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Abstract: Battery health aware energy management strategy (EMS) is designed for a power-split hybrid electric 

vehicle (HEV) by using Artificial Neural Networks (ANN). Three different speed profiles are selected to obtain 

a dataset. WLTP is used as the dynamic, transient speed profile, HWFET is used as the highway speed profile and 

NEDC is used as the third speed profile. Vehicle is operated in charge-sustaining mode in these drive cycles by 

using Equivalent Consumption Minimization Strategy (ECMS). Three different initial State-of-Charge (SOC) 

values are used in simulations. Each cycle is run for three different initial SOC values. Two ANN controllers are 

designed to control ICE torque and speed. Torque demand of the vehicle, SOC, and battery capacity fade are 

selected as the inputs of the ANN. The goal of this study is the investigation of battery degradation and fuel 

consumption by using ANN. Results for WLTP show that capacity fade can be reduced up to 14.85% and fuel 

consumption can be reduced 3.83% for the lowest initial SOC value. For intermediate initial SOC value, capacity 

fade is reduced by 13.80% and fuel consumption is reduced by 1.84%.  For highest initial SOC value, capacity 

fade is reduced by 14.70 % with the 5.75% increase of fuel consumption. Results are consistent for the other two 

drive cycles. Battery degradation is also reduced in HWFET and NEDC. 

Keywords: Artificial neural networks, battery degradation, ECMS, hybrid electric vehicle. 

 

1. Introduction 

Due to the limited reserves of fossil fuels and harmful emissions, countries all around the world are assessing the 

benefits of electrification in transportation [1]-[3]. Electric motors offer quiet operation and excellent acceleration 

performance but battery technology still needs improvements because of their cost and range limitations. Hybrid 

electric vehicles (HEVs) are another alternative for the electrification of transportation. HEVs can decouple 

internal combustion engines from driven wheels and operate them in an efficient region. HEVs can increase the 

fuel economy and due to smaller battery packs, compared to battery electric vehicles (BEVs), they are less 

expensive than BEVs. Energy management strategy (EMS) plays a key role for HEVs because of the operation of 

different powertrain components. HEV EMSs can be classified as optimization based methods, rule based methods 

and machine learning methods. Many different EMS algorithms are present in the literature. Until the last decade, 

most of the EMS research on HEVs was focused on the reduction of the fuel consumption. With the increasing 

number of BEVs and HEVs and the battery costs, researchers started to take battery degradation into account. 

Battery health conscious EMSs designed over the last years by using many different algorithms such as global 

and instantaneous optimization algorithms, rule based methods and machine learning methods. Dynamic 

Programming (DP) is the most common global optimization algorithm and Equivalent Consumption Minimization 

Strategy (ECMS) is an instantaneous optimization algorithm that can achieve close results to DP. Fuzzy Logic is 

investigated for HEVs as a rule based method and proved that based on human intuition and expertise, satisfactory 

results can be achieved. Artificial Neural Networks (ANN) also gained attention from researchers in the last years 

and are used for different HEV applications. Literature Review below provides a summary of ANN methods used 

for HEV applications. 
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ANN has the ability to decipher complex non-linear relationships and emerge as a preferred tool for health 

management of lithium-ion batteries [4]. Various ANN architectures have been employed to predict the state of 

batteries including Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Feedforward 

Neural Network (FNN) [4].  

A new Radial Basis Function Neural Network (RBFNN) is built in [5] and SOC estimation accuracy was 

increased. In [6], ANN is used for aging prediction and SOC estimation of a 𝐿𝑖𝐹𝑒𝑃𝑂4 battery. Input time-delayed 

neural network technique is used and accurate state of charge and state of health estimation were achieved 

simultaneously. In [7], RNN is used for battery degradation prediction and compared to existing methods, 

proposed method predicts more accurately.  

Apart from health management of lithium-ion batteries, ANN has been used for other HEV applications such as 

component sizing of a series HEV in [8]. In [9], ANN is used to enhance the EMS of the HEV and satisfactory 

fuel economy results were achieved. In [10], another neural network-based EMS is designed for a plug-in HEV 

and reductions in the fuel consumptions were observed. As seen in the above examples, ANN can be used both 

for battery health management, SOC and degradation estimations of a hybrid electric vehicle and fuel consumption 

optimization, which are both important for HEVs and EMS design. This paper aims to investigate ANN as a 

battery health conscious EMS for a power-split HEV. For this end, a dataset is obtained for charge-sustaining 

operation of the vehicle by using ECMS and battery capacity fade input is used in ANN controllers. Matlab Neural 

Networks toolbox is used to design ANN controllers and dataset is divided into 70% training data, 15% testing 

data and 15% validation data. Two ANN controllers are designed to control ICE torque and speed with the inputs 

of torque request of the vehicle, SOC and capacity fade. Three different speed profiles are selected as one dynamic 

transient profile, one highway speed profile and one intermediate speed profile. Designed ANN controllers are 

tested in all speed profiles and results show that battery degradation is reduced in all cases. The rest of this paper 

is organized as follows; Section 2 explains the vehicle model, Section 3 explains implementation of ECMS, 

Section 4 explains ANN implementation, Section 5 compares the results of ECMS and ANN for all drive cycles 

and Section 6 includes conclusions. 

2. Vehicle Model 

A power-split HEV is modeled by using backward quasi-static approach [11] in Simulink. The traction force 

required is calculated by the equation; 

𝐹𝑡 = 𝐹𝑟 + 𝐹𝑎𝑒𝑟𝑜 + 𝐹𝑎𝑐𝑐                                                         (1)                                                                  

where 𝐹𝑡 is the traction force, 𝐹𝑟 is the rolling resistance, 𝐹𝑎𝑒𝑟𝑜 is the aerodynamic resistance and 𝐹𝑎𝑐𝑐 is the 

acceleration resistance. Rolling resistance, aerodynamic resistance and acceleration resistance are calculated by 

the equations given below. 

𝐹𝑟 =  𝑚𝑔𝑓𝑟                                                                          (2)        

𝐹𝑎𝑒𝑟𝑜 =
1

2
𝜌𝐶𝐷𝐴𝑓𝑉2                                                             (3)                                

𝐹𝑎𝑐𝑐 = 𝑚𝑎𝛿                                                                          (4) 

𝑓𝑟 = 0.01(1 +
3.6

160
 𝑉)                                                          (5)              

𝛿= 1.04+0.0025𝑖𝐹𝐷
2                                                               (6)                                                           

where m is the vehicle mass (kg), 𝑔 is the gravitational acceleration (𝑚/𝑠2), 𝑓𝑟 is the rolling resistance coefficient, 

𝜌 is the air density (𝑘𝑔/𝑚3), 𝐶𝐷 is the aerodynamic coefficient, 𝐴𝑓 is the frontal area of the vehicle (𝑚2), 𝑉 is the 

vehicle speed (m/s), 𝑎 is the acceleration of vehicle (𝑚/𝑠2), 𝛿 is the rotational inertia factor and 𝑖𝐹𝐷  is the final 

drive ratio. Rotational effect of planetary gear set is not taken into account for simplification, just the rotational 

effect of final drive is included in the vehicle model. After required traction force is calculated, wheel torque and 

torque request are calculated by the equations given below. 
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𝑇𝑤ℎ𝑒𝑒𝑙 = 𝐹𝑡  𝑟𝑤                                                                      (7) 

 𝑇𝑟𝑒𝑞 =
𝑇𝑤ℎ𝑒𝑒𝑙

𝑖𝐹𝐷
                                                                       (8) 

where 𝑇𝑤ℎ𝑒𝑒𝑙  is the torque at the wheels in Nm, 𝑟𝑤 is the wheel radius in meter and 𝑇𝑟𝑒𝑞  is the torque request of 

the vehicle. Vehicle parameters used to calculate traction force and wheel torque are given below in Table 1 and 

power-split configuration used in this study is given below in Fig. 1. 

Table 1: Vehicle parameters 

Vehicle mass (m) 1361 kg 

Air density (𝜌) 1.23 𝑘𝑔/𝑚3 

Aerodynamic coefficient (𝐶𝐷) 0.26 

Frontal Area (𝐴𝑓) 2.33 𝑚2 

Final drive ratio (𝑖𝐹𝐷) 3.267 

Wheel radius (𝑟𝑤) 0.31075 meter 

 

Fig. 1: Power-split configuration 

Internal combustion engine (ICE) is connected to the carrier of the planetary gear, Motor/Generator 1 (MG1) is 

connected to sun gear and Motor/Generator 2 (MG2) is connected to driven wheels. ICE power is split in planetary 

gear to charge the battery pack through MG1 and provide traction torque through ring gear. Torque request of the 

vehicle, 𝑇𝑟𝑒𝑞  is the combination of the torque provided by MG2 and ICE torque through ring gear. Torque and 

speed equations of the planetary gear set are given below. 

𝑇𝑟𝑒𝑞 = 𝑇𝑟 + 𝑇𝑀𝐺2                                                                   (9) 

𝑇𝑟 =
𝑇𝐼𝐶𝐸 

1+𝑖𝑃𝐺
                                                                          (10) 

𝑇𝑀𝐺1 = 𝑇𝑟 𝑖𝑃𝐺 = 𝑇𝐼𝐶𝐸  
𝑖𝑃𝐺

1+𝑖𝑃𝐺
                                                (11) 

where 𝑇𝑟 is the torque at ring gear, output of the planetary gear in Nm, 𝑇𝑀𝐺2 is the torque of MG2, 𝑇𝐼𝐶𝐸  is the 

torque of internal combustion engine, 𝑇𝑀𝐺1 is the torque of MG1 and 𝑖𝑃𝐺  is the planet gear ratio, which is number 

of teeth of sun gear (𝑁𝑠) divided by number of teeth of ring gear (𝑁𝑟). Angular velocities of the components are 

given in below equations. 

𝜔𝑤ℎ𝑒𝑒𝑙 =
𝑉

𝑟𝑤
                                                                               (12) 
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𝜔𝑀𝐺2 = 𝜔𝑟 = 𝜔𝑤ℎ𝑒𝑒𝑙  𝑖𝐹𝐷                                                        (13) 

where 𝜔𝑤ℎ𝑒𝑒𝑙  is the wheel angular velocity in rad/s, 𝜔𝑀𝐺2 is the angular velocity of MG2 in rad/s and 𝜔𝑟 is the 

angular velocity of ring gear in rad/s. Angular velocities of MG2 and ring are equal and proportional to the angular 

velocity of the wheels. Speed equation of the planetary gear set is given below and powertrain specification are 

given in Table 2. 

(1 + 𝑖𝑃𝐺)𝜔𝐼𝐶𝐸 = 𝑖𝑃𝐺  𝜔𝑀𝐺1 + 𝜔𝑀𝐺2                                     (14) 

Table 2: Powertrain specifications 

Maximum Torque of ICE 115 Nm@4200 rpm 

Maximum Speed of ICE 5000 rpm 

Maximum Torque of Electric Motor (MG2) 400 Nm 

Maximum Speed of Electric Motor (MG2) 6000 rpm 

Maximum Torque of Generator (MG1) 145 Nm 

Maximum Speed of Generator (MG1) 10000 rpm 

Number of teeth of sun gear 𝑁𝑠 30 

Number of teeth of sun gear 𝑁𝑟 78 

Planet gear ratio, 𝑖𝑃𝐺  (
𝑁𝑠

𝑁𝑟
) 0.384 

In this study, ICE torque and speed are determined by the vehicle controller. As seen in above equations, when 

the ICE torque and speed are determined by the control algorithm, torque of MG2, torque of MG1 and speed of 

MG1 can be determined from planet gear equations. By using these parameters, battery power,  𝑃𝐵𝑎𝑡𝑡 , is calculated 

as follows; 

𝑃𝐵𝑎𝑡𝑡 =  
𝑇𝑀𝐺1𝜔𝑀𝐺1

𝜂𝑀𝐺1
𝑠𝑖𝑔𝑛(𝑇𝑀𝐺1𝜔𝑀𝐺1) +   

𝑇𝑀𝐺2𝜔𝑀𝐺2

𝜂𝑀𝐺2
𝑠𝑖𝑔𝑛(𝑇𝑀𝐺2𝜔𝑀𝐺2)             (15) 

Battery model and Capacity Fade model 

Battery is modeled as a zeroth order equivalent circuit model. Battery cell power is calculated as follows for a 

zeroth order equivalent circuit model. 

𝑃𝑏𝑎𝑡𝑡 = 𝑉𝑜𝑐𝐼 − 𝑅𝑖𝑛𝐼2                                                             (16) 

where 𝑉𝑜𝑐  is the open circuit voltage, 𝐼 is the battery current and 𝑅𝑖𝑛 is the internal resistance. 𝐿𝑖𝐹𝑒𝑃𝑂4battery 

cells are used in the model and cell parameters are given below in Table 3. 

Table 3: Cell parameters 

Nominal capacity (Ah) 2.5 

Nominal Voltage (V) 3.3 

Maximum discharge current (A) 50 

Capacity fade model in [12] is used as the degradation model. 

𝑄𝑐𝑦𝑐 = (𝛼𝑆𝑂𝐶 + 𝛽). exp (
−𝐸𝑎+𝜂 𝐶𝑟𝑎𝑡𝑒

𝑅𝑔𝑎𝑠𝑇𝐾
)𝐴ℎ𝑧                             (17) 

where 𝛼 and 𝛽 are fitting coefficients, 𝐸𝑎is the activation energy, 𝜂 is the compensation factor of 𝐶𝑟𝑎𝑡𝑒, 𝑅𝑔𝑎𝑠 is 

the gas constant, 𝑇𝐾  is the ambient temperature in (K), 𝐴ℎ is the Ah-throughput and 𝑧 is the power law factor. 

Parameters of the capacity fade model are given below in Table 4. 
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Table 4: Aging model parameters 

Fitting coefficient 𝛼 {
2896.6, 𝑆𝑂𝐶 ≤ 0.45
2694.5, 𝑆𝑂𝐶 > 0.45

 

Fitting coefficient 𝛽 {
7411.2, 𝑆𝑂𝐶 ≤ 0.45
6022.2, 𝑆𝑂𝐶 > 0.45

 

𝜂 152.5 

𝐸𝑎(
J

mol
) 31,500 

𝑅𝑔𝑎𝑠(𝐽/(mol. K) 8.314 

𝑧 0.57 

3. Equivalent Consumption Minimization Strategy 

To obtain a dataset for ANN, ECMS is used. ECMS was first introduced by Paganelli [13] and used extensively 

in the literature. It can achieve results close to global optimization algorithms such as DP. ICE torque and speed 

are controlled by using ECMS for the charge sustaining operation of the HEV. The ECMS is based on the notion 

that, in charge-sustaining hybrid electric vehicles, the difference between the initial and final state of charge of 

the battery is very small, negligible with respect to the total energy used. This means that all energy comes from 

fuel, and the battery can be seen as an auxiliary, reversible fuel tank [14]. 

ICE torque and speed are discretized as the control variables. Fuel rate of the engine 𝑚𝑓̇  in kg/s is a function of 

ICE torque and speed. 

𝑚𝑓̇ = 𝑓(𝑇𝐼𝐶𝐸 , 𝜔𝐼𝐶𝐸)                                                           (18) 

Since ICE is not connected to the driven wheels in the power-split configuration, it can be operated at the most 

efficient region. Cost function, J, of ECMS can be written as follows: 

J= 𝑃𝐼𝐶𝐸 + 𝜆 𝑝(𝑆𝑂𝐶)𝑃𝑏𝑎𝑡𝑡                                                   (19) 

𝑃𝐼𝐶𝐸 = 𝑚𝑓  ̇ 𝑄𝑙ℎ𝑣                                                                   (20) 

𝑝(𝑆𝑂𝐶) = 1 − (
𝑆𝑂𝐶(𝑡)−𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡

(𝑆𝑂𝐶𝑚𝑎𝑥−𝑆𝑂𝐶𝑚𝑖𝑛)/2
)3                                 (21) 

where 𝑃𝐼𝐶𝐸  is the fuel power of ICE (kW), 𝜆 is the equivalence factor and 𝑝(𝑆𝑂𝐶) is the penalty function for state-

of-charge, 𝑄𝑙ℎ𝑣  is the lower heating value of the fuel (MJ/kg). Initial value of equivalence factor is taken as 3.385 

and a dicrete PI block is used for adaptation of equivalence factor. Implemented ECMS is subjected to following 

powertrain constraints; 

𝜔𝐼𝐶𝐸,𝑚𝑖𝑛 ≤ 𝜔𝐼𝐶𝐸 ≤ 𝜔𝐼𝐶𝐸,𝑚𝑎𝑥                                             (22) 

𝑇𝐼𝐶𝐸,𝑚𝑖𝑛 ≤ 𝑇𝐼𝐶𝐸 ≤ 𝑇𝐼𝐶𝐸,𝑚𝑎𝑥                                                (23) 

𝜔𝑀𝐺1,𝑚𝑖𝑛 ≤ 𝜔𝑀𝐺1 ≤ 𝜔𝑀𝐺1,𝑚𝑎𝑥                                         (24) 

𝑇𝑀𝐺1,𝑚𝑖𝑛 ≤ 𝑇𝑀𝐺1 ≤ 𝑇𝑀𝐺1,𝑚𝑎𝑥                                            (25) 

𝜔𝑀𝐺2,𝑚𝑖𝑛 ≤ 𝜔𝑀𝐺2 ≤ 𝜔𝑀𝐺2,𝑚𝑎𝑥                                          (26) 

𝑇𝑀𝐺2,𝑚𝑖𝑛 ≤ 𝑇𝑀𝐺2 ≤ 𝑇𝑀𝐺2,𝑚𝑎𝑥                                            (27) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥                                                 (28) 

𝐼𝑏𝑎𝑡𝑡,𝑚𝑖𝑛 ≤ 𝐼𝑏𝑎𝑡𝑡 ≤ 𝐼𝑏𝑎𝑡𝑡,𝑚𝑎𝑥                                               (29) 

Simulink model of ECMS and equivalence factor are given below in Figs 2-3. 
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Fig. 2: ECMS Controller in Simulink 

 

Fig. 3: Equivalence factor adaptation based on SOC 

After ECMS is implemented in the vehicle model, three different speed profiles are selected. Worldwide 

Harmonised Light Vehicles Test Procedure (WLTP) is selected as the most dynamic, transient drive cycle which 

represents real driving conditions. The Highway Fuel Economy Test (HWFET) drive cycle is selected as the 

highway speed profile and New European Driving Cycle (NEDC) is selected as an intermediate speed profile. 

Vehicle is operated in charge sustaining mode for three different initial SOC values. SOC values are selected as 

20% as the lowest SOC, 60% as the medium SOC and 80% as the highest SOC. For each drive cycle, three 

different simulations are conducted for different initial SOC values and in total, nine simulations are conducted 

to obtain a dataset. Drive cycles and results of ECMS are given below. 

 

Fig. 4: WLTP Speed- Time graph 

 

Fig. 5: HWFET Speed-Time graph 
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Fig. 6: NEDC Speed-Time graph 

 

Fig. 7: WLTP SOC- Time graph 

Fig. 7 shows SOC profiles in WLTP drive cycle for different initial SOC levels, as seen in Fig.7, vehicle is 

operated in charge-sustaining mode in all cases. The reason to choose low, medium and high SOC levels is that 

the SOC is one of the parameters in the aging model.  

 

Fig. 8: WLTP Capacity Fade-Time graph 

 

Fig. 9: WLTP Fuel Consumption-Time graph 

Figs. 8-9 show capacity fade and fuel consumptions results for WLTP drive cycle. As seen in these results, there 

is a trade-off between battery usage and fuel consumption. Fig. 8 shows that minimum battery degradation occurs 

for 60% initial SOC level, which is the highest fuel consumption according to Fig. 9. For low and high SOC levels, 

battery degradation and fuel consumption are very close, as seen in Figs. 8-9.  
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Fig. 10: HWFET SOC-Time graph 

 

Fig. 11: HWFET Capacity Fade-Time graph 

 

Fig. 12: HWFET Fuel Consumption-Time graph 

Figs. 10-12 show ECMS results for HWFET drive cycle. The trade-off between battery degradation and fuel 

consumption can be seen in this drive cycle as well. Fig. 11 shows that capacity fade is highest for lowest SOC 

level, 20%. In this case, more battery power is used, therefore fuel consumption is reduced as seen in Fig. 12. 

Compared to intermediate and high SOC levels, fuel consumption is minimum for 20% SOC level. 

 

Fig. 13: NEDC SOC-Time graph 
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Fig. 14: NEDC Capacity Fade-Time graph 

 

Fig. 15: NEDC Fuel Consumption-Time graph 

Results for NEDC are given above in Figs. 13-15. NEDC is not as dynamic as WLTP and has lower average speed 

compared to HWFET. Required driving power is relatively low in NEDC compared to other two drive cycles. As 

a result of this, fuel consumption for different SOC levels is almost same according to Fig.15 and there is very 

small difference in battery degradation. 

After ECMS is implemented and dataset is obtained. Two ANN controllers are designed to control ICE torque 

and speed. Capacity fade is used as one of the inputs for both controllers. Design of ANN controllers are explained 

in the next section. 

4. Artificial Neural Network Based Controller Design 

Matlab Neural Network Toolbox is used to design ANN controllers, torque request of the vehicle, SOC and 

capacity fade are the inputs of the controllers and the outputs are ICE torque and ICE speed. WLTP, HWFET and 

NEDC were run for three different initial SOC values. Number of data points for nine simulations is 11364. The 

dataset is divided as 70% for training, 15% for testing and 15% for validation. ANN settings are given below in 

Fig. 16.  

 

Fig. 16: ANN settings 

Results of ANN controllers are given in the next section and compared with the results of ECMS for three drive 

cycles and three initial SOC scenarios. 
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5. Results and Discussion 

 

Fig. 17: SOC-Time graph for 20% Initial SOC in WLTP 

 

Fig. 18: SOC-Time graph for 60% Initial SOC in WLTP 

 

Fig. 19: SOC-Time graph for 80% Initial SOC in WLTP 

Figs. 17-19 shows SOC profiles in WLTP for ECMS and ANN. As seen in these graphs, vehicle operates close 

to charge-sustaining mode when ANN controller is employed. 

 

Fig. 20: Capacity Fade-Time graph for 20% Initial SOC in WLTP 

 

Fig. 21: Capacity Fade-Time graph for 60% Initial SOC in WLTP 
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Fig. 22: Capacity Fade-Time graph for 80% Initial SOC in WLTP 

Figs. 20-22 show capacity fade results of ANN and ECMS controllers for WLTP. Results show that capacity fade 

is reduced for all cases when ANN controller is employed.  

 

Fig. 23: Fuel consumption-Time graph for 20% Initial SOC in WLTP 

 

Fig. 24: Fuel consumption -Time graph for 60% Initial SOC in WLTP 

 

Fig. 25: Fuel consumption -Time graph for 80% Initial SOC in WLTP 

Figs. 23-25 show fuel consumption results for WLTP. As seen in these results, fuel consumption is increased in 

just 80% initial SOC level. For other cases, fuel consumption is decreased slightly when ANN is used. 

Results for HWFET are given below in Figs. 26-28 and Table 5. Figs. 26-28 show the SOC results and Table 5 

shows capacity fade and fuel consumption at the end of drive cycle.  
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Fig. 26: SOC-Time graph for 20% Initial SOC in HWFET 

 

Fig. 27: SOC-Time graph for 60% Initial SOC in HWFET 

 

Fig. 28: SOC-Time graph for 80% Initial SOC in HWFET 

Table 5: HWFET results 

HWFET ECMS ANN 

Capacity Fade for 20% Initial SOC (%) 0.0509 0.0310 

Capacity Fade for 60% Initial SOC (%) 0.0457 0.0363 

Capacity Fade for 80% Initial SOC (%) 0.0490 0.0299 

Fuel Consumption for 20% Initial SOC (kg) 0.5837 0.6303 

Fuel Consumption for 60% Initial SOC (kg) 0.6839 0.5294 

Fuel Consumption for 80% Initial SOC (kg) 0.6862 0.5732 

Results for HWFET show that capacity fade is decreased in all cases while fuel consumption is increased in one 

case. As seen in Figs. 26-28, the vehicle is operating in a charge depleting mode in HWFET, the only case that 

fuel consumption is increased is the initial SOC level of 20%. In this case, since the SOC level is low and vehicle 

is operating in a highway cycle, ICE must use more fuel to prevent total discharge of the battery, which results in 

an increase in fuel consumption. For intermediate and high SOC levels, the vehicle is depleting the battery, thus 
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reducing the fuel consumption. HWFET results show that for low SOC level, capacity fade is decreased as 39% 

and fuel consumption is increased as 7.9%. For medium SOC level, capacity fade is decreased as 20.5% and fuel 

consumption is decreased as 22.5 % and for high SOC level, capacity fade is decreased as 38.9% and fuel 

consumption is decreased as 16.46%.  

Results for NEDC are given in Figs. 29-31 and Table 6. 

 

Fig. 29: SOC-Time graph for 20% Initial SOC in NEDC 

 

Fig. 30: SOC-Time graph for 60% Initial SOC in NEDC 

 

Fig. 31: SOC-Time graph for 80% Initial SOC in NEDC 

Table 6: NEDC results 

NEDC ECMS ANN 

Capacity Fade for 20% Initial SOC (%) 0.0386 0.0332 

Capacity Fade for 60% Initial SOC (%) 0.0366 0.0293 

Capacity Fade for 80% Initial SOC (%) 0.0390 0.0336 

Fuel Consumption for 20% Initial SOC (kg) 0.4406 0.3889 

Fuel Consumption for 60% Initial SOC (kg) 0.4415 0.4052 

Fuel Consumption for 80% Initial SOC (kg) 0.4462 0.3824 
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NEDC results show that capacity fade is decreased in all cases as well as fuel consumption. For low SOC level, 

capacity fade is decreased by 13.9% and fuel consumption is decreased by 11.73%. For medium SOC level, 

capacity fade is decreased by 19.94% and fuel consumption is decreased by 8.22%. For high SOC level, capacity 

fade is decreased by 13.84% and fuel consumption is decreased by 14.29% 

6. Conclusion 

Three different speed profiles are selected and applied for three different initial SOC values. In total, nine different 

cases are investigated and results of ECMS and ANN are compared in terms of SOC, capacity fade and fuel 

consumption. SOC profiles are included in the results because SOC is one of the parameters in the capacity fade 

model. This is why results are evaluated for charge-sustainability, degradation and fuel consumption. Results 

show that capacity fade of the battery is decreased in all cases when a control-oriented degradation model is used 

as an input for ANN controller. Fuel consumption is only increased in two cases. This shows that the proposed 

ANN-based controller can reduce battery degradation and fuel consumption depending on the initial SOC level 

and drive cycle.  

For further research, the dataset size will be increased by using more drive cycles and capacity fade will be 

investigated further by aging the battery through simulations. Battery degradation is a very complex phenomenon 

and ANN has proven to be useful for battery health management. Training ANN for the further aging conditions 

and investigating battery degradation will be the focus of further research.  
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