded subsets of [¢, o).

By a solution of (1.1), we mean a function v(¢) € C([¢,, ), R), with w, b(¢)w'( ¢) € C*([¢,, ), R) that
satisfies the differential equation (1.1) on [¢,, o) where ¢, = ¢, Without further mention,
we will assume throughout that the solutions that satisfy

sup{lv(p)|:p =T}>0,VT = ¢,.

A solution wv(¢p) of (1.1) is called oscillatory if it has arbitrarily large zeros on [¢,, ),
that is, V ¢, € [¢,,0) T ¢, = ¢, D v(¢,) =0; if not, it is called nonoscillatory, that is, if it is eventually
positive or eventually negative. If every solution to (1.1) is oscillatory, then (1.1) is called oscillatory.

The set W of all nonoscillatory solutions of (1.1) is the union
w = UZiw,
where
W, :w(g) >0and w'( ¢) <O0; W, :w(¢) > 0and w'( ¢p) > 0;
Wy :w(¢) <0and w'( ¢) <0; W, : w(¢) <0andw'(¢) > 0.
We consider the situation that W = @ for (1.1), i.e., every nontrivial solution to (1.1) is oscillatory.
2. Main results
Lemma 2.1 [7]. If X, Y >0, then
X*+ A -1)Y*—2axy*1 >0, fora > 1, (2.1)
and
XP— @ -D)Y*—axy*1 <o, for0 <1 <1, (2.2)
where equalities hold if, and only if, X =Y.

For convenience, we utilize
B($): = (0 — 1) 070 q7-3($) ¢, 70($),
By(¢): = (6 — 1) 070 q-i(¢) ¢, -9(9),

and
. — 1 _ (B2 - B1($)
By(@): =1 ( ) )
By () — B1($)
Bi(9): = 1 - (=R,

c; <0,c, > 0 are constants.

Theorem 2.1. Assume q(¢) is such that
J"_T& [B2(¢) — B1(9)] =0. (2.3)
Moreover, assume the following condition:

k fd‘j‘;ﬁ) (/.7 p(s) ds) du = oo. (2.4)
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If 3 {¢r}, {sk}with ¢y, s, — 0 ask — 0 3 ¢, € D; and s, € A, respectively,

SR e ke p) [1(E@0) ~ 1)) ds > 1, @9
and
lim sup ff(sk)k n, p(s) [1(£(s)) — 1(&(sp))] ds > 1, (2:6)

k — oo sk
vk=1,23,...,and k > 0, where n; and n, are constants, then (1.1) is oscillatory.
Proof. Assume, on the contrary, that v(¢) is a nonoscillatory solution of (1.1). We can assume, without losing
generality, that v(¢) is an eventually positive solution of (1.1) because, if wv(¢) is a solution

of (1.1), then — v(¢) is also a solution of (1.1). Hence, we get v(¢) >0, v(x(¢)) >0, v(u(¢)) >0,
v(&()) > 0, for large sufficient ¢. Then the following cases arise:

Case 1. Suppose that w(¢) € W;. By the definition of w(¢), we have
v(p) = w(p) — q1(p) v (x(P)) + q2(d) v° (u(9))

= w(g) + (9@ v(x(@®) - (@) v* (x())) — (a(@®) v(u(@)) - a(®) v (u(9))).  (2.7)

1

PULA = 6 >1, X = ¢,5(¢) v(x($)) and ¥ = (g 4(9) ql%l(qb)) in (2.2), we get

() v(x(#)) — 41() v (x()) < (6 — 1) 675 q7-3($) qu3() : = By (). (2.8)

1

Puti=0>1X = q25(¢) v(u(@))andy = <§ q(¢) qz_?l(cb))e_l in (2.1), we get

1) v(u(@®)) — 4:(8) v° (1($)) < (8 — 1) 675 q1-i(¢) 4 =5(9) : = By (). (2.9)
Using (2.8) and (2.9) in (2.7) we get
v(@) = [1 - (ZL2E)] wg). (210)
From (1.1),
(b() w'($) =p(@®) H(v(§($))) =0, (211)

therefore b(¢)w'( @) is increasing for ¢ = ¢,. It is easy to obtain

¢ bW ()
wio) =Jy, e ¢

= b(po) W (o) f;; ﬁ ds
=0C I((l)),

where ¢; = b(¢y) w'(¢po) < 0 is a constant. Hence

v(9) = [1- (ZL2B)] w(g) : = Bs(¢) w(e). (212)

Now, 3 aconstantn; =13

v(¢) = ny w(d). (2.13)
Taking into account the fact that §'(¢) > 0, it is easy to see that ¢, € D; implies that (§(¢y), Px) < De.
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From (1.1), we have

(b(@) w'($)) = kp(@) v*(£(9)) = k p(e) v(£(9)).
Now integrating (1.1) from &(¢;) to ¢y, and using (2.13), we get

—b(E@) W' (§(9:)) = k [3k | P v(E() ds

v

keny [ p(9) w(§(s) ds. (2.14)
For s € (§(¢x), i), We get
w(E) 2 [fo0 220w gy

1

2 = b(£(6) W' (Eb0) [F0 = du

b(w)

= —b(£(@) w' () [1(£(¢)) — 1(E)],
therefore, in view of (2.14) implies
—b(§(@) W' (E@0) = k m [ P W(ES) ds,
that is
= b(§(6)) W' (§(d0)) = — kny b(E($i0) w'(§(d1)) [, () [1(E (b)) = 1((5))] s,
that is
12 [F% 0 eny p&)[1(E(p) — 1(5())]ds.

Taking limit supremum as k — oo, we get a contradiction to (2.5), and hence, W, = @, that is, (1.1) is
oscillatory.

Case Il. Suppose that w(¢p) € W,. Since w(¢) is increasing, 3 a constant ¢, > 0 3 w(¢) = ¢, for large
sufficient ¢, and so, writing (2.10) as

v(9) = [1- (LD w(g) : = By(®) w(9). (2.15)
Now, 3 a positive constant n, € (0,1) 3
v(p) = ny w (). (2.16)
There exists {s,} 3 s, € A¢, and given that §(¢) is increasing, which implies that (sk,f(sk)) C Ag.
From (1.1), we have
(b(®) w'(@)) =k p(@) v*(£@)) =k p(@) v(§(9)). (2.17)
Now, integrating (2.17) from s, to é(s;) and using (b(¢) w'( ¢))’ > 0 and (2.16), we get

b(E(s)) W' (§(s)) = k [5 p()v(§()) ds

>k n, fsi(sk) p(s)w(&(s)) ds. (2.18)
Fors € (si, &(sy)), we get

&) b w'(w)
W(f(s)) = ff(Sk) b(w) du
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2 b)) W' (E60) i) 5o du
= b(§(s)) w'(§(s1)) [1(6()) — 1(§(s))] (2.19)
and so, taking (2.18) into account, we get
b(E(s)) w'(§(s)) = kg [1 p(sIw(£(s) ds,
that is
b(£(s:)) w'(§(51)) = k my b(£(si)) W' (§(si)) £ () [1(8(5)) — 1(£(si0)]ds,
that is
12 [5% ke, p)[1(E)) — 1(§(s0)]ds.

Taking limit supremum as k — oo, we get a contradiction to (2.6), and hence, W, = @, that is, (1.1) is
oscillatory.

Case I11. Suppose that w(¢) € W5. Here w(g) satisfies

either
¢lim w(¢p) = —0 (2.20)
or
¢lim w(p) = k, <0. (2.21)
We claim that (2.20) is valid. Otherwise, from the definition of w(¢), we get
1
-1 9
—w(u " (¢)
v(p) = <¥) ) b = ¢1.

It is obvious that v(¢p) is bounded and Fa constant M;3 v(p) = M; > 0 Vo = ¢, = ¢;.
Using (2.17), we get

(bW (@) =M kp@), ¢ = b (222)
Integrating (2.22) from ¢ to u and then put u — oo, we have
—b(@) w'(¢) = My k f,” p(s)ds.
Now, integrating this from ¢, to ¢ and then put ¢ — oo, we obtain
(pll_r)r; w(p) <—M k f;; ﬁ(fump(s) ds) du.
This contradicts with (2.21) from (2.4). Hence (2.20) is valid and W5 = @.

Case IV. Suppose that w(¢) € W,. Since b(¢)w'( ¢) is positive and increasing, 3 a constant M, >0 3

b(@) w'(p)=M,, Y = ¢y. (2.23)
Integrating (2.23) from ¢, to ¢ and taking ¢ — oo yields

' oo 1
Jm w(@) = wig)) + My [ ds,

which is impossible due to (1.2). Thus W, = @, and completes the proof. m
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Our next thought is the further development of Theorem 2.1. Let us state the required lemmas as follows in
order to accomplish this.

Lemma 2.2. Suppose there exists {¢y}, ¢, — 0 as k — oo, such that ¢, € D;. Let3y > 03

kny [1(@) —1(E()] 1(@) b(@) p(@) = v, on (E(E(di)).é(dr) ), VKk=1,2,3,.... (2.24)

If v(¢) is a positive solution of (1.1) 3 w(¢p) € W,, then —I"(¢) b(¢p) w'(¢) is decreasing on
(£(5(#). €00 ).

Proof. Since —b(¢)w’( ¢) is decreasing, then it is easy to view that

b —b@w W
wE@) = Jiyy —pa

=~ b(@) W' @) [y 5o
= —b(p) w'($) [1(@®) — 1(§(¢)].

From (2.13) and (2.17),

(b w' (@) = kn, p(@) b(g) (—w' (@) [I(p) — I(E(®))].
If we confine ¢ € (§(pr ), dx) € Dg, k=1,2,3, ..., then from (2.24),
1$) (b(@) w'($)) = v (-w'($))
and hence
(—1"@ @ w' (@) < —y "1 (P) I'(¢) (b(@) w'(P)) — I"(9) (b(d) w'(9))’

<0

completes the proof.

Lemma 2.3. Suppose there exists {sy}, sy — o as k — oo, such thats, € A;. Let35>023

ke, [1(§()) = 1@)] 1) () p(¢) = 6, on (§(s),§(E(s))), Yk=1,2.3, ... (2.25)
If v(¢) is a positive solution of (1.1) > w(¢) € W,, then I75(¢) b(¢p) w'(¢p) is increasing on
RN}

The proof is similar to that of Lemma 2.2.

Theorem 2.2. Suppose (2.4) holds and 3 q(¢) 3> (2.3) holds. Moreover, suppose I {¢.}, {si}with
¢k, Sk — ©ask — 3 ¢, € Dy and sy, € A;.

If

lim sup b 1Y (&) - 1TV (E(s))

P en, (@) Ly PO) | L | ds >1 (2.26)
and

lim su _ E(sp) 1149(g(s)) - 1148 (& (sp)

WD e, 1795 (s0) 5 pes) [T g 50 @)

where (2.24) and (2.25) define y and §, respectively, and n, and n, are constants, then (1.1) is oscillatory.

Proof. Assume, on the contrary, that v(¢) is an eventually positive solution of (1.1). Then the following cases
arise:
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Case |. Suppose that w(¢) € W;. By lemma 2.2, the function —I¥(¢)b(¢p)w'(¢p) is decreasing on
(£(E(P1)), €(@x) ). Thus, for s € (§(¢x), Pr), we obtain

) —bIWw' W)
w(E®) = [ Y

> = b(§(60) I"(§@0) W' (§$10) fi® s 4

—b(&(pi) I"(E(pi)) w'(E(¢)) [’1‘7(5<¢k>)—11‘Y(é(s)) .

1-y
Using the above inequality in (2.14), we get
—b(E(P)) W' (E(dr)) =
ks (= b(E (@) I"(§(600) W (5(90)) Sy, p(o) [ E LD s,

1-y

that is,

L= kny 1Y (£(0)) Jf, (s ) [HE) 1 V(f(s))] ds,

which contradicts the condition (2.26), and hence W, = @.

Case 11. Suppose that w(¢) € W,. By lemma 2.3, the function I75(¢) b(¢p) w'(¢) is increasing on
(f(sk),f(f(sk))). Thus, for s € (sy, £(sy)), we obtain

& b Itww' @)
w(¢() = ff(Sk) ) 10w %
1

2 b(£(50) I (§60) W' (E60) [io) sess du
> b(£(50) 12 (§(50) w! (£ (s0) [FELEe0)]

Using the last inequality in (2.18), we get

b(E(s)) w'(§(s) =
k n, (b(f(sk)) I_S(E(Sk)) W’(E(Sk))) fjk(Sk) p(s) [11+6(f(s))-11+5(§(5k))] ds,

1+6

that is,

148 _ 1468
12 kn, I75(8(sy)) fjk(Sk) p(s) [1 (s<s>)1+16 (f(sk))] ds,
which contradicts the condition (2.27), and hence W, = @.

The remaining two cases, Cases Il and 1V, are identical to those in Theorem 2.1, and this completes the
proof.m

3. Examples
This section illustrates the application of main results.

Example 3.1. Consider the second order differential equation of the form

(v(¢)+\/_v2(%)_ 2(2¢)> __U(¢(1—§gin(ln¢)))=0, ¢ >0, c>0.
(3.1)
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This is a special form of (1.1), where b(¢) = 1, w(¢) = v(¢) + /¢ v? (%) - = v2(2¢), p(p) = Wlth cisa
constant, &(¢) = ¢ (1 ~2sin(in¢) ) a=1k = 1, f(v(f(qﬁ))) = v(¢(¢)), ¢0 = 0,
6=2>1,q,(¢p) = \/E q2(d) = i, x(@) = ? , u(¢) = 2 ¢. Clearly, the deviating argument &(¢) is of mixed
type.

If we choose ¢, = eGH2T | 1 23 then ¢x € D; and moreover &(¢;) = § e(F)vzen

Condition (2.5) takes the form

lim sup o ¢ [T (B+2kn 2 .
k — oot e [5 Gz — 5(1 —3sm (lns))] ds

S e gy [ e L ) Camans ] s

_lim sup
_k — o0

cny [‘i el G)(:(};k) = (ns)ggy, = 5 (cos (ns)) )Wk)]

2 1 2 . 1
=cn, [§+ In 3 5 Sin (lng)]
>1,
which (by Theorem 2.1) guarantees that W, = @ (i.e.for c > ni 6.181523945).
1

On the other hand, if we choose s;, = e( )”k", k =1,2,3, .., then s, € A; and moreover
fGs0 = £ e
Condition (2.6) takes the form

7 31

lim sup ff(sk) - [ (1 —Esin (lns))— ;e(T)”""] ds

k — o
_ lim sup cn, ff(sk) 1_ (E) ( )sm (Ins) —= e( )+2kn 512] ds

k — o s 3
_ lim sup [ §Gsw) £61) ( M+zkn (1 f(Sk)]
=k — oof (Ins)g, (cos (Ins)))g, (S)sk

=cn, [ln ; + gsin (lné) - 2]
=cn, [—§+ln§ + 2 sin (lnz)]
>1,

which ensures that W, = @ (i.e. for ¢ > = 5.879215638).
2

[00) 001
cf f —zdsdu—oo
o Ju S

that means, (2.4) is also satisfied. Based on the two criteria, we can observe that the condition
c> ni 5.879215638 suggests that (3.1) oscillates.
2

Moreover, we can verify that

Example 3.2. The differential equation (3.1) is once again considered.
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1

At first, by theorem 2.2, we shall show that W, = @ for ¢ > - 5.80674902. So, we set
1
1

¢ = — 5.80674902. Again taking ¢, = eBr2rm o 1, 2, 3, ..., then &(¢py) = = G2k ang

nq 3

() = (% - gcos (ln %)) G2 1 view of Lemma 2.2, the condition (2.24) reduces to

gnlcsin (Ing) =y, on (&) E)) k = 1,2,3,...

Since§ n, ¢ sin (In ¢) is increasing function on ( £(&(¢,)), €(pyx) ), we have

os <ln @))) = 04284180863

le
O IN

Yy = g n, ¢ sin (ln ( f(f(qbk)))) = § n, ¢ cos (ln(

s0 that y is the same on each interval ( £(&(¢x)), () ).

Now, we verify the condition (2.26).

lim sup ny & (¢k)f(¢, ) n(s) [51 ”(¢k) fl V(S)] ds

k — oo

- 2 o g 3 [ o)

k — oo 1-y

o <s (1 —%sin (iIns) ))1—1/] ds

= [E_ (1 G )+2kn) fg(d,k) sTHY (1 —gsin (lns))1 yds].

k — o0 1-v |3 3

Substituting s = e(E)“"”

li V() -1 ()
P 0 8 () [ P8 [ ds

k — oo

o[ () o (2o (n (97 0))) e

_mc

_ () f ¢ 1V(1——cos(ln¢)) ydd’]-

T 1y

¢, the above equation, we get

Using Matlab for calculation, we get

1—

Y
[ g1 (1 —2cos (n¢) ) d¢ = 0.909774 with y = 0.4284180863
3

and finally, we get

lim sup
k — o

n £ () [, p(s) [F 2220 45 = 1000000007 > 1

which by Theorem 2.2 guarantees that W; = @.

At second, by theorem 2.2, we shall show that W, = @ for ¢ > ni 4.4183627. So, we set
2
c = ni 4.4183627. Again taking s, = (7 )+2k", k = 1, 2, 3, ..., then {(sk)—g (F)+2km ang

2

£(E(sp) = (Z + 19—0605 (ln Z )) e(Z)*267 1 view of Lemma 2.3, the condition (2.25) reduces to

—%nzcsin (Ingp) = 4, on (f(sk),f(f(sk))), k=123,..

Since — 2 n, ¢ sin (In ¢) is decreasing function on (f(sk), f(f(s@)), we have
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6= — g n, c sin (ln ( f(f(sk)))) = § n, ¢ cos (ln(§+ 1—90 cos (ln G)))) = 1.666983689

so that & is the same on each interval (f(sk), f(f(sk))).
Now, we verify (2.27).

lim sup _s &(sk) §1%5(s) - §145(sp)
o, £ (s [ () [ ds

. v -5 146 - 146
_ lim sup myc € 6(37)+2k7t) fsi(sk)siz[(s (1-2sin (lns))) e 8(37)+2k7r) ]ds

k — oo 146 \3 3

, . -5
_ lim sup nzc [(5 e(37)+2"”) fjk(s") sét (1 - gsin (Ins) )1+5 ds — %]

k — oo 146 3

3T

Using s = e( 2

lim sup _s &(sp) §145(s) - 1+ (sp)
o, 6705 5 p (o) [ ds

= % [(g )_(S f13i¢8—1 (1 - gsin (ln (e(sz_n)”k" ¢) ) )1+6 dp — %]

= % [—§+ G)_6 flg po1 (1 +§cos(ln $) )1+5 dq,')].

Using Matlab for calculation, we get

)+ 2k ¢ in the last integral, we get

5 1+6
[zt (1 +2cos(In ¢)) dp =2.97659 with & = 1.666983689

and finally,

lim sup
k — o

Sy 148
n, f_a(sk) fsfk(Sk)p(S) [M} ds = 1.000005958 > 1

148

which by Theorem 2.2 guarantees that W, = @. Hence, based on the two criteria, we can observe that the
condition ¢ > ni 4.4183627 suggests that (3.1) oscillates, while Theorem 2.1 requires ¢ > ni 5.879215638.
2 2

4. Conclusion

This paper studies a class of second order mixed functional nonlinear differential equations with superlinear
neutral terms and establishes some criteria for oscillation. Also, we obtained stronger conditions for equation 3.1
to be oscillatory, and hence, a further development of Theorem 2.1 is Theorem 2.2,
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