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Abstract: Soil fertility detection is crucial for sustainable agriculture and environmental management. This study
proposes an innovative approach utilizing advanced Convolutional Neural Networks (CNNs) integrated with an
entropy-based method for accurate soil fertility assessment. The proposed methodology involves the acquisition
of soil images through sensors or drones, followed by preprocessing to enhance image quality and reduce noise.
Subsequently, a deep CNN architecture is employed to extract high-level features from the soil images, enabling
automated detection of fertility indicators such as nutrient levels and soil texture. Furthermore, an entropy-based
approach is incorporated to analyze the spatial distribution of features within the images, providing additional
insight into soil heterogeneity and fertility variation. The combination of CNNs and entropy-based analysis offers
a comprehensive solution for precise soil fertility detection, surpassing traditional methods in accuracy and
efficiency. Experimental results demonstrate the effectiveness of the proposed approach, showcasing its potential
for real-world application in precision agriculture, environmental monitoring, and land management. Overall, this
research contributes to the advancement of intelligent systems for sustainable soil management and agricultural
productivity enhancement.
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1. Introduction

Soil fertility plays a pivotal role in agricultural productivity and ecosystem sustainability, serving as the foundation
for crop growth and overall environmental health. Understanding and managing soil fertility are imperative for
ensuring food security, mitigating environmental degradation, and fostering sustainable agricultural practices.
Traditionally, soil fertility assessment has relied on labor-intensive and time-consuming methods involving
manual sampling, chemical analysis, and visual inspection(Liu et al., 2020). However, these conventional
approaches are often limited in spatial and temporal resolution, hindering their efficacy in addressing the dynamic
nature of soil fertility and the complexities of agricultural landscapes.

Recent advancements in sensing technologies, data analytics, and machine learning offer promising avenues for
revolutionizing soil fertility detection and management. In particular, the advent of advanced imaging techniques,
such as remote sensing and drone-based aerial imagery, has enabled the acquisition of high-resolution soil data
with unprecedented efficiency and accuracy(T. S. R. G. J. C. CA Rosolem, 2010). Moreover, the integration of
computational methods, including machine learning and deep learning, facilitates automated analysis and
interpretation of large-scale soil datasets, thereby enhancing our ability to assess soil fertility comprehensively
and in real-time.

This paper proposes an innovative approach for soil fertility detection leveraging advanced Convolutional Neural
Networks (CNNs) with an entropy-based methodology. CNNs, a class of deep learning models well-suited for
image analysis tasks, have demonstrated remarkable success in various fields(DV Guimaraes, 2013), including
computer vision, medical imaging, and remote sensing. By exploiting the hierarchical structure of neural
networks, CNNs can effectively extract spatial features from soil images, enabling the identification of key fertility
indicators such as nutrient content, soil texture, and organic matter distribution. Additionally, the integration of
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entropy-based analysis offers a novel perspective on the spatial variability of soil properties, enhancing the
interpretability and robustness of fertility detection models(F. S. CA Rosolem, 2017).

This introduction's remaining sections are organized as follows: An overview of soil fertility and its importance
for environmental management and agriculture is given in Section 2. The difficulties with using conventional
techniques for assessing soil fertility are covered in Section 3, along with the necessity of creative solutions(JF
Akpan, 2017). The work in the fields of soil sensing, image analysis, and machine learning as it relates to the
detection of soil fertility is reviewed in Section 4. The study's goals and contributions are presented in Section 5,
along with a description of the suggested methodology and research framework. Section 6 concludes by outlining
how the remaining sections of this work are structured. Overall structure reflecting the sections is given in figure
1

Section 2: Overview of Soil Fertility

Section 3: Difficulties with Conventional Techniques

action 4: Advances in Soil Sensing and Machine Learning

Section 5: Goals and Contributions

Section 6: Methdology

Section 7: Results

Section 8: Conclusion

Figure 1: Structure of the research work
2. Soil Fertility: Importance and Challenges

Soil fertility refers to the ability of soil to provide essential nutrients and support plant growth, thereby sustaining
agricultural productivity and ecosystem functions. Key factors contributing to soil fertility include nutrient
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availability, soil structure, organic matter content, pH level, and microbial activity(K John, 2020). Optimal soil
fertility conditions are essential for achieving high crop yields, maintaining soil health, and preserving
environmental integrity. However, soil fertility is subject to dynamic changes influenced by various natural and
anthropogenic factors, including climate variability, land use practices, fertilization regimes, and soil degradation
processes(M Fuentes, 2012).

In agricultural systems, soil fertility management is critical for maximizing crop productivity while minimizing
adverse environmental impacts. Imbalanced nutrient levels, soil compaction, erosion, salinization, and
acidification are among the common challenges faced by farmers worldwide. Moreover, unsustainable land
management practices, such as excessive tillage, monocropping, and over-reliance on chemical inputs, can
degrade soil fertility over time(Naeem et al., 2013), leading to reduced yields, increased vulnerability to pests and
diseases, and degradation of water and air quality. The key factors of the soil is highlighted as under

Nutrient Availability

Soil Structure

Soil Fertility Organic Matter Content

pH Level

Microbial Activity

Figure 2: Key factors of the soil used for prediction

Traditional methods for assessing soil fertility typically involve soil sampling, laboratory analysis, and visual
inspection conducted at discrete locations within agricultural fields. While these methods provide valuable
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information about soil properties and fertility status, they are often labor-intensive, time-consuming, and limited
in spatial coverage(JA Baldock, 2012). Moreover, the results obtained from point-based measurements may not
accurately capture the spatial variability of soil fertility within a field, leading to suboptimal decision-making in
crop management and soil conservation practices.

3. Challenges in Soil Fertility Assessment

The conventional methods of soil fertility assessment suffer from several limitations and challenges, which
underscore the need for innovative approaches leveraging advanced technologies and data analytics
techniques(GA Helfer, 2020). Some of the key challenges associated with traditional soil fertility assessment
methods include:

e Spatial variability: Soil properties exhibit significant spatial variability within agricultural fields due to
factors such as topography, soil texture, land use history, and management practices. Conventional sampling
methods based on point measurements may fail to capture this variability adequately, leading to spatially
biased assessments of soil fertility(Bouslihim, Rochdi, & El Amrani Paaza, 2021).

e Temporal dynamics: Soil fertility is subject to temporal changes influenced by seasonal variations, crop
growth cycles, weather patterns, and management interventions. Traditional soil sampling and analysis
methods often provide static snapshots of soil properties at specific time points, neglecting the dynamic nature
of soil fertility and its temporal dynamics(D N & Choudhary, 2021).

e Labor and cost: Soil sampling and laboratory analysis require considerable labor, time, and financial
resources, especially for large-scale agricultural operations. The logistics involved in collecting, processing,
and analyzing soil samples can be burdensome, particularly in remote or inaccessible areas(Suhag et al., 2021).

e Invasive procedures: Conventional soil sampling methods typically involve intrusive techniques such as soil
coring or auguring, which may disrupt soil structure and disturb soil biota. Invasive sampling can alter soil
properties and introduce artifacts, potentially biasing the results of soil fertility assessments.

e Limited spatial coverage: Point-based soil sampling methods provide information only at specific locations
within a field, limiting the spatial coverage and resolution of soil fertility maps. As a result, farmers may lack
comprehensive insights into the spatial distribution of soil properties and fertility indicators across their
fields(Garcia et al., 2021).

Addressing these challenges requires the development of innovative approaches that leverage advanced sensing
technologies, data analytics techniques, and computational models for high-resolution soil fertility mapping and
monitoring.

4. Related Work

In recent years, there has been growing interest in leveraging advanced sensing technologies and machine learning
algorithms for soil fertility detection and mapping. Researchers have explored various approaches combining
spectral, spatial, and temporal information from remote sensing data with machine learning techniques to infer
soil properties and fertility indicators(Zhou et al., 2018). Additionally, the application of deep learning models,
particularly CNNs, has shown promising results in image-based soil analysis and precision agriculture(Bouslihim,
Rochdi, Aboutayeb, et al., 2021).

Remote Sensing-Based Approaches: Remote sensing platforms, such as satellites, aircraft, and drones, offer
valuable tools for capturing multispectral and hyperspectral imagery of agricultural landscapes(A Keshavarzi,
2016). These images contain spectral signatures indicative of soil properties, vegetation health, and land cover
characteristics, which can be exploited for soil fertility assessment. Researchers have employed machine learning
algorithms, including support vector machines (SVMs), random forests, and neural networks, to classify soil
types, predict soil attributes, and map soil fertility at various spatial scales(Al Masmoudi et al., 2022).
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Image Analysis and Deep Learning: Image-based approaches have gained popularity for soil fertility detection,
leveraging the rich spatial information contained in soil images captured by sensors or cameras(Z Wang, 2021).
Deep learning models, particularly CNNs, have shown remarkable capabilities in extracting features from soil
images and predicting soil properties with high accuracy. By training CNNs on large datasets of annotated soil
images, researchers have developed models capable of classifying soil types, estimating nutrient levels, and
mapping soil organic carbon conten(M Mokarram, 2020)t.

Integration of Sensor Technologies: The integration of sensor technologies, such as electromagnetic induction
(EMI), gamma-ray spectrometry, and ground-penetrating radar (GPR), with machine learning algorithms has
enabled non-destructive and high-resolution soil sensing(Y Zhang, 2019). These sensors can capture
electromagnetic signals or radiation emitted or reflected by soil particles, providing insights into soil properties
and fertility indicators. Machine learning algorithms are then employed to analyze sensor data and infer soil
characteristics, facilitating precision agriculture practices and site-specific management strategies(PM Kopittke,
2020).

Despite the progress made in soil sensing and fertility detection, several challenges remain, including the need for
robust and scalable models, data integration across multiple sources and scales, and validation of model
predictions in diverse agroecosystems(UC Amalu, 2018). Furthermore, the development of user-friendly tools and
decision support systems is essential for translating research findings into actionable insights for farmers and land
managers.

5. Objectives and Contributions

The primary objective of this study is to develop an innovative approach for soil fertility detection using advanced
CNNs with an entropy-based methodology(Siewert, 2018). The proposed methodology aims to address the
limitations of traditional soil fertility assessment methods by providing a scalable, efficient, and accurate solution
for mapping soil fertility at high spatial resolution. The specific objectives of this study include:

1. Development of a deep learning framework: Design and implementation of a CNN architecture tailored for
soil fertility detection, capable of extracting relevant features from soil images and predicting key fertility
indicators.

2. Integration of entropy-based analysis: Incorporation of entropy-based methods to analyze the spatial
distribution of features within soil images, providing insights into soil heterogeneity and fertility variation.

3. Evaluation and validation: Assessment of the proposed methodology using real-world soil datasets collected
from agricultural fields across diverse geographic regions. Validation of model predictions against ground
truth measurements and comparison with existing soil fertility assessment methods.

4. Demonstration of applicability: Demonstration of the applicability and scalability of the proposed approach
for precision agriculture, environmental monitoring, and land management. Exploration of potential use cases
and decision support applications for farmers, agronomists, and policymakers(H El-Ramady, 2020).

The contributions of this study include:

e Methodological innovation: Introduction of a novel approach for soil fertility detection leveraging advanced
CNNs and entropy-based analysis, offering a comprehensive solution for high-resolution soil mapping and
monitoring.

e Empirical validation: Demonstration of the effectiveness and robustness of the proposed methodology
through empirical evaluation using real-world soil datasets, showcasing its potential for practical applications
in agriculture and environmental management(Gueugnon et al., 2021).

o Insights and implications: Generation of insights into soil fertility dynamics, spatial variability, and
management implications, contributing to the advancement of knowledge in soil science, precision agriculture,
and sustainable land management.

896



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 3 (2024)

5. Methodology of study

The methodology of the proposed work indicates the different phases that are followed in the design of proposed
work. For this work, the first datasets is collected. The dataset is collected from benchmarked websites. The name
of the dataset is soil. Once the dataset is collected, it is pre-processed to introduce clarity within the image. Once
pre-processed is done, CNN model is built. The CNN model is adjusted multiple times for optimizing parameters
of CNN. After that classification is dataset. The obtained result is validated through metric calculations such as
classification accuracy, sensitivity, specificity, and F1-score.

Soil Dataset

Pre-processing

3
¥
CHNN
Hold out Ratio
Learning rate
Batch size T
Mo
Classification
Metrics
Figure 3: Methodology of study
° Soil Dataset

This is the crucial phase in which soil dataset is collected for prediction purposes. The dataset is collected from
Kaggle. The dataset is in the form of csv file contains nutrient related information. The structure of the dataset is
given in table 1
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SN mon | da [ ho | minu | seco | moistu | moistu | moistu | moistu | moistu | irrgati
yea

o . th y ur te nd re0 rel re2 re3 re4 on
202

0 0 3 6 22 | 16 11 0.33 0.40 0.36 0.23 0.02 False
202

1 0 3 6 22 | 17 11 0.32 0.39 0.35 0.23 0.02 False
202

2 0 3 6 22 | 18 11 0.31 0.39 0.34 0.22 0.02 False
202

3 0 3 6 22 |19 11 0.30 0.38 0.33 0.21 0.02 False
202

4 0 3 6 22 |20 11 0.29 0.38 0.33 0.21 0.02 False

Table 1: Structure of the dataset
. Pre-processing

This phase is used to reduce the noise from within the dataset. the median based approach is applied to tackle the
noise within the dataset. following equation is used to handle the noise within the dataset.

N+D"
—— if Nisodd

N+ (N + D)™
2

Median =

if Niseven

Equation 1

The median values will be used to remove the noisy values from the dataset. The replaced values will increase the
classification accuracy of the overall research.

. Proposed CNN model\

The proposed CNN model is given in figure 4. The model is trained using different layers of the CNN model. The
layers of CNN model include input layer. This layer receives the image dataset corresponding to the soil fertility
and then features are extracted. The CNN layer here will be presented with optimised parameters in terms of hold
out ratio, batch size, and learning rate. A neural network architecture called CNN is intended for image
classification applications that require efficiency and lightweightness. It is well-known for achieving excellent
precision with comparatively few parameters, which qualifies it for settings with limited resources.

By initializing the CNN model with pre-trained weights, the training setup allows the model to improve its
performance on a particular job by utilizing the knowledge gleaned from a huge dataset. In image classification
tasks, the Adam optimizer and CrossEntropyLoss are frequently used because they offer effective optimization
and manage multi-class classification objectives.

The model's parameters are updated at each iteration of the dataset by the training loop, considering the computed
loss. For the model to identify features and trends in the training data, this procedure is essential. Training metrics
like loss and accuracy are tracked over time to evaluate the model's development.

To provide an objective evaluation of the model's generalization performance, the validation loop tests it using a
different dataset that was not utilized during training. This guarantees the robustness of the model and aids in
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identifying any overfitting or underfitting problems. In case of overfitting and underfitting hold out ratio, batch
size and learning rate will be adjusted.

Monitoring the validation loss is the basis of the strategy for preserving the best model. If the current validation
loss falls below a predetermined threshold and the best-known loss, the model is deemed improved, and its
parameters are preserved. This keeps the model's performance from declining while it is being trained.

To prevent training for an excessive number of epochs without improvement, early termination is used. Training
is stopped if the validation loss does not go down after a predetermined number of patient epochs. By doing this,
overfitting to the training set is avoided, and the model's ability to generalize to fresh, untested data is guaranteed.

All things considered script shows how to train a CNN model systematically for image categorization. Effective
model training and the avoidance of common deep learning hazards like overfitting are made possible by the
application of early stopping, model saving, and careful monitoring of training and validation metrics.

Model Trained CHN

Input Layer

li Wiax Pool
|

Finalised Featuras within Trained Model

¥,

Figure 4: Proposed CNN Model
Proposed Algorithm

The proposed algorithm utilizes Convolutional Neural Networks (CNN) to address the task of soil fertility
classification. Initially, the algorithm imports the dataset containing soil fertility information and applies pre-
processing techniques such as median filtering to enhance image quality and reduce noise. Subsequently, CNN is
employed for training on the pre-processed dataset, where parameters such as holdout, batch size, and learning
rate are adjusted to optimize model performance.

Algorithm- CNN(Soil Fertility)

. Input the dataset for soil fertility

o I=imread(dataset)

. Applying pre-processing based mechanism

o J=pre-process(Median_Filter(I))

. CNN: Apply CNN mode for training over the dataset.
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o Adjust parameters -Hold out, batch size, learning rate

o If(maximum_validation accuracy) then

o Go to classification phase

o Else

o Goto CNN phase

End of if

. Classification phase

o Now input the training dataset and classify as fertile or non fertile soil.

o Print the result considering classification accuracy, sensitivity and specificity.
. Compare with existing machine learning algorithm for validity of approach.

During training, the algorithm evaluates the validation accuracy, aiming to achieve the maximum validation
accuracy. If this criterion is met, the algorithm proceeds to the classification phase; otherwise, it iterates through
further CNN training. In the classification phase, the trained model is applied to classify soil samples into fertile
or non-fertile categories based on the input training dataset. The results are then analyzed, considering metrics
like classification accuracy, sensitivity, and specificity to evaluate the model's performance.

Finally, the algorithm compares its results with existing machine learning approaches to validate its effectiveness.
By leveraging CNN's ability to automatically extract relevant features from soil fertility data, this algorithm aims
to provide an efficient and accurate method for soil fertility classification, with potential implications for
optimizing agricultural practices and environmental management.

6. Results

The result is obtained in terms of metrics. The metrics used for evaluation of result is classification accuracy,
sensitivity, specificity and F1-Score.

Companson of Classifier Accuracies

10

Best (CNN)

08

0.6

Accuracy

04

0.2

D 0 = T
KNN VM Random Forest

Classifiers

Figure 5: Classification accuracy comparison of results
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The comparison of classification accuracies of four machine learning classifiers: CNN, KNN, SVM, and Random
Forest is presented in figure 5. The bar plot illustrates the performance of each classifier, with accuracy values
represented on the y-axis and classifier names on the x-axis. Among the classifiers, the CNN exhibits the highest
accuracy, depicted as the tallest bar. This result suggests that the proposed optimized CNN model outperforms the
other algorithms in accurately classifying soil fertility. CNN's superior performance implies its effectiveness in
capturing intricate patterns and features within soil fertility data, potentially due to its ability to automatically
extract relevant features through convolutional layers. The comparison underscores the significance of leveraging
advanced deep learning techniques, such as CNNs, for precise soil fertility classification tasks. Ultimately, such
findings could guide decision-making processes in agricultural management, leading to more informed and
sustainable practices aimed at optimizing crop productivity and environmental conservation.

Comparison of Classifier Sensitivity

10

Best (CNN)
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=
<
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Classifiers

Figure 6: Sensitivity Comparison

Sensitivity values for four machine learning classifiers—CNN, KNN, SVM, and Random Forest—are compared
using a bar plot. Sensitivity, or true positive rate, indicates the ability of a classifier to correctly identify positive
instances within the dataset. Each classifier's sensitivity value is represented by a bar on the plot, with the classifier
names listed along the x-axis and sensitivity values displayed on the y-axis. The classifier with the highest
sensitivity, denoted by the tallest bar, is identified as the best performer.

In this scenario, the CNN classifier demonstrates the highest sensitivity among the models, highlighted as the
optimal choice for accurately detecting positive cases related to soil fertility. This outcome suggests that the
optimized CNN model excels in identifying fertile soil instances, crucial for agricultural decision-making and
environmental management. By showcasing sensitivity values, this visual comparison enables stakeholders to
discern the classifiers' effectiveness in accurately identifying positive soil fertility instances, informing their
selection of the most suitable model for practical applications in agricultural productivity enhancement and
ecosystem preservation.
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Figure 7: Overall comparison

In this visualization, we compare the performance of four machine learning classifiers—CNN, KNN, SVM, and
Random Forest—using three evaluation metrics: sensitivity, specificity, and F1 score. Each subplot of the figure
represents one of these metrics, with classifier names listed on the x-axis and metric values displayed on the y-
axis. The classifier with the highest value for each metric is highlighted as the best performer.

For sensitivity, which measures the ability to correctly identify positive instances, the CNN classifier exhibits the
highest value, indicating its superiority in accurately detecting fertile soil instances. Specificity, representing the
ability to correctly identify negative instances, also showcases CNN as the top performer. Additionally, the F1
score, a harmonic mean of precision and recall, further reinforces CNN's dominance among the classifiers.

This comprehensive comparison enables stakeholders to assess classifiers based on multiple performance metrics,
ensuring a well-rounded evaluation of their effectiveness in soil fertility classification tasks. Ultimately, such
insights facilitate informed decision-making in selecting the most suitable model for agricultural management
practices, aiming to optimize crop productivity and environmental sustainability.

Conclusion

In conclusion, the comparative analysis of machine learning classifiers—CNN, KNN, SVM, and Random
Forest—reveals valuable insights into their performance for soil fertility classification. Across sensitivity,
specificity, and F1 score metrics, the optimized CNN model emerges as the most effective classifier, demonstrating
superior capabilities in accurately identifying both positive and negative instances of soil fertility. This finding
underscores the significance of leveraging advanced deep learning techniques, such as CNNs, for precise soil
classification tasks, facilitating informed decision-making in agricultural management.

The exceptional performance of the CNN model can be attributed to its ability to automatically extract relevant
features from soil fertility data, enabling comprehensive analysis and classification. This robustness positions
CNN as a promising tool for enhancing agricultural productivity while preserving environmental integrity.

Furthermore, the comparison highlights the importance of considering multiple evaluation metrics when assessing
classifier performance, ensuring a comprehensive understanding of their capabilities. By incorporating sensitivity,
specificity, and F1 score, stakeholders can make well-informed decisions regarding the selection and
implementation of soil fertility classification models.
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Overall, this study underscores the potential of machine learning, particularly CNNs, in revolutionizing soil
fertility management practices, ultimately contributing to sustainable agriculture and environmental conservation
efforts.
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