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Abstract: - Foggy conditions pose significant challenges for vehicles due to reduced visibility, making it difficult 

for drivers to see other vehicles, pedestrians, and road signs, which increases the risk of accidents. Fog also distorts 

depth perception, complicating the ability to accurately judge distances and speeds of other vehicles, leading to 

potential collision. For this we use deep learning methods, while deep convolutional neural networks excel at 

eliminating fog, they also need to be able to handle photos taken in actual meteorological situations with patches 

of cloud cover or fog. Blur is harder to categorize in the actual world, and decreasing map or picture quality will 

result in output results with inconsistent colours or less content. Additionally, the model's complexity will rise 

with additional convolutional block stacking. Deep learning methods for fog image processing can be plagued by 

over fitting in addition to the challenge of gathering enough training data. This can restrict the capabilities of the 

model and make it difficult to use it practically in real-world situations. 

This proposed a combined method for removing fog from surveillance images using WaveletFormerNet, a 

Transformer-based wavelet network designed for real-world non-homogeneous dense fog scenarios, this 

transformer method use the wavelet transform method. It also uses Multi-Object Detection with Enhanced 

YOLOv2 and LuNet Algorithms to detect objects. When these methods are combined, they can better handle the 

intricacies of hazy surroundings, improving both visibility and object detection precision. The effectiveness of the 

proposed technique is proven through rigorous testing, highlighting its potential to enhance the operation of 

monitoring systems in difficult weather situations. 

Keywords: Convolutional neural networks (CNN), Transformer-based wavelet network, YOLOv2, LuNet 

Algorithms, Real-world meteorological conditions 

1. Introduction 

Haze is a frequent atmospheric phenomena that ruins and distorts pictures. Many computer vision applications, 

including remote sensing processing [1, 2, 7] and video analysis and identification [3, 4], need the use of image 

de-hazing algorithms. Picture de-hazing is a crucial low-level picture recovery work and a pre-processing step for 

high-level vision tasks, and it has been a hot research area in computer vision and image processing in recent 

years. The traditional atmospheric scattering model (ASM) [8, 9] has been employed in several prior de-hazing 

techniques [5, 6, 7] to describe the hazy image deterioration process by Eq. (1): 

  I(x) = J(x)t(x) + A(1 − t(x))        …………(1) 

Where I(x) and J(x) are the degraded images and the clear images, respectively. A represents global atmospheric 

light; t(x) = e− βd(x) is the transmission map, where β and d(x) represent scene depth and atmospheric scattering 

characteristics, respectively. The primary goal of early prior-based dehazing techniques, which have advanced 

significantly, is to manually estimate the global atmospheric light A and the medium transmission map t(x). These 

prior-based techniques [1, 2, 5, 7] must, however, be more in line with practice because they typically call for 

laborious iterative optimization and manually created priors. Although it is commonly recognized that 

environmental variables like temperature, humidity, and altitude affect the creation of haze, it might be difficult 

to represent hazy pictures with a simple model. Consequently, when handling complicated scenarios like non-
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homogeneous and dense fog conditions, these prior-based approaches may lead to estimated mistakes. It is unable 

to handle very white movies and photos with dense white regions presents difficulties in accurately calculating 

attenuation [5, 12] 

However, clean images are necessary for surveillance since blurry or foggy images prevent us from seeing objects, 

but simply clearing the image won't fix the issue. We also require an object detection technique. Understanding 

several aspects of object recognition and haze removal, such as the number of objects, their distance from the 

item, their density of fog, and the real-time environmental conditions, is necessary. Therefore, in order to fix our 

problem, we must maintain these features. 

In this research, we propose to use image clearing, or the removal of haze or fog from an image, to identify an 

item for surveillance in a single model. Utilizing Multi-Object Detection with Enhanced YOLOv2 and LuNet 

Algorithms [11] and WaveletFormerNet, a Transformer-based wavelet network [11] designed for real-world non-

homogeneous dense fog conditions. When these methods are combined, they can better handle the intricacies of 

hazy surroundings, improving both visibility and object detection precision. The effectiveness of the technique is 

proven through rigorous testing, highlighting its potential to enhance the operation of monitoring systems in 

difficult weather situations. 

We use a transformer-based wavelet network called WaveletFormerNet [10], which was created especially for 

non-homogeneous fog situations that arise in real life. By introducing the WaveletFormer and IWaveletFormer 

blocks, this novel technique minimizes the loss of texture detail while maintaining picture quality. 

WaveletFormerNet is a lightweight technique that effectively gathers multi-frequency information by utilizing 

parallel convolution inside Transformer blocks. Furthermore, to improve feature extraction, a feature aggregation 

module (FAM) is presented, which captures long-range relationships among data at several levels. With the use 

of frequency information, WaveletFormerNet offers an end-to-end wavelet reconstruction network that 

successfully addresses picture dehazing problems in challenging actual circumstances. Wide-ranging tests carried 

out on artificial and real-world datasets confirm WaveletFormerNet's efficacy. Adding object detection is crucial 

to further improve surveillance capabilities. In order to comprehend and analyze surveillance film more 

effectively, object identification is essential for distinguishing item kinds and establishing their distances from 

one another. More complete surveillance systems are made possible by this added capabilities, which enhances 

threat identification, situational awareness, and decision-making. For better accuracy and efficacy in real-world 

conditions, surveillance systems can combine object detection with fog removal techniques like 

WaveletFormerNet. 

Additionally, we employ LuNet and Enhanced YOLOv2 algorithms for Multi-Object Detection in order to detect 

objects.[11] Numerous applications, such as intelligent transportation systems, robot navigation, video 

surveillance, and video analytics, benefit from multiple object tracking (MOT) in videos. Even though a lot has 

been learned since the first research, visual tracking of multiple items is still difficult because of ambient noise, 

occlusions in measurements, variable object counts, and similarity in appearance across objects. In order to 

identify moving objects before exchanging information, the study concentrated on three important processes: 

feature extraction, object detection, and classification. This paper suggests a deep reinforcement learning and 

LuNet-based multi-object video identification technique. Initially, the improved "you only look once" version 2 

(YOLOv2) picks up a lot of items. In this study, a YOLOv2 base network modified by decreasing the metrics and 

using LuNet in their place. The LuNet network is utilized in the improved model's feature extraction process to 

pull out the most anticipated qualities from the picture. Additionally, the LuNet design of the underlying network 

makes the model small. This method uses the MOT20 vehicle benchmark dataset to assess the performance of the 

strategy against many state-of-the-art methods. 

2. Related works 

2.1. Image dehazing  

Traditional prior-based approaches and learning-based methods are the two main groups into which the currently 

available picture dehazing techniques fall.  
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2.1.1Traditional methods 

The majority of prior-based dehazing techniques [1-5, 7, 12, 14] estimate the transmission map using clear and 

fuzzy pictures and then recover the haze-free images using ASM. The dark channel prior (DCP) was introduced 

by He et al. [5, 12], based on the assumption that low-intensity values are frequently present in at least one channel 

in the picture patches of haze-free outdoor photos. Zhu et al. [7] suggested using colour attenuation prior (CAP) 

to estimate the scene depth as reliable prior information in order to overcome the disparity in brightness and 

saturation of hazy pictures. However, these algorithms' performance is intrinsically limited by the particular 

situation, and if the scenario does not fulfil these priors, they can result in undesired colour distortions. But 

WaveletFormerNet [10] can reconstruct pictures with more resolution because it makes use of the complementing 

benefits of previous- and deep learning-based methods. 

2.1.2. Deep learning methods  

Deep learning methods have been put up recently to address the issue of dehazing underwater images. The 

restoration of underwater photographs using these approaches has yielded encouraging results. Three categories 

can be used to group them: (i) Transformer-based techniques, and (ii) CNN-based techniques. 

2.1.2.1. CNN-based techniques  

In recent years, a broad variety of CNN-based techniques [4] have taken center stage. In order to estimate t(x) 

utilizing a coarse-scale network and local optimization, Ren et al. [4] recommended the use of MSCNN. 

Reiterating ASM, Li et al. [6, 7, 8] suggested AODNet to learn each fuzzy picture and its t(x). All these techniques, 

however, rely on ASM, and the dehazing outcomes are frequently skewed in terms of color. To reduce the 

bottleneck issue that conventional multi-scale approaches have 

The training of these supervised approaches requires a high amount of data pairs, which is the reason for their 

great performance. More significantly, these methods are nearly exclusively learned on synthetic pictures, making 

them poorly suited for real-world image dehazing.  

2.1.2.2 Transformer-based methods 

Transformer-based models [10] have recently produced good results for dehazing photos. The WaveletFormer 

and IWaveletFormer blocks are used in this process to prevent texture detail loss and preserve image quality. The 

lightweight mechanism's multi-frequency information is captured by the parallel convolution in the Transformer 

blocks. We provide a feature aggregation module (FAM) to further improve WaveletFormerNet's feature 

extraction capabilities by capturing long-range relationships among data of various levels. We introduce an end-

to-end wavelet reconstruction system called WaveletFormerNet. 

2.2. Object detection 

2.2.1. R-CNN 

R-CNN is the approach to detect and count vehicles. Although this technique can accelerate the detection process, 

it has lower detection accuracy than other traditional method, most importantly these methods are incapable of 

detecting distant object 

2.2.2. Enhanced YOLOv2 

An improved YOLOv2 algorithm [13] was presented by Malik Javed Akhtar et al. (2022) to identify and recognize 

vehicles in surveillance films. In this post, the YOLOv2 main network is updated by using DenseNet in place of 

fewer parameters. The model is more compact due to the dense architecture of the underlying network. Since all 

layers have direct connections, DenseNet-201 is used as the base network in this study. This helps to get pertinent 

data from the first layer and deliver it to the last layer. The Kaggle and KITTI datasets were used to train the 

model, while the Pascal VOC and MS COCO datasets were used to cross-validate its performance.  
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2.2.3. Enhanced YOLOv2 and LuNet 

The use of LuNet and Enhanced YOLOv2 algorithms in surveillance videos is suggested by T. Mohandoss and J. 

Rangaraj [11]. In the Yolov2 algorithm. In this study, a real-time video dataset known as MOT20 was collected 

and converted into minuscule video frames. The video/image frame of the recognized object will provide 

recommended layouts and noise detection for different moving objects. The noise is eliminated and smoothed 

with a Kalman filter. The filter makes use of noise measurements gathered over time to anticipate future 

observations and assess the model's parameters. Forecasts, measurements, and updates based on forecasts and 

comparisons at every level are all possible with this filter. Mathematical estimators may be used to anticipate and 

update the state of various linear processes. In order to improve performance, the YOLOv2 network predicts and 

categorizes bounding box categories using binary cross-entropy loss rather than multiple labels. This effort 

replaced the amount of metrics in the YOLOv2 base network with LuNet, so altering it. This study uses LuNet 

technology for feature extraction in the upgraded model to extract the most anticipated qualities from the picture. 

Additionally, the LuNet design of the underlying network makes the solution compact. This study employs LuNet 

as the base network, which enables us to harvest important features from the first layer and transmit them to the 

last layer due to the direct connections between all layers.  

2.3. Proposed method 

YOLO (You Only Look Once) object detection, like many other computer vision algorithms, relies heavily on the 

quality of the input images. Higher-quality images generally provide clearer and more distinguishable visual 

features, which can aid in the accurate identification and localization of objects. Conversely, low-quality images 

with noise, blurriness, or other imperfections can hinder the detection process, potentially leading to slower 

performance and reduced accuracy in predicting object locations and classifications. Therefore, ensuring good 

quality data inputs is crucial for optimizing the performance of YOLO-based object detection systems. 

To address the limitations inherent in individual methods for object detection, we've devised a new approach that 

merges two distinct techniques. Recognizing that the quality and quantity of images are pivotal factors, we've 

devised a strategy that leverages the strengths of both methods. Initially, we employ an image fog removal 

technique to enhance the clarity of the visual data. Subsequently, this refined image is utilized for object detection, 

thereby augmenting the accuracy of predictions. By combining these methodologies, we aim to achieve superior 

results by optimizing both image quality and the effectiveness of object detection algorithms.  

This paper offers a combined method for removing fog from surveillance images using WaveletFormerNet, a 

Transformer-based wavelet network designed for real-world non-homogeneous dense fog scenarios; this 

transformer method use the wavelet transform method. It also uses Multi-Object Detection with Enhanced 

YOLOv2 and LuNet Algorithms to detect objects. The combination of these methods known as “ClearDetect”, 

can better handle the intricacies of hazy surroundings, improving both visibility and object detection precision. 

The effectiveness of the proposed technique is proven through rigorous testing, highlighting its potential to 

enhance the operation of monitoring systems in difficult weather situations. 

3. Methodology of “ClearDetect” 

The WaveletFormerNet's [10] construction is shown in Fig. 1. WaveletFormerNet's encoding and decoding are 

both based on the WaveletFormer and IWaveletFormer block; however, DWT and IDWT, respectively, are used 

in place of down sampling and up sampling in the encoding and decoding segments. While the WaveletFormer 

and IWaveletFormer block serves as the foundational block of the network, primarily integrating the wavelet 

transform and Swin Transformer, we don't utilize these two pre-existing tools directly; instead, we enhance them. 

The wavelet transform is utilized to convert the features into the frequency domain. Then, the frequency 

information is employed to direct WaveletFormerNet in order to retrieve the image's texture and structural details. 

Additionally, the receptive field brought on by the Swin Transformer is reduced by the parallel convolution. The 

WaveletFormer and IWaveletFormer block's structure also lessens the details brought on by issues with down 

sampling loss and other issues. Additionally, we suggest a Feature Aggregation Module (FAM) that combines 

various feature information levels to preserve picture resolution and improve the network's receptive field. In 
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order to extract features in various receptive fields, we lastly modify an Atrous Spatial Pyramid Pooling (ASPP) 

module in the network and adjust dilated convolution with different expansion rates (rate = 3, 6, 9).   

(A) WaveletFormer and IWaveletFormer block  

WaveletFormer and IWaveletFormer Blocks use DWT and IDWT to decompose the images from the frequency 

domain point of view, respectively, and the feature maps are used as inputs to the Transformer module with 

parallel convolution. 

 (i) Frequency decomposition of images  

Fig. 2 illustrates the detailed structure of the WaveletFormer block, adopting frequency information to guide the 

network in reconstructing a clear image. We can observe that the input image FDWTin can be divided into the 

low- and high-frequency details separated into four different frequency sub bands: the low-frequency band FLL, 

the horizontal sub band FLH, the vertical sub band FHL and the high-frequency sub band FHH on the diagonal 

edge of the original image. This mechanism alleviates detail and colour loss and provides a better balance between 

network processing efficiency and image recovery performance. For the 2D discrete wavelet transform, we import 

the pytorch_wavelets package and use Daubechies wavelet basis functions. 

 

Fig. 1. The schematic illustration of the WaveletFormerNet. WaveletFormer block and IWaveletFormer 

block consist of DWT and IDWT and Transformer block respectively, and IDWT is the reverse process 

of DWT.[10] 

(ii) Parallel convolution in Vision Transformer 

According to the mechanism, given an input feature map X∈ ℝb×h×w×c, we project X to Q, K, V (query, key, 

value), and we compute the attention function for a set of queries simultaneously and pack them into a matrix Q; 

so that the computed output matrix can be described as:  
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Attention (Q, K, V) = Softmax (QK^T/√ dk) V     ……………. (2)

Fig. 2. The architecture of WaveletFormer and IWaveletFormer blocks. Note: The WaveletFormer block 

and the IWaveletFormer block have the same structure: they utilize DWT and IDWT to substitute down 

sampling and up sampling, respectively. [10] 

(iii) Feature aggregation module 

As the key component of the FAM, the Multi-Head Cross-Attention (MHCA)  introduces the feature map Fout of 

the WaveletFormer block and the feature map FIDWTout from IWaveletFormer block into the MHSA  for 

processing, the computed weight values Y to be rescaled by the sigmoid activation function. The resulting feature 

tensor Z will be summed with the feature map Fout to obtain the high-level feature tensor. In addition, the feature 

tensor X produced by FIDWTout is also obtained at a high-level feature tensor after operations such as ReLu. 

Finally, we concatenate these two high-level feature tensors as the FMHCAout. Therefore, FFAMout can be 

expressed as: 

  FFAMout = MLP (MHCA (Fout, FIDWTout)) +Fout    ………… (3) 

 The feature aggregation module (FAM) introduces the feature map Fout of the WaveletFormer block and the 

feature map FIDWTout from IWaveletFormer block for processing. Fig. 3 illustrates that FAM is a link between 

the encoding and decoding stages, guiding our WaveletFormerNet to generate images with more crisp textures 

and rich features. 

 

  Fig. 3.Architecture of feature aggregation module employed in the WaveletFormerNet [10] 

(iv) Training datasets 

We extensively and comprehensively evaluated our model and compared SOTA methods on real-world and 

synthetic datasets in the same experiment setting. [10] 
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(a) Real-world datasets 

We use the following four datasets to evaluate our experiments: the NTIRE 2018 image dehazing dataset (I-Haze), 

the outdoor NTIRE 2018 image dehazing dataset (O-Haze), a benchmark for image dehazing with dense-haze and 

haze-free images (Dense-Haze), and the NTIRE 2020 dataset for non-homogeneous dehazing challenge (NH-

Haze). 

(b) I-Haze and O-Haze 

They contain 25 and 35 hazy images (size 2833 × 4657 pixels) respectively for training. Both datasets contain 5 

hazy images for validation along with their corresponding ground truth images. We used training data for training 

and validation data for the test.  

(c) Dense-Haze 

 It contains 45 hazy images (size 1200 × 1600 pixels) for training, 5 hazy images for validation and 5 more for 

testing with their corresponding ground truth images. We have performed training on training data and tested our 

model with test data. 

(d) NH-Haze 

 It contains 45 hazy images (size 1200 × 1600 pixels) for training. We selected 40 pairs of data for training and 

the rest for testing. 

(e) Real-world datasets expansion 

Authors use the same training strategy and dataset expansion process for all four real-world datasets. Specifically, 

we randomly cropped the original images into square patches of 512 × 512 pixels; these patches are not identical 

for every epoch. To augment the training data, we implemented random rotations (90, 180, or 270 degrees) and 

random horizontal flips when processing the training data. This step allows these small real-world datasets to be 

expanded into larger datasets that are more efficient and more suitable for data-driven methods of training 

experiments. 

 

Fig. 4. Architecture of feature extractor [10]. 
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(B) Object detection 

(i) Dataset 

The MOT20 benchmark, which comprises of 8 new sequences depicting crowded and difficult settings, is used in 

this study. The dataset used for the new benchmark was selected with care to test detectors and trackers in high-

traffic environments. Certain new sequences feature pedestrian densities of 246 per frame in comparison to earlier 

challenges. Eight sequences were made for this study, half of which were utilized for testing and the other half 

for training. Test sequence annotations are kept confidential to avoid approaches being too biased toward 

particular sequences. Three different sets were used to film the scenes. Every scene was shot in many takes, 

utilizing both the train and test sets. But one of the situations was reserved for testing in order to see how well the 

procedure generalized. The new data contains around three times more bounding boxes for training and testing 

than MOT17. Ten times greater than the initial baseline density, each sequence was captured in high quality from 

an elevated vantage point, with an average pedestrian density of 246 per frame.   

(ii) Feature extraction using LuNet 

The purpose of a feature extractor in vehicle detection is to convert the original input image into a set of 

representative features to capture vehicle detection information. These features are fed into later stages of the 

detection process, like classification or bounding box regression. In general, feature extraction involves reducing 

the dimensionality of input data while retaining relevant information.  

This reduction makes subsequent calculations more efficient and lowers the risk of over fitting, which occurs 

when the model learns noisy or irrelevant patterns from the data. Both bounding box and class        prediction are 

based on features extracted from images. In this work, the LuNet network is the backbone of the YOLOv2 model 

for feature extraction in-vehicle object detection. The modified version of HAST-IDS is called LuNet. HAST-

IDS is a multilayer framework that uses a Convolutional Neural Network (CNN) to extract spatial data and a 

Recurrent Neural Network (RNN) to capture network data’s temporal characteristics. HAST-IDS works by 

stacking all RNN layers after stacking the CNN layer stack. In contrast, LuNet stresses the hierarchical structure 

of CNN and RNN layers. CNN hierarchy takes precedence over the RNN hierarchy in HASTIDS, which may 

result in the loss of temporal data inherent in the original input data, resulting in inefficient RNNs. Moreover, 

LuNet synchronizes RNN and CNN DL in many phases to efficiently capture network traffic’s spatial and 

temporal data. Each step is carried out with the help of a LuNet block, 

 which combines CNN and RNN blocks. The total number of filters utilized in the RNN/CNN framework 

calculates the model’s learning granularity. CNN produces a feature map, which is then processed by the ReLu 

(activation function) , followed by pooling and resampling to remove I  irrelevant input. Batch normalization 

alleviates the covariance shift problem, which can occur owing to dynamic changes in the range of input values 

from one layer to another to improve learning. Moreover, to achieve superior learning results, use trainable 

parameters to tune and update network weights during the learning process. As the granularity of one LuNet block 

goes from coarse-grained to fine-grained, new layers must be added to modify the final size of one level that will 

likely be used as input to the following level.  

In over fitting, the network has learned enough from the training data to limit its capacity to detect biases in new 

samples. After the RNN+CNN framework, LuNet employs a dropout layer with a default value of 0.5. Finally, 

CNN and global average pooling layers retrieve spatial and temporal characteristics learned from the LuNet 

frameworks. This work employs an improved ResNet-v2 network named LuNet   to extract object appearance 

features. LuNet’s input is a 128 × 64 × 128 × 64 image patch. 

 The network employs LeakyReLU as the activation function for robust optimization, multiple 3 × 33 × 3 max 

pooling, and two-stride instead of stride convolution. Fig. 4 depicts the feature map in the last re-block of the 

average pooling layer. This model retrieves the object’s 128-dimensional embedding features from the final 

multilayer perceptron (MLP) layer. Compared to previous feature extraction networks, this network is lightweight 

(5M parameters). 
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(iii) Object detection using YOLOv2  

It is a development over YOLO. To increase YOLO's speed and detection accuracy, YOLOv2 applies new ideas 

and incorporates judgments from previous training challenges. YOLOv2 has six stages, which are addressed as 

follows, detailed diagram in fig.5. 

• Batch normalization (BN): Each mini-batch's mean and variance are calculated and used for activation. After 

that, the activations are normalized using a zero mean and a one standard deviation for each mini batch. Lastly, 

the same distribution is used to sample the components of each mini-batch. We call this process "batch 

normalization." It produces the same distribution of activations. 

• High-resolution classifier: The input resolution of (224 × 224) is used by the YOLO backbone. In YOLOv2, 

the input resolution has been improved to (448 × 448). In order to handle the new resolution input of the object 

detection job, the network must be adjusted. Consequently, a single-resolution picture (448 × 448) and ten 

epochs were used to make specific modifications to the classification network in YOLOv2, increasing the 

average accuracy (mAP) by 1%.  

• Anchor box convolution: As previously said, Faster RCNN forecasts bounding boxes by first generating 

region proposals, which are parameterized with respect to this anchor box. YOLOv2 makes use of this 

estimating technique. Next, we project the class and object scores for every bounding box prediction. While 

mAP decreased by 0.3%, withdrawals increased by 7%.  

• Anchor box size and aspect ratio prediction: The LuNet method is used by the YOLOv2 to train the bounding 

boxes to get higher priors. The anchor box's centre is then determined by using this backdrop. Using the 

clustering data, estimate the anchor box's dimensions and aspect ratio. The method improves the accuracy of 

detection. 

• Fine-grained features: As previously stated, YOLO trains with images (224 × 224). The YOLO design has 

been tweaked to form the Yolov2 architecture. YOLOv2 is retrained using higher resolution images (448 × 

448) to pinpoint tiny objects. YOLOv2 uses higher and lower resolution features throughout this retraining 

process by stacking nearby data in various channels and raises 1% of the detection MAP. 

• Multi-scale training: To allow the system to run reliably on images of varying sizes, a new image of size 

{320, 352... 608} is selected every ten (randomly selected) batches. That is, the same network can be detected 

at multiple resolution levels. For instance, the YOLOv2 reaches 40 fps at higher resolutions and 78.4% mAP, 

whereas YOLO obtains 63.4% mAP and 45 fps on VOC 07. YOLOv2 attains great detection accuracy while 

operating swiftly; however, the process is confined to high-resolution and multi-class object recognition. 

 

Fig.5. Yolov2 Object detection diagram [13] 

 (iv) Object detection using enhanced YOLOv2-LuNet  

This research develops an enhanced multi-object detection technology based on the enhanced YOLOv2-LuNet 

[11] model and a target tracking system based on the complex moving window Kalman filter. This method allows 

for the efficient monitoring of several moving objects in perplexing settings. MOT is a dataset of real-time video 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

923 

frames captured with this model. The filter helps to eliminate and smoothen the noise. The video frames are 

processed and evaluated once the noise has been removed. The detected object frame will contain an enhanced 

YOLOv2 model that identifies numerous moving objects. YOLOv2 is a real-time object detection system that 

takes in an image and directly provides the object position and confidence score. In YOLOv2, sliding windows 

are not used for feature extraction, and the classifier is removed. Thus, this work proposes using LuNet as the 

primary network for object detection in the upgraded YOLOv2 version of this study because of its superior 

performance. The input image is divided into many areas by this approach. When the centre of a labelled object 

lies in a specific zone, the region will be used to predict the object. Using this for object detection after clearing 

the image or video frames can helps to achieve better results. 

 

Fig.6.flow chart for the complete process from start to end. 

 

Fig.7.1.Example Original image 

 

Fig.7.2.Example image after Dehazing and object detection 
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Fig.7.3.Example Original image 

 

Fig.7.4.Example image after Dehazing and object detection  

4. Results and discussion 

In Fig.6. we have the complete flowchart from dehazing to object detection and in the Fig. 7.1 and fig.7.3 we have 

an example image of the vehicle in the foggy environment which make the identification of object very hard 

therefore, In this work, an image dataset for traffic analysis is used, proposed method “clear detect'' clear the foggy 

image using wavelet transform and YOLOv2-LuNet processing is depicted in Fig. 7.2 and Fig.7.4. The metrics 

examined are accuracy, precision, recall, ground truth (GT), detection rate (DET), true positive rate (TP), and 

false positive rate. 

 (a)Accuracy  

Accuracy measurement aids in determining how well the wavelet transformer and LuNet classifier detects objects 

in image. It sheds light on the model’s ability to correctly identify and localize objects of interest. It refers to the 

degree of understanding between a noise and actual value evaluation. Table 1 illustrates an accuracy analysis of 

the proposed approach “cleardetect”. The proposed method’s accuracy values are evaluated against current 

methods by employing feature masking in image. The existing technologies’ accuracy ratings for FFNN, CNN, 

RCNN, LSTM, and RNN-LSTM are 75%, 80%, 84%, 88%, and 88%, respectively. An accuracy of 94% was 

observed in the case of the proposed model. Fig. 8 depicts that the proposed method has a 94% maximum accuracy 

value. Comparisons show that it outperforms traditional methods because it uses architectural innovations and 

layer combinations to better capture temporal dependencies and spatial features in image data than other models.   
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Table 1: Accuracy of the methods 

 

Fig.8. This shows the Accuracy of the traditional method and proposed method. 

(b)Precision  

It is the degree to which repeated noise measurements yield identical outcomes under comparable conditions. 

Precision is the ratio of true positives (objects correctly detected and localized) to the sum of true positives and 

false positives (objects incorrectly detected).The precision evaluation of the proposed method is depicted in Table 

2. The assessment of precision outcomes shows that the proposed approach achieves greater accuracy than the 

cutting-edge techniques. The existing technologies’ precision ratings for FFNN, CNN, RCNN, LSTM, and RNN-

LSTM are 70%, 74%, 85%, 83%, and 83%, respectively. Fig. 9 depicts that the proposed method has a 96% 

maximum precision value. Comparisons show that it outperforms existing methods by effectively reducing the 

number of false positive detections, resulting in a higher precision score.  

 

Table 2: Precision of the methods 

 

Fig.9. This shows the Precision of the traditional method and proposed method. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

926 

(c) Recall  

Recall is the proportion of true positive objects the model successfully detects out of all the objects in the images. 

It ensures the model detects as many relevant objects as possible, which is critical for thorough image analysis. 

Recall is calculated by dividing true positives (correctly detected objects) by the sum of true positives and false 

negatives. The ratio of appropriate images acquired overall is referred to as recall. The recall analysis for the 

proposed method is depicted in Table 3. Fig. 10 depicts that the proposed method has a 92% maximum recall 

value. Compared to existing techniques, the proposed approach outperforms existing procedures and methods for 

object tracking and classification. The existing technologies’ recall ratings for FFNN, CNN, RCNN, LSTM, and 

RNN-LSTM are 58%, 65%, 73%, 75%, and 84%, respectively. A recall of 93% was observed in the case of the 

proposed model. When the number of images increased so does recall value.  

 

Table 3: Recall of the methods 

 

Fig.10. This shows the Recall of the traditional method and proposed method. 

(d) True Positive (TP) 

True positives are cases in which the model correctly identifies and localizes objects of interest in images. The 

measurement of true positives directly assesses the object detection system’s detection accuracy. The number of 

correctly matched detections determines the true positive count. Each correctly matched detection increases the 

number of true positives. True positive analyses are the criterion necessary to evaluate tracker performance. The 

first stage is to see if each suggested outcome is a TP that matches the underlying goal. Table 4 assesses the 

proposed method’s TP. Fig. 11 depicts that the proposed method has a 90% maximum TP value. The proposed 

approach yielded the  true positive value (90%).The existing technologies’ TP ratings for FFNN, CNN, RCNN, 

LSTM, and RNN-LSTM are 56%, 59%, 62%, 66%, and 68%, respectively. A TP of 90% was observed in the 

case of the proposed model.  

 

Table 4: True positive values of the methods 
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Fig.11. This shows the True Positive values of the traditional method and proposed method. 

(e) False Positive (FP)  

The initial stage establishes whether each predicted result is an FP. False positives happen when the classifier 

incorrectly identifies background or unrelated objects as the objects of interest. Table 5 depicts the results of the 

FPs. In image classification and object detection applications, false positives denote the number of objects 

classified or detected by the proposed method per second. It can be used to calculate a model’s average processing 

speed. Fig. 12 depicts that the proposed method has 89% FP value.  

 

Table 5: False Positive of the methods 

 

              Fig.12. This shows the False Positive of the traditional method and proposed method. 

(f) Ground truth (GT)  

GT annotations provide a standardized reference for comparing object detection models or algorithms. During 

model evaluation, ground truth annotations are compared to model predictions to calculate performance metrics 

like accuracy, precision, and recall.GT is the knowledge collected in the field. Image information can be linked 

to real-time characteristics, and real-world materials can be used in the field. Table 6 depicts the outcomes of a 

GT on the applicability of the proposed technique. 
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Table 6: Ground Truth of the methods 

 

Fig.11. This shows the Ground Truth of the traditional method and proposed method.  

(g) Detection rate  

Detection rate the detection rate is the ratio of true positives to total ground truth objects. It denotes the proportion 

of objects correctly detected by the system among all the objects in the video frames and images.The simulation 

outcomes of the detection rate are shown in Table 7. In terms of detection values, the proposed technique 

outperforms all previous strategies. Fig. 12 depicts that the proposed approach yielded the highest detection rate 

(89%). The existing technologies’ detection rates for FFNN, CNN, RCNN, LSTM, and RNN-LSTM are 53%, 

60%, 61%, 70%, and 76%, respectively. Comparisons indicate that it outperforms existing methods.  

 

Table 11: Detection rate of the methods 

 

Fig.12. This shows the Detection rate of the traditional method and proposed method. 
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5. Conclusion 

By merging cutting-edge picture enhancement and object identification algorithms, the proposed "ClearDetect" 

approach offers a notable improvement in object detection under cloudy environments. It solves the problems 

caused by non-homogeneous thick fog by using a Transformer-based wavelet network called WaveletFormerNet, 

which improves image clarity. The preprocessed picture is then used as input for the improved YOLOv2 and 

LuNet multi-object detection algorithms, which significantly increase object recognition accuracy and precision. 

The ClearDetect approach has proven to be effective in greatly reducing the impacts of fog via extensive testing 

and assessment, which enhances vision and the functionality of object detecting systems during inclement 

weather. This combined strategy produces better outcomes by maximizing image quality and utilizing the 

advantages of cutting-edge detection algorithms. 

To sum up, the ClearDetect technique presents a strong way to improve surveillance systems' performance in 

difficult conditions, guaranteeing more accurate and dependable object identification. Improved operational 

efficacy in real-world applications is made possible by the combination of advanced object identification 

algorithms with wavelet-based picture augmentation, especially in monitoring systems that are subjected to hazy 

or foggy situations. 
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