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Abstract: - Complex networks are prevalent in various fields such as communication systems, social networks, 

and biological networks. Managing and analysing these networks can be challenging due to their intricate 

topology. In this paper, we propose a mathematical model for reducing complex network topology using Dynamic 

Mode-M graphs and labelling with Isomorphic Square Pattern Cordial Graph (ISPCG). The path definition is 

analysed with cross vertex Exchange cubic Hamiltonian path (Cv-ECHP) to connect the least distance neighbour 

nodes in the routing to reduce the topology complexity. The proposed system simplifies the analysis of complex 

networks data transmission and improve efficiency in routing enrichment. 
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1. Introduction 

With the increasing complexity of these networks, there is a growing need for efficient methods to analyze and 

optimize their topology to improve data transmission and routing efficiency. In this paper, we propose a 

mathematical model that utilizes Dynamic Mode-M graphs and labelling with Isomorphic Square Pattern Cordial 

Graph (ISPCG) to reduce complex network topology. By analyzing the path definition with cross vertex Exchange 

cubic Hamiltonian path (Cv-ECHP), we aim to connect the least distance neighbor nodes in the routing to 

minimize topology complexity and enhance routing efficiency. 

Routing optimization is a key challenge in complex network systems, as it involves finding the most efficient path 

for data transmission between nodes. Cv-ECHP is a method that focuses on connecting neighbour nodes with the 

least distance in the routing, thereby minimizing the number of hops and reducing latency in data transmission. 

By implementing Cv-ECHP in our model, we aim to streamline the routing process and improve overall network 

efficiency. 

 Complex networks consist of nodes and edges that represent relationships between entities G →(N(x,y)). These 

networks can be very large ‘N’ nodes and complex due to dynamic changes of topology N →(n+1) T, making it 

difficult to analyse and understand their structure ∑ 𝑛(𝑥1,𝑦1), 𝑛(𝑥1,𝑦1)
𝑛
𝑖=0 𝑛(𝑥2,𝑦2) … … 𝑛(𝑥𝑛,𝑦𝑛). One way to simplify 

the analysis of complex networks is by reducing their topology using graphs G (V, E) and labelling with 

Hamiltonian d(v)+d(w ) ≥ n. Graph theory 𝐺 (
𝑛 − 1

𝑖
) + 1 provides a powerful tool for representing network 

structures, while Hamiltonian labelling can help in identifying key features of the network to reduce the complex 

structures to form distance based routing to connect the nodes and edges. 

2. Survey’s and Mathematical Preliminaries 

There are various authors and mathematical principles individually to solve the network topology problems’ using 

graphs and labelling’s. The following are the preliminaries and principles of predefined models. 
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E. Sabir, et al, 2024 [1]: To analyse Hamiltonian rotations and path embedding’s inQn
k , they prove that K1,1 is 

based on the structural error of bipartite k-ary n-cube. In addition, when|F|   ≤ 2n − 2, a Hamiltonian rotation is 

established inQn
k − F. Whenn ≥ 2 or k ≥ 4, there is a Hamiltonian path between two vertices in different partition 

sets. 

Furthermore, a Hamiltonian rotation is set up in 𝑄𝑛
𝑘 − 𝐹 when|𝐹|   ≤ 2𝑛 − 2. A Hamiltonian path exists between 

two vertices in different partition sets when 𝑛 ≥ 2 𝑜𝑟 𝑘 ≥ 4. 

C.-P. Chang et al, 2000 [2]: Evaluate multiple shortest paths in O(n)time by comparing the Efe algorithm with 

the proposed method in O(n/sup 2/) time. Furthermore, they analyze a performance measure for the interconnect 

network called edge congestion while assessing the Shortest Path Routing (SPR) algorithm. 

S. K. Vaidya et al, 2013 [3]: They evaluate the connectedness and interactions among vertices to demonstrate that 

the partite sets of vertices of star K1,n  and binary star Bnnsplit the vertex set {u, v, ui, vi, 1 ≤ i ≤ n}represent the 

pendant vertices in the network Bnn. 

S. K. Vaidya et al, 2010 [4]: An arbitrary super-subdivision of a graph and an arbitrary super-subdivision of a 

graph are utilized to specify the graphs obtained by an arbitrary super-subdivision of an arbitrary path. Based on 

the cordial label, an estimate of the graph's binary vertex set is obtained as follows:|vf(0) − vf(1)|  ≤

1 & |ef(0) − ef(1) | ≤  1. Assume that there are e edges, v vertices, vf − vertices, and ef − edges. 

Lourdusamy et al, 2016 [5]: The analysis of the sum divisor cardiac labelling diagram involves the examination 

of various structures such as star, complete bipartite, 𝐾2 +  𝑚𝐾1, sub-division of bistar star, 𝐾1,3 ∗  𝐾1,𝑛 and square 

diagram ofBnn. Additionally, let's assume (𝑉1, 𝑉2) as a partition of 𝐾1,𝑛 where 𝑉1 = {𝑢} 𝑎𝑛𝑑  𝑉2 =  {𝑢1, 𝑢2,···

 , 𝑢𝑛}, 𝐸(𝐾1,𝑛)  =  {𝑢𝑢𝑖: 1 ≤  𝑖 ≤  𝑛}with n+1 as the cardinality of 𝐾1,𝑛and n representing the dimension. 

D. Xu et al, 2013 [6]: A Hamiltonian path with a defective vertex in the honeycomb mesh can be chosen by 

providing necessary and sufficient conditions for HMi = u, v ∈ V(HMi), u ≠ vthe existence of a Hamiltonian path 

connecting two vertices in the honeycomb mesh. 

Q. Dong et al, 2011, [7]: The current large-scale failure models analyze fault-tolerant Hamiltonian links in Twisted 

Hypercube-Like Networks (THLN). Moreover, the F ⊆ V (G)⋃E(G), n ≥ 7 and |F| ≤ 2n − 10are utilized to 

assess G in n-dimensional THLN connections. 

T.-J. Lin et al, 2012 [8]: Two embeddings in Cartesian product networks G1 × G2 by {u} × G2 tackle these 

challenges. The pan-cycle problem stems from cycles of varying lengths in the embedding of a product network, 

while the pan-connectivity problem deals with embedding paths of different lengths.  

      T. Chen et al, 2015 [9]: An optimized Forward Error Correction (FEC) model is utilized to examine 

packet volume vectors with packets coded in rate allocation R =  [r0, r1. . . rn−1] (ri ≥  0, i =  0, 1, . . . , N − 1) 

being assessed. 

X. Wang et al, 2015 [10]: When an n-port switch has a Hamiltonian path withK ≥  0 & n ≥ 2, DCell evaluates 

the network structure path. To forecast for n>3generalized DCellk connection rules, they employ a O(tk) method. 

Additionally, DCellk analyses a fault connected by Hamiltonian paths of lengths (n + k − 4)&(n + k − 3). 

3. Analytical solution 

 To reduce the complex network topology, we first represent the network as a graph where nodes represent entities 

and edges represent relationships between them. We then apply graph theory algorithms to identify important 

nodes and edges in the network. Next, we label the nodes and edges with Hamiltonian labels, which are unique 

identifiers that capture the topological properties of the network., the proposed mathematical model offers a 

promising solution for reducing complex network topology using Dynamic Mode-M graphs, ISPCG labelling, 

and Cv-ECHP algorithm. By simplifying the network structure and optimizing data transmission paths, the system 

improves routing efficiency and enhances overall network performance. By labelling the nodes and edges with 

Hamiltonian labels, we can simplify the analysis of the network and identify key features such as connectivity, 
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centrality, and clustering. Cross vertex Exchange cubic Hamiltonian path (CVECHP) is applied to real-world 

communication network and observed significant improvements in efficiency and accuracy. By reducing the 

network topology using graphs and labelling with Hamiltonian, proposed models efficiently to identify critical 

nodes and edges that play a crucial role in network performance. Our approach also helped in detecting closest 

distance-based nodes by optimizing network resources. Overall, our results demonstrate the effectiveness of our 

mathematical solution in simplifying complex network analysis. 

A) Network components and assigning variables 

Theorem: Let N is the number of nodes, with d vertices and components ‘c ‘ when the simple graph is S, were 

have (d − c)(d − c + 1)/2 at least edges. 

Proof: 

Simple graph is known as S through vertices d and componentsc, S1, S2, … , Sc, d1, d2, … , dk, is the vertices of the 

components,  

So that N→ d1 + d2 + ⋯ + dk = d 

i.e. ∑ di = dc
i=1  

Now, the component Si is a simple graph of di vertices. So, the highest amount of edges of di is 
di(di−1)

2
 

ε(Si) ≤
di(di − 1)

2
 

ε(S) = ∑ ∈ (Si)

c

i=1

 

                                               ε(S) ≤ ∑
di(di − 1)

2

c

i=1

                                 

Consider the component Si. Even if the remaining C − 1 components are isolated vertices, the amount of vertices 

of Si cannot exceed d − (C − 1) = d − C + 1 

di ≤ d − C + 1                                                                                                

(1)                                     ε(S) ≤ ∑
(d−C+1)(di−1)

2

c
i=1  

=
(d − C + 1)

2
∑(di − 1)

C

i=1

 

=
(d − C + 1)

2
[∑ di − C

C

i=1

] 

=
(d − C + 1)

2
(d − C) 

∴ ε(S) ≤
(d − C)(d − C + 1)

2
 

Lets  ε (S)  is the amount of edges of graph S containing nodes. 

The ‘S’ be a graph through d components of nodes. Adding an edge between a pair of vertices in dissimilar 

components of S reduces the number of components by one. So, the addition of d − 1 edges between suitable 

pairs of vertices makes S is connected graph. Hence, an associated graph through d vertices has as a minimum 

d − 1 edges from the dynamic nodes.  
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B) Dynamic Mode-M Graph based cordial labelling 

In this stage, the graph ‘ε (S)’ from the minimum edges is labelled as ‘G’ from ‘N’ number nodes varying to 

connected as network path which is adjacently closer to the transmission nodes to that Hamiltonian cycle. 

Theorem: Let G sis the connected Dynamic graph based on cordial Label G →N’ with ‘n’ number of vertices as 

connected nodes in network (x, y). Also the Hamiltonian cycle G→ d(v x) + d(w y ) as adjacent nearer ‘v’ and 

‘w’ are the connected nodes.  The number of vertices in M is at least 
h

2
of the size of every vertex in M. Furthermore, 

if M is a simple graph with 'h' vertices and each vertex is of minimum size then the Hamiltonian of M is
h

2
.  

Proof of algorithm in humiliation path consideration 

Step 1. Evaluate all vertices in M 

f(y) ≥
h

2
 

Step 2. Prove that M is the Hamiltonian. 

Step 3. Assume M is not Hamiltonian.   

Step 4. M is not complete. 

Step 5. There exists a pair of vertices (x, y) where u and v are not adjacent. Moreover, the xy̅̅ ̅  represents the edge 

connecting x and y and can be analyzed as the network path defined byM′ = M + xy̅̅ ̅. 

Step 6. Is complete← M′ 

Step 7. Becomes Hamiltonian ← M′ 

Step 8. The circuit requires the addition of a new margin ← xy̅̅ ̅ in M′  

Step 9. Removing the newly added edge from the Hamiltonian circuit results in a Hamiltonian path in M. 

Step 10. Let y1  =  x and yh  =  y denote the vertices of the path by considering the Hamiltonian path asR =

y1, y2, . . , yh. 

I = {yi(C) xya ∈ C(M)} 

J = {yb(C) yby ∈ C(M)} 

Step 11. Subsequently, xy ∈ C(M), x ∉ j and y ∉ I 

Step 12. Furthermore, M is a simple graph← x ∉ I and u ∉ J,  

x&y ∉ I &J and I ∪ J 

Step 13. Moreover,|I ∪ J| < h the analysed that I ∩ J = ϕ and I ∩ J = ϕ  

Step 14. There exists a vertex ← yz ∈ I ∩ J 

yz ∈ I and yz ∈ J 

Step 15. There is an edge xyz and yyzin C (M) 

Step 16. A network routing containing all vertices passing through M isyz, moreover M is Hamiltonian. 

Step 17. The claim that M is not Hamiltonian appears to be contradicted. 

I ∩ J = ϕ ⟹ |I ∩ J| = 0 

18. Moreover, these can be analysed from the definitions of I and J. 

|I| = f(x)and|J| = f(y) 
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We identify that ← |I ∪ J| + |I ∩ J| = |I + J| 

|I| + |J| < h + 0 

f(x) + f(y) < h 

By hypothesis←  f(x) ≥  
h

2
 and f(y) ≥

h

2
  

f(x) + f(y) ≥
h

2
+

h

2
= h 

19. Which is a contradiction.  

20. Therefore, M must be Hamiltonian. 

 The theorem proofed by humiliation nodes in the path moreover the nodes the typically assigned in the path to 

considered as best support nodes connecting to the edges. 

C ) Isomorphic Square pattern cordial graph (ISPCG) 

The ISPCG is a labelling technique that assigns unique labels to each node in the network based on its connectivity 

and relationship to other nodes. By labelling the nodes with ISPCG, we can identify patterns and structures in the 

network that can help us understand its topology and optimize routing paths. 

In this stage the connective M nodes of Hamiltonian representation nodes are connected with other nodes to form 

pattern. The actual support of nodes is represented as a0 and a1 in the x, y graphs. 

Theorem: Let’s isomorph nodes are connectively related to form pattern Square Divisor cordial graph= S′(Bx,y) 

Proof. With a vertex setV(Bx,y) = {a0, b0, ai, bj: 1 ≤ i ≤ x, 1 ≤ j ≤ y}, where ai&bj are pendant vertices, let 

Bx,ybe the bistar. Using the newly added vertices, let a′0, b′0, a′i, b′j be the formula forG = S′(Bx,y),, where 1 ≤

i ≤ x and1 ≤ j ≤ y. It is seen that |E(G)| = 3x + 3y + 3 and|V(G)| = 2x + 2y + 4. Moreover, S′(Bx,y) and 

S′(By,x)  are isomorphic graphs as there is no generalization, implyingx ≤ y. 

The vertex labelling can be denoted as f: V(G) → {1,2, … ,2x + 2y + 4} and it indicates as below: 

f(a0) = 1, f(a′
0) = 2x + 2y + 3. 

f(b0) = 1, (b′
0) = 4. 

f(ai) = 2y + 1 + 2(i); 1 ≤ i ≤ x. 

f(a′
i) = 4 (y + 1 − [

x + y

2
]) + 4(i); 1 ≤ i ≤ x. 

f(bj) = {

4j + 2;

4 (j − ⌈
x + y

2
⌉) + 4;

1 ≤ j ≤ ⌈
x + y

2
⌉

⌈
x + y

2
⌉ < j ≤ y

 

f(b′
j) = 2j + 1; 1 ≤ j ≤ y. 

In consideration of the beyond defined labelling pattern we have hf(0) = ⌈
3x+3y+3

2
⌉ and hf(1) = ⌈

3x+3y+3

2
⌉. Thus, 

|hf(0) − hf(1)| ≤ 1. Hereafter, S′(Bx,y) is a divisor cordial graph. This finds the actual support node as 1 at the 

closest points. 

D) Cross vertex Exchange cubic Hamiltonian path (CVECHP) 

The neighbour-based nodes are connected based on least distance along the x + 1 between two distinct routing 

paths. The Cross-vertex Exchange cubic Hamiltonian path algorithm can be analysed by examining the distance 

of Hamiltonian properties by choosing the closest node  
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Algorithm: CVECHP 

Input: Two distinct paths are q and w, T and y in ← q ≥ 2, w ≥ 3 and q ≤ w, CHP(q, w)  

Output: Hamiltonian path Hpbetween x and y← CHP(q, w) 

Start 

For q = 2 and w = 3 

{ 

Return← Hp between u and v is CHP(2,3)) 

} 

For each (q > 2) 

 { 

Evaluate the two nodes distance intermediate connecting distance q + w fromu′ and v′.   

 If a ≠ b 

{ 

  Select the edge x and y 

x ∈ Y(CHP(q, w)) − {u} 

y ∈ Y(CHP(q, w)) − {v} 

   

Two binary strings of length q +  w are x1and y1 

R0
′ = CHP(q − 1, w, u′, x′) 

R1
′ = CHP(q − 1, w, y′, v′) 

 Return aR0
′ + bR1

′  

Else 

 Select an edge C(x, y) ∈ aR0
′  on nearest nodes 

Let t and k denote the neighbourhoods of x and y in(CHP(q, w)).  

When two nodes,t′ and k′ have distance of q +  w such that q + w← t = bt′ and k = bk′′. 

R1
′ = CHP(q − 1, w, t′, k′) 

   Return  Path(aR0
′ , u, x) + bR1

′ + Path(aR0
′ , y, v) 

   } 

  } 

If q = 2 

{  

 Calculate the two distance between nodes based on length t foru′′ and v′′. 

u, v ∈ Y(CHP2,w
a ) 
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u = i1, i0au′′

v = i1
′ i0

′ bv′′
 

 If (a ≠ b) 

{ 

  Select an edge ← (x, y) 

x ∈ Y(CHP2,e
a ) − u

y ∈ Y(CHP2,w
a ) − v

 

Evaluate two nodes of strength w in x′′ and y′′ Let x = m1m0ax′′and y = m1
′ m0

′ by′′ Where m0
′ ∈ {0,1} 

R0
′ = CHP(q, w − 1, i1i0u′′, m1m0x′′); 

P1
′ = CHP(q, w − 1, m1

′ m0
′ y′′, i1

′ i0
′ v′′) 

  Return R1
aa + R1

′ b 

} 

Else 

R0
′ = CHP(q, w − 1, i1i0u′′, i1

′ i0
′ v′′) 

  Select and edge(xy) ∈ R0
′ a , 

Where t′′ and k′′ are two nodes of distance w, Let n1n0bt
′′and k = n1

′ n0
′ bk′′ where n1, n0, n1

′ and n0
′ ∈ {1,0} 

R0
′ = CHP(q, w − 1, n1n0t′′, n1hn0k′′)  

 Return Path(R0
′ , u, x) + R1

′ b + Path(R0
′ b, y, v) 

  } 

 } 

The algorithm finds the neighbour based least distance nodes to connect the edges to form routing. The distance 

of the nodes is identical with difference between two edges to create connective edges to reduce the complex 

structures 

End 

Discussion: Our mathematical solution for reducing complex network topology using graphs and labelling with 

Hamiltonian offers several advantages to improve the distance-based routing. By simplifying the network 

structure, the graph models and labelling support to improve the routing algorithms, network design, and anomaly 

detection. Our approach also provides a systematic way to analyse and visualize complex networks, making it 

easier to routing the network data.  

5. Conclusion 

 In conclusion, our mathematical solution for reducing complex network topology using graphs and labelling with 

Hamiltonian offers a powerful tool for simplifying the analysis of complex networks. By representing networks 

as graphs and labelling them with Hamiltonian labels, we can identify key features and improve efficiency in 

various applications. the proposed mathematical model for reducing complex network topology using Dynamic 

Mode-M graphs, ISPCG labelling, and Cv-ECHP routing optimization offers a promising approach to improving 

routing efficiency and data transmission in complex network systems. By simplifying the analysis of network data 

and optimizing routing paths, we can enhance overall network performance and provide a more seamless 

experience for users. Further research and experimentation are needed to validate the effectiveness of this model 

in real-world network systems, but the initial results are promising. 
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