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Abstract:- This research aimed to enhance solar energy prediction accuracy through a comparison of models and 

optimization techniques. Long Short Term Memory and Recurrent Neural Network models were analyzed using 

nine features extracted from Typical Meteorological Year 3 format data obtained from National Solar Radiation 

Database, revealing distinctive patterns in seasonal variations and temporal availability of solar energy. 

Integration of Recurrent Neural Networks and Long Short Term Memory models significantly improved 

performance, addressing limitations in capturing long-term dependencies and uncertainties. Long Short Term 

Memory consistently outperformed other metrics by 2-3%, with larger hidden layer sizes enhancing predictive 

accuracy. The importance of selecting the appropriate optimizer considering accuracy, computational resources, 

and training time constraints was emphasized. Project-specific analysis underscored the significance of tailoring 

solar dimensions to location-specific yield data, informing cost optimization strategies for sustainable 

development. 
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1. Introduction 

Global energy demand is rising due to industrial and population growth, primarily met by fossil fuels. However, 

increasing concerns about climate change necessitate a transition to renewable energy sources like solar power. 

Solar energy's unpredictability requires efficient utilization, achieved by accurately sizing solar energy systems. 

Machine learning facilitates precise prediction of solar energy output, optimizing its utilization (1). Computer 

methods like Artificial Neural Networks (ANNs) and Fuzzy Logic (FL) excel at understanding solar energy's 

variability, enabling accurate estimation of solar panel output (2). 

This research focuses on the use of ANN methods to address issues with solar energy. Various types of ANNs 

exist, each with unique strengths, but one will be selected that considers different factors to estimate solar 

energy potential. This will help us set up solar systems in the best possible way(3). Solar energy, mainly from 

the sun, is an important renewable source. Installing solar panels needs careful sizing for best results, as 

highlighted by companies like GRIDSCAPE Solutions. Efficient solar power utilization depends on accurate 

sizing informed by weather data. Traditional estimation methods face challenges due to complex math, resource 

demands, and data quality issues. Machine learning offers a solution, providing faster and more precise 

estimates by deriving patterns from real data (4). This research aims to develop an ANN model for accurate 

solar potential estimation, especially in data-scarce regions like India, using empirical correlations from 

measured meteorological parameters to enhance understanding for solar energy deployment. 

2. Estimation of PV Power 

Various methods have been proposed to estimate the power output of photovoltaic (PV) systems(5). These 

methods use factors like irradiation and ambient temperature from meteorological agencies for PV power 

generation prediction, showing high correlation. Even with just irradiation and ambient temperature, PV power 

output remains consistent as shown in equation(1), converted from [MJ/m2] data provided by meteorological 

agencies (6). 
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The daily PV power capacity estimate can be derived from meteorological data and represented as follows. 

𝑃𝑃𝑉 =
𝑆

3.6∗𝑖
∗ 𝐴𝑚𝑜𝑑𝑢𝑙𝑒 ∗ 𝑁 ∗ 𝜂𝑚𝑜𝑑𝑢𝑙𝑒

𝑘𝑊ℎ

𝑑𝑎𝑦
           (2) 

From equation (2), S represents the daily irradiation data provided in [MJ/m2], Amodule stands for the area of the 

PV module, N denotes the number of PV modules, ηmodule represents the energy conversion efficiency of the PV 

module, and i is the climate variation factor influencing PV power generation due to environmental conditions 

like clouds, fog, etc(7). PV power output drops with higher temperatures due to semiconductor properties is 

expressed as follows. 

𝑃𝑃𝑉(𝑡) = 𝑃𝑉𝑚𝑎𝑥,𝑟𝑒𝑓
𝐺𝑇

𝐺𝑟𝑒𝑓
(1 − 𝛽(𝑡𝑚 − 25))      (3) 

In equation (3) PVmax,ref represents the peak power output of a photovoltaic (PV) system under Standard Test 

Conditions (STC), which include an air mass of 1.5G, 1000 W/m2 irradiance, and a temperature of 250C. Gref 

denotes the reference irradiance of 1000 W/m2, GT denotes irradiation on the PV array plane, tm indicates the 

solar module's surface temperature during operation, and the temperature coefficient of peak power signifies the 

percentage change per degree Celsius(8) (9). 

2.1 Utilizing Artificial Neural Networks for Solar Energy Estimation 

Figure 1 depicts the architecture of an Artificial Neural Network (ANN), which is utilized in solar estimation 

methods to predict photovoltaic (PV) generation(10)(11). These methods use neural networks to learn complex 

relationships between input variables (such as solar irradiance, temperature, and time of day) and PV output 

(12). ANN models provide accurate solar energy forecasts, aiding energy planning and system optimization 

(13). 

 

Figure 1 Structure of Artificial Neural Network 

2.2 Advancing Solar Energy Estimation with Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are a type of artificial neural network particularly suited for sequential data, 

making them suitable for time-series forecasting tasks like solar estimation(14). Several methods are available 

as a part of RNNS. Figure 2 depicts the flowchart outlining the proposed methodology for solar estimation. 

2.2.1 Sequence Learning: RNNs capture sequential data patterns by retaining past inputs, making them effective 

for predicting future solar energy generation based on historical irradiance and other relevant data(13). 

2.2.2 Temporal Dynamics: RNNs excel at capturing temporal dynamics in solar energy generation, enabling 

accurate predictions from sequential input data. 
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2.2.3 Long Short-Term Memory (LSTM): LSTM, a variant of RNNs, addresses vanishing gradients, making it 

effective for tasks like solar estimation, where long-term dependencies matter. 

2.2.4 Model Training: RNNs, like LSTMs, are trained on historical time-series data, learning to map inputs to 

predictions while minimizing errors(15). 

2.2.5 Prediction: Trained RNN models predict solar energy generation, assisting in energy planning and grid 

management, with LSTMs excelling at capturing temporal dynamics for precise estimation (13).  

 

Figure 2 Flow chart of proposed methodology for solar estimation 

2.3. Performance Evaluation of solar power generation 

When designing a model, assessing its performance using specific measures determines prediction accuracy 

with the dataset; below are the measures used in this solution. 
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2.3.1 Mean Absolute Percentage Error (MAPE) 

MAPE assesses prediction accuracy in various statistical contexts, highlighting distinct model characteristics 

through different percentage ranges(16). MAPE values below 10% indicate high accuracy, 10%-20% suggest 

good performance, 20%-50% signify reasonable capabilities, and values exceeding 50% indicate inaccurate 

forecasts, requiring model improvement(17). Additionally, when actual values are zero, the predicted value is 

considered as 1. In this case, the error ranges from 0 to 1, with 1 indicating a completely inaccurate prediction. 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
|𝑁

𝑖=1           (4) 

Where 𝑦𝑖  represents actual output and  𝑦𝑖̂ denotes estimated output. In certain models, accuracy is determined by 

dividing the error term by the estimated value instead of the actual value as indicated in Equation 2. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
∑ |

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
|𝑁

𝑖=1           (5) 

2.3.2 Mean square error (MSE) 

MSE is a basic regression evaluation metric, calculating the average squared error. It's limited because it can't 

produce negative results. A perfect model would have an MSE of zero (18). 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1           (6) 

Where 𝑦𝑖  represents actual output and  𝑦𝑖̂ denotes estimated output. 

2.3.3 Mean Absolute Error (MAE) 

MAE, or Mean Absolute Error, calculates the average absolute difference between values, assigning equal 

weight to all individual differences(11).  

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑁
𝑖=1           (7) 

Where 𝑦𝑖  represents actual output and  𝑦𝑖̂ denotes estimated output. 

2.3.4 Coefficient of determination 

The R2, or coefficient of determination, stands as a pivotal technique for assessing the improvement of our 

model over the constant baseline(18). It quantifies our model's effectiveness compared to the naive mean model 

and evaluates performance regardless of scale (2). Ideally, the R2 value should range from 0 to 1, with lower 

values indicating superior performance. 

𝑅2 = 1 −
𝑀𝑆𝐸(𝑀𝑜𝑑𝑒𝑙)

𝑀𝑆𝐸 (𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
          (8) 

𝑀𝑆𝐸(𝑀𝑜𝑑𝑒𝑙) =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1          (9) 

𝑀𝑆𝐸(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒) =
1

𝑁
∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1                        (10) 

Where 𝑦𝑖  represents actual output and  𝑦𝑖̂ denotes estimated output. Also 𝑦̅  indicates Mean of the actual output, 

MSE (Model) stands for MSE error of the model and MSE (Baseline) represents Native error of the model. 

2.4 Enhancing Neural Network Training: Exploring Optimizers for Improved Performance 

Backpropagation is crucial in neural network learning. It involves calculating errors and propagating them back 

to improve overall model performance. However, its effectiveness can suffer when different layers learn at 

different rates. Optimization algorithms address this by expediting learning and minimizing error functions, thus 

enhancing neural network training efficiency(19). Various optimization algorithms, like Momentum, Nesterov, 

Adagrad, Adadelta, RMSprop, and Adam, dynamically adjust learning rates, enhancing neural network 

performance and training speed. 
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2.4.1 Gradient Descent optimization algorithm 

Momentum optimizer improves Gradient Descent by addressing its slow convergence and oscillations, boosting 

neural network training efficiency(20). Momentum enhances Gradient Descent by introducing inertia, achieving 

faster convergence and improved training efficiency for neural networks by considering past updates. 

2.4.2 Root Mean Square Propagation Optimizer 

RMSprop adjusts learning rates adaptively based on the square root of the exponentially decaying average of 

squared gradients, addressing issues like vanishing or exploding gradients in neural network training, resulting 

in stable and efficient training for improved performance (21). 

2.4.3 Adaptive Gradient Algorithm optimizer 

Adagrad, or Adaptive Gradient Algorithm, optimizes neural network training by adaptively adjusting the 

learning rates of individual parameters based on their historical gradients (22). This optimizer adjusts learning 

rates based on past gradients, favoring frequent parameter updates but risks continuous rate decrease and 

premature convergence. So, it's often complemented with other algorithms or learning rate decay strategies (17). 

2.4.4. Adadelta optimization algorithm 

Adadelta dynamically adjusts learning rates based on past gradients and updates, overcoming Adagrad's issue of 

decreasing rates, ensuring stable and efficient training, especially in sparse data or noisy gradients (23).  

2.4.5 Adaptive Moment Estimation 

Adam merges momentum and RMSprop for efficient optimization, dynamically adjusting learning rates based 

on past gradients and squared gradients, enhancing neural network training [24]. Its adaptive learning rate 

accelerates convergence and ensures stability by analyzing parameter changes, outperforming older methods 

with fewer adjustments.  

3. Results and discussion  

LSTM and RNN models are employed for solar generation estimation, optimizing configurations and features 

across 9 parameters. Data retrieval follows the TMY3 format, sourced from the NSRDB via PVWatts, providing 

seasonal patterns from 2006 to 2020. This data, post-processing, is transformed into CSV files for diverse 

applications. 

3.1 Comparative Assessment of Regression Analyses for Solar Energy Prediction 

To understand the nonlinear behaviour of the data influenced by various factors, Feed Forward Neural Network 

(FFNN) regression analysis was initially applied. This analysis examined correlations in annual data from the 

same state, country, or globally, revealing seasonal patterns and solar energy availability. Models trained on 

diverse datasets showed improved accuracy. Additionally, normalization or standardization techniques were 

explored, especially in relation to tropical data. Weather profiles investigated include Baroda and Hyderabad in 

Gujarat, India; Gangtok, India; and Fremont, California, USA. Table 1 presents solar energy generation data for 

four weather profiles (Weather Profile 1, 2, 3, and 4), along with combined data from all weather files.  

Table 1 Comparative Assessment of Regression Analyses 

 Different city in different state in different country  

 Different city in different state in same country 
 

 

 Different city in same state   

CSV 

data city 

Weather 

Profile 1 

Weather 

Profile 2 

Weather 

Profile 3 

Weather 

Profile 4 

Combined all 

weather file 

Expected Derived outcome 
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outcome 

609.733 597.47 582.94 611.34 652.19 606.06689 

% 2.01 4.39 -0.26 -6.96 0.6 

38647.11 38511.4 38207.17 38722 39030.07 38730.516 

% 0.35 1.14 -0.19 -0.99 -0.22 

8889.068 8863.89 8844.63 8910.12 8910.52 8891.1523 

% 0.28 0.5 -0.24 -0.24 -0.02 

28697.84 28755.83 28640.74 28739.68 28742.99 28677.725 

 

It includes "Expected outcome" values representing anticipated solar energy generation and "Derived outcome" 

values showing actual observed values. The percentage difference between expected and derived outcomes 

indicates prediction accuracy. This table offers insights into geographical variations and factors influencing 

solar energy production in different regions. 

3.2 Integrating RNN and LSTM Models  

The RNN model, trained via mini-batch gradient descent, struggles with uncertainty, causing inaccuracies, 

especially in steep declines in solar generation. LSTM resolves this with long-term dependency retention. The 

Simple RNN structure uses window sizes of (1, 5, 24, 48) with a batch size of 16, while the RNN-LSTM 

structure incorporates LSTM layers to improve capturing long-term dependencies in the data, employing 

window sizes of (1, 5, 10, 24, 48) with batch sizes of (16, 32, 64). Both structures are trained using the Adam 

optimizer with varying window sizes and batch sizes to explore different temporal perspectives and optimize 

model performance. 

3.3 Performance Evaluation of parameters 

When evaluating model performance, error-based methods are crucial, with MAPE being widely preferred. 

While MSE, MAE, and R2 are straightforward to implement, incorporating MAPE requires assumptions about 

non-solar and solar hours. To effectively apply MAPE, a loop structure is devised. When encountering non-solar 

hours where the model predicts solar generation, LSTM prediction is treated as 1; otherwise, it's considered 0.  

Table 2 Analysis of performance evaluation parameters 

Window 
MSE 

(Watts) 

MAE 

(Watts) 
R2 (%) 

MAPE  

(0 to 1) 
Note 

Train data 

size 

1 706406.6 4595125 93.35 0.3216 Month, Day, Hour (87600,1,3) 

1 932148.9 5159518 91.23 0.4903 Wind Speed (m/s) (87600,1,4) 

1 960190 5749101 90.96 0.4621 Wind Speed (Beaufort) (87600,1,4) 

1 1444707.8 7895388 86.42 0.6486 Added a temp with WS(m/s) (87600,1,5) 

1 1003147.5 6836478 90.56 1.1106 Added cell temperature (87600,1,6) 
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1 583331.3 5149877 94.51 0.8877 Added direct irradiance (87600,1,7) 

1 861108.1 6802453 91.9 0.3062 Added diffuse irradiance (87600,1,8) 

1 315256.2 3394112 97.03 0.2742 Added POA  irradiance (87600,1,9) 

5 513861.8 4577444 95.16 0.9858 Whole model data  (87600,1,9) 

10 344638.7 3731452 96.76 0.5462 Whole model data LSTM (87600,1,9) 

24 350119.1 3708279 96.7 0.1212 Whole model data LSTM (87600,1,9) 

24 350119.1 3708279 96.7 0.1212 Whole model data LSTM (87600,1,9) 

48 258243.8 2898061 97.57 0.2596 Whole model data LSTM (87600,1,9) 

1 350374.1 3651782 96.7 0.2736 
Replaced LSTM with Simple 

RNN 
(87600,1,9) 

24 387688.1 4105181 96.35 0.1495 
Replaced  LSTM with Simple 

RNN 
(87600,1,9) 

Table 2 displays experiments with diverse window sizes and model set ups, comparing features like wind speed, 

temperature, and irradiance, as well as different architectures like LSTM and Simple RNN. These comparisons 

offer insights into model performance across various conditions, aiding in the identification of optimal 

configurations for precise solar energy generation prediction. 

3.4 Comparative Analysis of Optimizer Selection 

Table 3 shows that SGD, a popular optimization method for training neural networks, resulted in bigger errors 

compared to other methods, as seen in its relatively high MSE and MAE values. However, it’s R2 score of 

84.2% suggests it still has a decent ability to make predictions. The MAPE value is relatively high at 0.65544, 

indicating a notable percentage error in predictions. Training time is reasonable at 58.391 seconds. 

Table 3 Optimizer selection 

Optimiser MSE MAE R2 MAPE time 

SGD 2833787 14075091 84.2 0.65544 58.391 

RMSprop 1236112 7191423 93.11 0.34894 59.983 

adagrade 1226473 6996371 93.16 0.24687 60.303 

adadelta 954853 5007534 94.67 0.23359 60.351 

adam 117677 6477337 93.77 0.32556 63.89 

RMSprop, suitable for non-stationary problems, reduces MSE and MAE compared to SGD, yielding a higher R2 

score of 93.11% and a lower MAPE value of 0.34894 in 59.983 seconds. Adagrad achieves similar results with 

a slightly higher R2 score of 93.16%, lower MAPE value of 0.24687, and comparable training time of 60.303 

seconds. Adadelta resolves diminishing learning rates, achieving lower MSE and MAE, with a higher R2 score 

of 94.67%, lower MAPE value of 0.23359, and slightly higher training time of 60.351 seconds. Adam combines 

Adagrad and RMSprop benefits, yielding the lowest MSE and MAE, highest R2 score of 93.77%, and relatively 

low MAPE value of 0.32556, but requires the longest training time at 63.89 seconds. The choice depends on 

accuracy, computational resources, and time constraints, where Adam excels in accuracy but takes longer to 

train, while RMSprop and Adadelta offer competitive results with lower training times. 
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Hidden layers are represented as h1, h2, h3 respectively. From Table 4 depicts that the models with higher 

values of h2 and h3 generally exhibit improved predictive accuracy and lower error metrics, suggesting that 

increasing the complexity of the model by adding more hidden layers and units can enhance its ability to capture 

complex patterns in the data. 

Table 4 Model Architecture Evaluation 

h1 h2 h3 MSE MAE R2 MAPE time 

1 1 1 3974327 18383718 77.85 0.8097 55.324 

9 1 1 1653214 9034113 90.78 0.4659 59.271 

9 9 1 1278925 7084613 92.87 0.3253 55.47 

9 9 9 1171145 6603040 93.47 0.3367 57.205 

9 16 16 1174168 6676310 93.45 0.3099 62.777 

9 32 32 1293386 7453939 92.79 0.34 59.501 

9 64 64 1117678 6477337 93.77 0.3255 63.89 

9 64 64 1158578 6648973 93.54 0.4361 60.594 

The model with h1=9, h2=64, and h3=64 consistently outperforms other configurations across various metrics. 

It achieves the lowest MSE (1,117,678), MAE (6,477,337), and MAPE (0.3255), as well as the highest R2 

(93.77%) among all configurations. Training time increases with model complexity, especially with higher 

values of h2 and h3, although differences between configurations are minor. The configuration with h1=9, 

h2=64, and h3=64 balances predictive accuracy and computational efficiency, emerging as the optimal choice. 

However, hyperparameters should be chosen carefully based on specific application requirements and 

constraints. 

3.5 Analysis Based on Project Selection 

The selection of solar project size and parameters relies on specific yield, determined by kWh simulated by the 

model in Table 5, reflecting actual performance at a location. With three models oriented south, southeast, and 

southwest, each with a 15 kW size, tailored for specific azimuth directions, their annual generation is evaluated 

at approximately 1700, 1400, and 1600 specific yield values. The 15 kW systems aim to generate 24019 kWh 

annually at a standard yield of 1600. NPV and IIR over a 30-year period are scrutinized to compare cash flow in 

present-day terms and gauge return from NPV cash flows, respectively, considering inflation, interest, and costs. 

Table 5 Refining Solar Sizing: Tailoring Dimensions through Specific Yield Analysis 

kWh generated Specific yield KW size needed 

case 1 case 2 case 3 case 1 case 2 case 3 case 1 case 2 case 3 

26006 21556 25361 1734 1437 1691 13.85 16.71 14.2 

25230 21771 25260 1682 1451 1684 14.28 16.54 14.26 

26213 20976 24958 1748 1398 1664 13.74 17.17 14.43 

Table 6 underscores the significance of customizing solar dimensions to location-specific yield data (specific 

yield of 1600), improving project cost-effectiveness and facilitating the selection of projects with higher NPV. 

Objectives include minimizing costs, prioritizing high-yield locations, and optimizing space usage. While an 

ESS may not be necessary, its installation can be considered for efficient generation management and optimal 

performance. 
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Table 6 Project Cost Optimization: Strategies and Analysis 

  c1 Default 
c1 

Reduced 
c2 Default 

c2 

Reduced 
c3 Default 

c3 

Reduced 

Payments $1,99,166  $1,89,810  $1,99,166  $2,13,202  $1,99,166  $1,91,681  

Bill saving $4,60,761  $4,47,305  $4,01,951  $4,41,865  $4,56,170  $4,47,910  

IIR 5.77% 5.93% 4.69% 4.90% 5.69% 5.86% 

NPV $20,211  $23,162  ($7,789) ($2,821) $18,025  $21,578  

Payback 15.3 15 17.1 16.7 15.4 15.1 

Savings/M 11178 10852 9752 10719 11065 10865 

 

4. Conclusion 

This research offers valuable insights into improving solar energy prediction accuracy through thorough 

evaluation. Integrating LSTM models consistently outperforms traditional methods, enhancing accuracy by 2-

3%. Exploring diverse architectures and optimizers reveals configurations balancing accuracy and efficiency, 

with the Adam optimizer excelling. Tailoring project selection to location-specific data and cost optimization 

strategies maximizes project viability and sustainability, driving the transition to renewable energy. 

This research highlights the vital role of rigorous performance evaluation in advancing solar energy prediction. 

Through continuous refinement of modeling techniques and optimization strategies based on empirical data, 

renewable energy adoption can be accelerated. Achieving an accuracy level of approximately 95-96% for the 

Indian profile underscores the significance of ongoing research efforts in supporting the transition to a more 

sustainable energy future. 

Nomenclature 

ADAM Adaptive Moment estimation LR Learning Rate 

ANFIS 
Adaptive Neuro - Fuzzy Inference 

System 
LSTM Long Short Term Memory 

ANN Artificial Neural Network MAE Mean Absolute Error 

AOI Angle Of Incident MAPE Mean Absolute Percentage Error 

ASHRAE 

American Soc. of Heating, 

Refrigeration & Air-conditioning 

Engineers  

MSE Mean Square Error 

BP Back Propagation NN Neural Network 

CNN Convolutional Neural Network  NREL 
National Renewable Energy 

Laboratory 

DHI Direct Horizontal Irradiance POA Plane Of Array 

DNI Direct Normal Irradiance R2 Coefficient of determination 

DSR Daily Solar Irradiance RELU Rectifier Linear Unit 
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ESS Energy Storage System RNN Recurrent Neural Network 

FFNN Feed – Forward Neural Network SAM System Adviser Model 

FL Fuzzy Logic SC Soft Computing technique 

GA Genetic Algorithm SGD Stochastic Gradient Descent 

GHI Global Horizontal Irradiance SSC SAM Simulation Core 

ISHRAE 

Indian Soc. of Heating, 

Refrigeration & Air-conditioning 

Engineers  

TANH Tangent Hyperbolic 

IWEC 
Indian Weather for Energy 

Calculation 
TMY Typical Meteorological Year 
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