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Abstract:- Today's escalating cyber attacks are outpacing standard network security defenses and, once inside, 

malware rapidly subverts individual hosts. Automatic post-breach protection of enterprise networks is a 

challenging and fundamental research problem that requires understanding and exploiting malware targeting 

strategies. 

In this work, we focus on the strategic malware classification problem and analyze massive-scale malware 

behavior to design accurate classifiers. Our malware classifier combines vantage point sensing with a Bayesian 

malware probability model of distinct host-level abnormalities and offers very high detection accuracy at any 

specified false alarm rate. This new capability makes accurate, network-hosted, multi-functional, enterprise-level 

post-compromise malware containment feasible. 

We present a detailed analysis of real-world Worm, Bot, Scanning/Proxy, and Spam/Phishing behavior that 

contributes to both the strategic classification model and the strategic classifier design. Moreover, given the 

proprietary nature of both the data and the model, we also describe a simulation framework that researchers can 

use for comprehensive vulnerability assessment. 

Keywords: Next-Gen Cyber Defense, Industry 4.0, Internet of Things (IoT), Artificial Intelligence (AI), Machine 

Learning (ML), Smart Manufacturing (SM), Computer Science, Data Science, Vehicle, Vehicle Reliability. 

 

1. Introduction 

In 2017, there were 159,700 security incidents, including ransomware, spyware, and backdoor intrusions. Also, 

in 2017, the financial costs of cybercrime were estimated at 11 trillion dollars. This study is looking to solve the 

need for high-accuracy malware detection with high throughput without potentially dangerous long query times. 

This paper is focused on the question of how we can apply Machine Learning Malware Classification using 

dynamic analysis, noise reduction, and semi-supervised learning. As a first step toward applying Machine 

Learning-based malware classification for research purposes on preliminary malware identification and filtering, 

we aim to build a working end-to-end malware classifier for data at rest. The approach uses Dynamic Analysis, 

Dimensionality Reduction, and Semi-Supervised Learning to classify malware. Fully Supervised models can 

struggle with highly imbalanced classification tasks. This model promotes search performances in dynamic 

datasets since Semi-Supervised Learning reduces the time required to decide on the orientation of future deep 

analysis toward the selected malware families. The model generalizes well and achieves nearly perfect accuracy.In 

this text, we will discuss the problem of detecting computer malware, which is a big deal nowadays. It touches 

Software Development, Business and Administration, and other fields. These issues are usually solved by previous 

encounters with the given malware or by using pre-constructed models, both of which do not generalize well to 

new sorts of malware attacks and, in general, require high expertise and specific knowledge to perform well, 

besides having long query times. In our approach, we will try to address these problems by applying several 

custom dynamic feature generators and semi-supervised learning to generate comprehensive models with high 

throughput for known and unknown malware. We expect to feed on a big dataset gathered from Windows malware 
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in a real network with a heterogeneous environment to draw more general results and anticipate some behaviors 

in the malware field. At the time, the main contributions of this paper to the literature were the gathering of threat 

intelligence back to back with test-oriented performance, the independent source used, the used data, and the 

methods presented. 

 

Fig. 1. Block diagram of the proposed system for network traffic capture. 

1.1 Background and Motivation 

The topic of this book is the cutting-edge intersection of deep learning, static malware analysis, and computer 

network security. It focuses on the recent trend in computer security toward machine learning as the most natural 

and effective defense in the age of artificial intelligence. Researchers shift from signature-based security solutions 

that require always-up-to-date lists of observed malicious files/benign files to data-driven, machine learning-based 

approaches, which can predict and stop the execution of any legitimate or malicious file with very high accuracy. 

The proposed solution is also adaptive—it constantly evolves and learns to deal with parental control and 

encryption. The huge number of pre-configured sets of deep learning models runs in parallel to improve the 

efficiency of the classification processes, with no false positives/negatives. The user studies some of the main 

static malware analysis techniques and adapts them to the available resources of a given computer system. In 

particular, cutting-edge optimizations target high concurrency and low latency, enabling users to combine 

malware feature extraction with their everyday tasks, rather than reserving tens of minutes/hours for malware 

analysis of future missed attacks. The user employs two static malware analysis techniques in the area of malware 

classification, showing that they can achieve state-of-the-art results on real-world tasks. With these two static 

malware analysis techniques, this book offers a practical solution to automatically and instantly protect all devices 

on a network from the vast majority of zero-day malware. Furthermore, this book delves into the intricacies of 

deep learning models tailored for static malware analysis, emphasizing their ability to generalize across different 

types of malware while maintaining robustness against evasion techniques. It explores how these models adapt to 

new threats by continuously updating their knowledge base through ongoing training on the latest malware 

samples. By leveraging these advancements, the book demonstrates how organizations can shift from reactive to 

proactive defense strategies, preemptively identifying and neutralizing threats before they manifest. Additionally, 

it discusses the integration of these techniques into existing cybersecurity frameworks, highlighting their 

scalability and efficiency in real-world deployment scenarios. Overall, this comprehensive approach marks a 

significant advancement in the field, paving the way for more adaptive and resilient cybersecurity solutions in an 

increasingly interconnected digital landscape. Moreover, the book elucidates on the practical implementation of 

these deep learning models within computer network security architectures, emphasizing their seamless 

integration into existing infrastructure without disrupting operational efficiency. It details the advantages of these 

models in terms of resource utilization, demonstrating how they optimize computational resources to ensure 

minimal impact on system performance while enhancing security posture. The discussion extends to the 

importance of interpretability and explainability in machine learning models applied to cybersecurity, addressing 

concerns about trust and transparency in automated decision-making processes. By elucidating the inner workings 

of these models, the book aims to build confidence among cybersecurity professionals and stakeholders in 

adopting AI-driven solutions for malware detection and prevention. In addition to technical aspects, the book 

explores policy implications and ethical considerations surrounding the use of AI in cybersecurity. It advocates 

for responsible deployment practices that prioritize privacy protection and mitigate potential biases in algorithmic 

decision-making. By fostering a holistic understanding of AI's role in cybersecurity, the book empowers readers 

to navigate the evolving threat landscape with informed strategies and effective defenses.Ultimately, this book 
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serves as a pivotal resource for researchers, practitioners, and policymakers seeking to harness the transformative 

potential of deep learning in safeguarding digital ecosystems against emerging cyber threats. It underscores the 

paradigm shift towards proactive, adaptive defenses driven by machine learning, positioning readers at the 

forefront of innovation in modern cybersecurity practices. 

 

Fig. 2. Types of Malware Analysis 

1.2 Research Aim and Objectives 

In this research, the ultimate goal is not only to build an exponentially scalable self-adaptive system capable of 

defending from cyber threats (referred to as Advanced Automated Unified Security, AAUS), but also to contribute 

to systematizing, formalizing, and enriching network defense with a proactive, predictive, "bio-based" approach. 

The method used to gather and analyze information starts with a review of the literature on malware, bio-inspired 

models, and learning in complex systems. Relevant concepts are transformed into mathematical models and 

algorithms for building an AAUS. The proposed methods can also be used as foundational blocks for solving 

machine learning tasks in network traffic analysis in general. The objectives of the research are: to conduct a 

comprehensive survey of state-of-the-art malware analysis methods to delineate significant breaking points and 

research directions for choosing the right direction for studying and defending against advanced threats; to 

formalize malware classification problems; to develop semantic vector representations for strings and sequences; 

to create a taxonomy of bio-inspired learning methods.Highly efficient self-adaptive models for implementing the 

AAUS need to be developed also. Malware is a major threat to Internet security and has matured to a high level 

of complexity. Developing effective methods to manage and detect malware is an urgent task for researchers. This 

study proposes a domain ontology-based behavioral (DoBe) analysis system that can extract behavioral 

characteristics from unknown malware. First, the use of a domain ontology will allow our ontology to describe 

malware behaviors, permitting fast identification of malware behavior when a system wants to perform malware 

diagnosis. After designing the domain ontology-based behavior analysis system (Dobbea), we also built a class 

that can contribute to behavioral analysis for unknown malware. The DoBea is an ontology-based behavior 

analysis that improves the capabilities of the ontology tool for ontology matching of forensic malware behavior 

analysis. This approach to unknown malware classification is to classify malware according to behavior, enabling 

a targeted analysis of an attacker's behavior and, consequently, the ability to adequately judge the impact of the 

threat. Additionally, this research aims to advance the field of cybersecurity by leveraging bio-inspired models to 

enhance the resilience and adaptability of the Advanced Automated Unified Security (AAUS) system. By drawing 

inspiration from biological systems, such as immune systems and neural networks, the study seeks to develop 

innovative approaches for detecting and mitigating cyber threats in real-time. These bio-inspired models are 

designed to mimic the robustness and self-adaptation observed in natural systems, thereby offering a dynamic 

defense mechanism against evolving malware tactics. Furthermore, the research endeavors to establish a 

systematic framework for malware analysis by integrating domain ontology-based behavioral analysis (DoBea). 

This approach facilitates the extraction and categorization of behavioral patterns exhibited by unknown malware, 
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enabling rapid identification and classification of malicious activities. By formalizing these behaviors within a 

domain ontology, the system enhances the accuracy and efficiency of malware detection, empowering 

cybersecurity professionals to respond effectively to emerging threats. The development of semantic vector 

representations for strings and sequences also plays a crucial role in this research, enabling nuanced analysis of 

malware characteristics and facilitating robust classification algorithms. By transforming complex malware 

behaviors into mathematical models and algorithms, the study aims to create a foundational basis for advancing 

machine learning tasks in network traffic analysis, thereby enhancing overall cybersecurity resilience and efficacy. 

Ultimately, this interdisciplinary approach not only aims to bolster the capabilities of the AAUS system but also 

contributes to the broader cybersecurity community by fostering innovation in proactive, predictive defense 

strategies. By bridging the gap between biological inspiration and technological innovation, the research seeks to 

set new standards in malware detection and network defense, paving the way for more secure digital ecosystems 

in an increasingly interconnected world. 

1.3 Scope and Limitations 

As we focus on providing effective protection from a range of sources and types of malware, and the ease with 

which a malware analyst can integrate AlMadoko into their daily operations, we do not strive for the highest-

performing network analysis system per se. Currently, major commercial network security vendors aim for chip-

optimized appliances that can handle network speeds up to 100 Gbps or more, under the assumption that slower 

processing, while not ideal or perhaps even adequate, is better than no processing at all. By contrast, explicitly 

providing real-time network security is not our goal in this work. Since the relevant processing efficiency is scale-

bound and the output of AlMadoko is intended to enable the less time-constrained establishment of automated 

policy, we have found that the scaling of existing desktop architectures suffices for our efforts in addressing 

current needs. However, another drawback of current commercial network security architectures is the use of, for 

example, fifteen or twenty signature detection engines within a single network node. This approach scales poorly 

because when dealing with N different malware detection families, a defensive system requires O(N^2) detection 

engines. However, machine-learning approaches do not have this scaling limitation, obviating the need to deploy 

separate family-level mechanisms. With Intel Xeon E7 processors, we can build a publicly accessible system that 

provides next-generation machine-learning-based targeted malware defenses, an ability to obfuscate the 

underlying decision-making process, and demonstrated efficacy without crippling the performance of the 

traditional security model with respect "you get what you pay for." Existing systems are for good reasons designed 

for general-purpose deployment. They do not provide individual analysts with the ability to cope with information 

overload. 

2. Malware Classification Techniques 

Our paper puts forward a unique approach that combines the strengths of expert-based and machine learning-

based hierarchical malware classification models. Three stages were required to reach this conclusion. An analysis 

of precision requirements of malware classification was described in Hitchhiker's Guide to the Malware 

Classification Galaxy. The main comprehension techniques were clustered and deeply associated with their 

potential usages: from the development of a new antivirus to a multi-level hierarchical scheme to detecting the 

presence of certain code in malware or its affiliation with the government-sponsored center. In pursuit of faster 

classification in the context of an operation, we tried to simplify the existing models with an intuitive naming 

criterion. The results of this analysis served as a practical guide to designing a novel approach to hierarchical 

malware classification. Detailed meaning and popular usage with their associated values were ascertained for 

industry-used and promising academic clustering techniques. We defined requirements for malware classification 

and derived a logically consistent basic classification of the most essential types. These types demonstrated a good 

correlation between the micro-level output produced by applications running a certain malware and its affiliation 

with a particular malware family. Finally, a logical answer to the need for a macro-level separation was given. Its 

two categories were the direction of a defensive action and the technologies needed to perform this action. Then, 

the combination of results from simple and complex cluster analysis, as well as additional tests, helped to show 

that the named criteria realistically point at the borders of the right classification clusters for the named stages. 

All application results and structure comparisons were sufficiently close to explicitly mentioned name variants. 
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This text included references to brief explanations, extensive lists, and potentially important ramifications. All of 

them enriched the current state of the malware classification question. 

 

Fig. 3. Network Automation 

2.1 Static Analysis 

Dynamic analysis is a method where software is executed to gather more information about its goals and actions. 

These software tools can also deploy payloads into a sandbox to observe the behavior of the software in a 

controlled environment and understand its actions. However, dynamic analysis has its drawbacks as it can 

potentially release malicious payloads into the network of protective devices, which can lead to an attack. This 

approach is also controversial from a moral perspective due to the digital right of transfer. Defensive tools 

equipped with artificial intelligence (AI) classifiers, collectively known as cyber defense AI, provide valuable 

insights into the content of payloads. However, most AI tools simply classify software as either benign or 

malicious. In today's environment, AI tools incorporate various defensive components. It is not feasible to rely 

solely on an AI deep learning tool to fully protect a network. Recently, we have successfully employed static 

analysis methods to address cybersecurity issues. These methods involve analyzing a large collection of 

documents released by anti-malware organizations. These organizations gather, categorize, and share these 

documents to protect information and assets from potential threats. To achieve this mission, they gather software 

and scan and analyze it to identify the "signatures" of malicious software. Signatures consist of elements that help 

classify the software, and the analysis process may require multiple accesses to thoroughly examine the software. 

It is crucial for the model to quickly obtain the signature to provide prompt protection, so efficient access times 

are essential. Static analysis methods in cybersecurity are pivotal for preemptively identifying and mitigating 

potential threats before they manifest. By leveraging extensive databases curated by anti-malware organizations, 

these methods enable rapid identification of malware signatures. These signatures, comprising unique identifiers 

and patterns indicative of malicious intent, serve as critical markers for categorizing and neutralizing harmful 

software. The efficiency of static analysis lies in its ability to swiftly access and extract these signatures, ensuring 

prompt and effective protection against evolving cyber threats. Moreover, the integration of static analysis 

techniques complements dynamic analysis approaches by providing a proactive layer of defense. Unlike dynamic 

analysis, which entails executing software to observe its behavior in real-time, static analysis operates on the 

inherent properties and characteristics of software without triggering potential threats. This non-intrusive 

approach minimizes the risk of inadvertently releasing malicious payloads into the network, thereby enhancing 

overall cybersecurity resilience. Furthermore, advancements in artificial intelligence (AI) have enhanced static 

analysis capabilities by incorporating sophisticated AI classifiers. These classifiers go beyond simple 

benign/malicious categorization to discern complex patterns and anomalies in software code and behavior. By 

amalgamating AI-driven insights with static analysis methodologies, cybersecurity professionals can bolster their 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

613 

defenses against sophisticated cyber attacks, thereby fortifying organizational cybersecurity frameworks in an 

increasingly digitized landscape. 

2.2 Dynamic Analysis 

Dynamic analysis approaches to execute the malware and monitor its behavior to learn the set of executed 

operations and low-level events and interactions with the OS. The process of executing malware is often 

performed in a controlled environment so that the analysis system can observe the entire operation of the malware 

and its interaction with the OS. Given adequate permissions, the analysis system can monitor and record various 

properties of the executed operations, such as system calls, changes to the memory, registry keys, files, or network 

activity. This approach usually relies on data sources like sandboxes, virtual analysis systems, or even real running 

systems. The main strength of the above dynamic approaches is the ability to extract a large number of hard-to-

evade low-level malware behaviors, the recording of hidden behavior and interaction with the system, and the 

possibility to inspect the assembly-level operations, rooted in the fact that the presence of particular physical 

malware characteristics can unveil intent, functionality, or behavior. 

Despite these strong capabilities, dynamic approaches suffer from some shortcomings. The fact that the analysis 

requires execution to extract the behaviors implies that the approach can be more time-consuming than static 

characteristics-based techniques, as static techniques are faster because they can work based on static 

characteristics only. Moreover, due to the overhead of collecting and processing operation logs, the analysis can 

be intrusive, as operating with an in-production-like physical platform is oftentimes not feasible. Another issue 

regarding malware behavior is associated with the reaction against sandboxes and decoy-disguised execution 

systems, intrinsic support for hardware-level operation coercion within the hardware on which the analysis 

systems rely. As a consequence, the malware is often able to recognize the analysis environment and modify its 

normal operation. To cope with this fact, during the design of a dynamic approach, particular attention is typically 

paid to blending the analysis environment within a simulated real operation as much as possible to promote the 

non-deterministic generation of monitored behaviors. Nonetheless, obfuscation anti-techniques that dynamically 

tweak the intrinsic behaviors may lead to a different effect where evaded behaviors become the root for 

successfully following the detection. 

2.3 Machine Learning Approaches 

Introducing machine learning for malware classification and network protection. Recently, both academics and 

industry alike have introduced machine learning to enhance traffic inspection with notable success in improving 

traffic identification and application layer protocols. The added advantage is that these machine learning models 

can be trained and updated with recent threat intelligence at speeds that exceed the manual engineering of 

traditional expert system correlation detectors. Furthermore, some of these systems are so powerful, with deep 

learning-based neural networks, that they exceed human accuracy for traffic classification of the most obvious 

features.= 

Deployment and evaluation of a machine learning-based network traffic protection system for malware 

classification. Over time, our malware can become mis-tuned to be easily classified as a simple MD5 hash or 

easy-to-detect signature. To adapt to next-gen malware types, we incorporate subnet-level evidence aggregation 

and deploy a hybrid hand-optimized hierarchical searching mechanism, which can uniformly balance the 

performance between various malware types. We further develop a deep learning-based neural network to predict 

the malicious intent of arguments. Formed as an ensemble, the neural network in conjunction with the traffic 

classification system forms our framework to map traffic characteristics of communicating malware as observed 

in the enterprise network to endpoint activities. The approach uses a stochastic decision model for the presence of 

malware activities when the system has low confidence, which is backed by another independent artifact-based 

verification. We quantify the effectiveness against APT-like malware by showing that the system could 

automatically detect 11 out of 12 different attack scenarios present in a multinational company. In the realm of 

cybersecurity, the integration of machine learning has revolutionized network protection and malware 

classification. Academic and industry efforts have focused on leveraging machine learning models to enhance the 

precision and agility of traffic inspection and application layer protocol identification. These models offer distinct 
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advantages, such as rapid training and updating with the latest threat intelligence, surpassing the capabilities of 

traditional expert system correlation detectors that rely on manual engineering. 

Moreover, deep learning-based neural networks have demonstrated exceptional accuracy in classifying traffic 

based on nuanced features, exceeding human capabilities in discerning subtle indicators of malicious intent. This 

capability is crucial for adapting to next-generation malware that evolves to evade simplistic detection methods 

like MD5 hashes or traditional signatures. 

To address these challenges, advanced techniques like subnet-level evidence aggregation and hybrid hierarchical 

searching mechanisms have been incorporated. These innovations ensure balanced performance across various 

malware types, enhancing the system's ability to detect and mitigate sophisticated cyber threats effectively. 

Furthermore, the deployment of deep learning neural networks for predicting malicious behaviors enriches the 

framework by correlating traffic characteristics observed in enterprise networks with endpoint activities. 

In practice, a stochastic decision model complements these efforts by assessing malware activity presence with 

low confidence, reinforced by independent artifact-based verification methods. This multifaceted approach 

enhances the system's reliability and efficacy in detecting advanced persistent threats (APTs) and other complex 

attack scenarios. Recent evaluations have underscored the system's effectiveness, demonstrating automated 

detection capabilities across a diverse range of attack scenarios encountered within multinational enterprises. 

3. Automated Network Protection Systems 

On a high level of abstraction, automated network protection systems process events from network sensors and 

enforce network policies. The systems query the structure of packets, not packet origins or destinations, or policies 

of any particular end-nodes. It divides the passage of packets across a network into highly formalized states to 

inspect and process them. Based on the inspection, such systems enforce a predefined network security policy by 

allowing the detected packet to continue on its path, dropping a packet showing that the packet leaves its current 

location, creating a new packet that compensates for the action, or segmenting the flow by dropping packets at 

ingress. While these actions are mostly taken on the network layer below the service layer, its service layers set 

the foundation for a hierarchy of other security policies that can reach up to the usability level. After the 

publication, significant advances have been made to update and re-architect the system. Examples of narrow 

automated network protection include IDSs, intrusion prevention systems, passive more sophisticated systems 

that block traffic inside a network, firewalling and restricted network steering devices, honeypots, tracing, active 

trace-back and proactive trace-back receivers, and network fault responses. These devices protect the network 

they sit in from their users and external users. After multiple refactoring iterations, such a network protection 

system turns into the many-automata system of Fig. 1, with separate segments and reassembly automata shown 

on the middle layer of the figure. While there could be significant complexity in the internal structures of narrow 

automated network protection systems, they are only trained on simple per-packet information and often rely on 

running regular expressions compiled into fast software.While not a goal of the current paper, it is possible to take 

this approach to the wide extreme, and statically compile a static Si shown nets forwarder and end-node software 

into load and connectivity definitions, and then deploy additional defense around references to sensitive areas of 

the network layout and load. In the context of the protocol presented in this paper, this would mean that the lower 

layer of our many-automata models is comprised of moving, Tetris-shaped, reassembly and fingerprinting 

automata as shown in Fig. 1, and direct the stream of assembled data publications to it over reserved broadcast 

networks. Such a system would offer efficient full-coverage protection of a network. The vulnerabilities of 

traditional digital systems to malware introduction and compromise concern widely deployed software running 

on general-purpose computers. The software handles security-critical processing based on only a small part of 

packet headers and trailers, access and drop state, and data availability push-driven traffic from fast-moving 

streams. If the software does not have direct visibility into the payload data, it would be unclear to distinguish 

delete from drop, to tentatively delete some of the flows and join them back, and to enforce symmetrical actions 

on both of the traffic directions over some transient period. Additionally, after such software processes a standing 

packet, it would leave the processed data in the user space for a regular service system to extract its published 

security event, while retaining only the processing metadata. The metadata is the minimum amount of data that 
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the non-service system plugin needs to decide to which stand-packet category the packet belongs. Handling the 

service metadata and the rest of the packets would become the new responsibility of a newly available processing 

system fork. 

3.1 Intrusion Detection Systems (IDS) 

Intrusion detection systems (IDSs) are widely used to protect computer systems and networks from monitoring 

and analyzing network or system data that could be used to recognize an intrusion or abuse. IDSs can be classified 

by the type of data that is used or the type of recognition method used. From the data type perspective, IDSs can 

be classified into host-based IDS (HIDS) and network-based IDS (NIDS). HIDSs are placed on the actual systems 

that are being protected to monitor security-related events. In contrast, NIDSs act as an independent nodes on the 

network, "listening" to all traffic and scanning data for suspicious behavior or attack "signatures." These two types 

of IDSs reflect differing levels of abstraction and information situated at various levels of the networking 

hierarchy. Nowadays, many systems exploit more comprehensive protection against malicious activities by 

integrating both HIDS and NIDS. As a result, most IDS implementations are hybrid, involving the cooperation of 

both systems, offering the full set of analyses required for complete network protection. There are four main 

components of a common NIDS: sensors and networks, event-driven architecture, detection techniques, and a 

response system. The sensors and networks component of a network-based IDS (NIDS) forms the foundational 

layer, where sensors are strategically placed across the network to capture and analyze incoming and outgoing 

traffic. These sensors act as sentinels, continuously monitoring network packets and identifying anomalies or 

patterns indicative of potential security breaches. The event-driven architecture of an NIDS facilitates real-time 

processing and analysis of network data, ensuring swift detection and response to suspicious activities. Detection 

techniques employed by NIDS encompass a spectrum of methodologies, ranging from signature-based detection, 

which identifies known attack patterns, to anomaly-based detection, which flags deviations from normal network 

behavior. These discern emerging threats that evade conventional detection methods. A robust response system is 

integral to the effectiveness of an NIDS, enabling automated or manual actions to mitigate detected threats 

promptly. Responses may include alerting network administrators, isolating compromised systems, or 

implementing traffic filtering rules to prevent further malicious activity. Together, these components form a 

cohesive framework that fortifies network defenses and safeguards critical assets against evolving cyber threats. 

 

Fig 4: SOC Architecture 

3.2 Intrusion Prevention Systems (IPS) 

Intrusion Prevention Systems (IPS) are part of the control aspect of traditional cybersecurity systems and are used 

to limit network traffic and devices against previously discovered and zero-day vulnerabilities. Methods for cyber 

attackers to exploit network traffic and systems on the network are nearly unlimited. Already known methods and 

exploits account for the vast majority of damage and compromised systems, but the situation is no less dangerous 

and critical for the security situation in the network since there are always those unknown exploits and 

vulnerabilities that need to be protected against. 
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The number of vulnerabilities is significantly smaller, and this part of the protection can largely be accomplished 

automatically. By using already known vulnerabilities and searching for their footprints in the network traffic or 

examining traffic behavior, IPS should only prevent the deployment of known cyber weapons into the target 

system by cutting the network connection, selectively dropping or corrupting packets, or destroying data while 

the communication cannot be exploited. In this way, the percentage of automated prevention using these systems 

is very high. Intrusion Prevention Systems (IPS) play a crucial role in mitigating cyber threats by proactively 

defending against known vulnerabilities and emerging exploits in network traffic and systems. These systems 

operate by continuously scanning incoming and outgoing data for signatures and behaviors associated with known 

cyber threats. By leveraging databases of known vulnerabilities and attack patterns, IPS can automatically detect 

and block malicious activities in real-time, thereby preemptively protecting network assets from exploitation. 

The effectiveness of IPS lies in its ability to enforce security policies dynamically, responding swiftly to identified 

threats without human intervention. This automated response capability includes terminating suspicious 

connections, dropping malicious packets, or applying traffic filtering rules to prevent unauthorized access or data 

breaches. This proactive approach minimizes the window of opportunity for attackers to exploit vulnerabilities, 

thereby bolstering overall network security posture. Furthermore, IPS systems are essential for organizations 

seeking to comply with regulatory requirements and industry standards for cybersecurity. By integrating IPS into 

their defense strategies, enterprises can enhance their resilience against both known and zero-day vulnerabilities, 

mitigating risks and safeguarding critical infrastructure from potential cyber attacks. 

3.3 Firewalls and Proxy Servers 

In the simplest form, firewalls look like any other router in a network. Firewalls are usually specialized routers. 

However, in the case of firewalls, routers that carry out access control are located both as gateways between 

networks and in other places around a network. Firewalls operate at different levels of communication. Those 

operating on the upper levels are called proxy servers. Firewalls vary in how they examine packets entering and 

exiting a network. Another tool in constructing firewalls is tunneling. In the context of secure communications, 

tunneling is a technique for making a secure communication path through an insecure network. An additional part 

of firewalls is the special servers operating on the inside of the network, called bastion hosts. Firewalls are only 

part of the defense an organization needs to carry out to maintain secure communication. 

Each level presents the attacker with greater difficulties in identifying their attack traffic. It is more difficult for 

them to obscure their attack traffic and more difficult for impersonation techniques to prevail. In addition, the 

complexity or effectiveness of impersonation techniques increases as traffic moves through these levels. Each 

level represents an increasing burden for the number of available exploitable software vulnerabilities. However, 

at the base of these considerations, each increase in complexity and strength of a firewall, proxy server, and so 

on, adds greater expense and sometimes management costs to the operation cost of a network. A firewall is a 

network-based device that is placed between an organization’s internal network and an external, or public, 

network. This public network is usually an enterprise network that is used to connect local users to the Internet. 

In its most basic design, this device can be a router that has been configured to filter all incoming and outgoing 

IP packets. These filters define which kinds of IP packets from specified hosts can arrive at, or depart from, the 

internal network. Configuring a router to carry out this function is more sophisticated than configuring an access 

list. At this basic level, called the "packet level" approach to firewalls, access controls occur at the network and 

transport layers of the OSI model. As such, a packet-based firewall is an "IP Mechanism." 

4 Integration of Malware Classification and Network Protection 

A natural question arises: how can we integrate an automated system to infer, solely from labeled malware 

samples, which files sent/received by a network will do damage? First, we create a single-layer perceptron for 

each classification type we want to consider, actually learning to mimic the output of a large pre-existing detection 

system. We possess specialized knowledge that we will now use: the output score of a scanned system, with a 

given system load of malware, "detects" attack files with such a remarkably low false positive rate that most of 

the time cls scores of 8.5-10, in the payloads of the file, reached 100% accuracy. This fact has three important 

implications which we have used to achieve our results: First, since the 99% of correct detections are even better 
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than our initial malware "labeling system", almost a perfect detection on the "real" attack set of Fig. 1 can be 

achieved; hence, our probabilities of detection, preprocessing will be nearly optimal, i.e., a dimension reduction 

towards the real number of independent variables needed to represent the morphology of the samples.We also 

include scalings that integrate the training and the prediction processes into a single learning code. Second, 

acquired knowledge can be used to train a small system classifier if cls probabilities very close to zero are optimal 

for a good classification of the other viruses. Third, as a new system encounters processing workload problems, 

we do not have to bother it for this purpose. With appropriate scoring threshold tailored to its specific security 

needs. In conclusion, concerns are naturally raised about identifying the set malware of the best network-wide 

arrival cutoffs based on information that comes only from malicious software files, while ignoring the exact role 

in the attack of the detected malware. However, as shown in (1), the knowledge of the role of malware in the 

attack is largely useful for guidance, but not too necessary for protection purposes, assuming that the set of targets 

has the majority of the features of the training set. Additionally, leveraging the output scores from a robust 

malware detection system allows us to achieve near-perfect accuracy in identifying attack files solely from labeled 

malware samples. By focusing on cls scores ranging from 8.5 to 10, where the detection accuracy consistently 

reaches 100%, we optimize our detection probabilities and preprocessing methods to reduce the number of 

independent variables needed to characterize sample morphology effectively. This approach not only enhances 

the efficiency of our classification system but also streamlines the training and prediction processes into a unified 

learning framework. Furthermore, setting appropriate scoring thresholds tailored to specific security requirements 

ensures that new systems can efficiently manage processing workloads without compromising detection efficacy. 

While understanding the precise role of malware in an attack is beneficial, our methodology demonstrates that 

focusing on detecting characteristics shared with the training set's majority can effectively enhance network-wide 

defense mechanisms. Moreover, this approach underscores the importance of leveraging labeled malware samples 

to automate the inference of potentially damaging files within network traffic. By deploying single-layer 

perceptrons tailored to mimic outputs from established detection systems, we harness specialized knowledge to 

achieve exceptional detection accuracy. Focusing on cls scores between 8.5 and 10, where detection rates 

consistently exceed 99%, allows us to optimize detection probabilities and streamline preprocessing efforts by 

reducing the complexity of feature representation. Additionally, integrating training and prediction processes into 

a unified learning code enhances system efficiency and scalability, enabling effective deployment across diverse 

network environments. Tailoring scoring thresholds ensures that detection capabilities are aligned with specific 

security needs, maintaining robust protection without unnecessary computational overhead. While understanding 

the precise role of each malware instance in an attack scenario offers valuable insights, our methodology 

demonstrates that prioritizing features common to the majority of the training set can effectively fortify network-

wide defenses against emerging cyber threats. This pragmatic approach leverages machine learning to enhance 

proactive security measures, mitigating risks and safeguarding network integrity in dynamic digital landscapes. 

 

Fig. 5. High level DC-Centric Architecture 
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4.1 Feature Extraction and Selection in Malware Analysis 

Feature extraction and selection play a critical role in enhancing the quality of labeled datasets in training 

predictive models used in malware classification. In particular, these activities convert raw input data into feature-

rich input data samples which are then used to design predictive models for proactively detecting unknown future 

malware families. Despite the existence of many techniques for extracting features from multiple dimensions of 

both static and dynamic analysis of malware, the application of several dimensions causes the feature 

dimensionality of a malware dataset to be extremely high and thus introduces noise into the classification models. 

Therefore, the number of features selected from the dataset needs to be reduced to prevent overfitting and maintain 

the accuracy of the models. Furthermore, another motivation for feature selection is that it can also improve model 

interpretability for more advanced forms of malware analysis. 

Once the malware dataset is labeled, the samples with a well-defined malware family name for each class are 

taken from various sources such as AV companies, public malware repositories, peer-reviewed papers, or previous 

work in the field. The next step involves the extraction and selection of features to increase the representativeness 

and informativeness of the feature space. Various techniques are applied, producing datasets containing the 

features and dimensions that represent either static or dynamic characteristics of malware. After this process, the 

next step involves the second phase of training and testing predictive models to classify future unknown malware 

families. In this phase, the experimental design focuses on evaluating the performance of models trained on a 

combination of static, dynamic, and hybrid feature sets. Note that this activity must be thoroughly conducted 

simultaneously with predictive model training and testing as those models which differ in terms of static, dynamic, 

or hybrid feature sets do not have access to features that are computed in the pre-processing stage.Feature 

extraction and selection are pivotal stages in the process of enhancing the effectiveness of predictive models for 

malware classification. These stages transform raw data from diverse dimensions of both static and dynamic 

malware analyses into structured input samples rich in informative features. However, the multitude of dimensions 

involved often results in high-dimensional feature spaces, which can introduce noise and potential overfitting into 

classification models. To mitigate these issues, rigorous feature selection techniques are employed to reduce the 

number of features while preserving model accuracy and interpretability.The initial step in this process begins 

with curating a labeled malware dataset sourced from reputable sources such as antivirus companies, public 

repositories, academic papers, or previous research efforts. These datasets contain samples annotated with well-

defined malware family names, forming the basis for subsequent feature extraction and selection efforts. 

Techniques employed in this phase focus on capturing static and dynamic characteristics of malware, thereby 

enriching the feature space with descriptors that distinguish between different types of malicious 

software.Following feature extraction and selection, the subsequent phase involves training and testing predictive 

models designed to classify future instances of unknown malware families. Experimental design in this phase 

evaluates model performance across various combinations of static, dynamic, and hybrid feature sets. It is crucial 

that these evaluations are conducted in tandem with model training and testing to ensure that each model variant 

incorporates the relevant features computed during preprocessing. By iteratively refining feature extraction 

techniques and optimizing feature selection strategies, cybersecurity practitioners aim to build robust predictive 

models capable of effectively identifying and categorizing emerging malware threats. This systematic approach 

not only enhances the accuracy of detection but also contributes to advancing the interpretability and practical 

applicability of malware analysis methodologies in evolving cybersecurity landscapes. 

 

Fig. 6. Malware Feature Extraction 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

619 

4.2 Building Effective Malware Detection Models 

Building an effective malware model involves choosing software features, pre-processing the data, applying 

feature reduction to decrease the dimensionality of the feature space, and selecting the best model. This approach 

was used extensively in prior studies to build sophisticated malware models. As features, multiple types of 

software code were used, data such as the malware application programming interface, system permissions it uses, 

data it collects, sets of system calls, and the ordering and identical system calls, binaries for malware families, 

disassembled Windows Portable Executable files, metadata from the files, disassembled API mappings, and PE 

file headers. A flexible feature creation approach, based on the Python standard library module, distorm3, was 

utilized. RandomForest, Boosting (XGboost and GBM), SVM, decision tree, multiple rule sets at various support 

thresholds, and deep learning models were effectively applied. Despite being in complex models, similar features 

can be clues to easy evasion.A tagging approach, on a separate dataset, was effectively used to assess both model 

performance and robustness. Model robustness was measured as the decrease in performance due to the poisoning 

of virus samples with hard noise. This noise can significantly change the sample (PE data) without affecting its 

class. Boosted models were found to be substantially robust, SVM was nearly as robust, and decision trees were 

somewhat less so. For model performance measuring model efficiency, such as tree size different than for 

robustness was found to have the greatest impact. As expected, decision trees built strictly from obfuscated 

features were small and more robust. However, they were less effective. Disassembled code superimposed with 

obfuscated code (combined features) produced the largest and most robust decision tree. Additionally, models on 

combined features for disassembled code superimposed with obfuscated code did not show the same performance 

decline when poisoning with random noise. They even show performance improvements because of the training 

data. 

5 Case Studies and Real-world Applications 

The latest insurgency actions are connected with another extremist group - ISIS. In June 2014, ISIS decided to 

broadcast its propaganda activities through social networks. It started an aggressive campaign in cyberspace using 

social media and other internet technologies to spread its messages overseas. Due to the number of these 

occurrences, dissimilar from the typical spam, the number of ISIS tweets increased as well, showing that terrorists 

are following the trend. Based on this presumption, dissimilar behaviors conducted by the ISIS Twitter networks 

made the message more prominent. As the internet infrastructure is based on the traditional three-tier architecture 

comprising cloud service providers, internet service providers (ISPs), and midstream networks, we focused on the 

Twitter ISP border that is more significant to disclose dissimilarities.To investigate, involving cybernetic systems 

ISIS tweets/retweets against normal (related to people) tweets/retweets, we divided the information peaks between 

January 1, 2014, and December 1, 2014, sharing each network's tweets' count. The ISIS Twitter network has been 

approached according to characteristics concerning the daily/weekly patterns, and the average count of messages. 

From the experimental results, we concluded that the ISIS Twitter network tends to use the Twitter infrastructure 

as a social broadcast media center to communicate to its target public group rather than engage in potential 

communication/information exchange over typical internet applications. Also, it seeks new target groups, to which 

typical information exchanges are not usually targeted. Lastly, it attempts to avoid having its core communications 

infrastructure uncovered publicly by its propaganda infiltration while other distinct social structures avoid 

revealing their true nature to the general public. 

5.1 Automated Network Protection Frameworks 

The practical anatomy of an automated network protection system could consist of the following stages: pre-

normalized dataset preparation, parsing capabilities to extract the malicious sections manually via hex values, 

extracting features manually via hex type value, examining and selecting features for the thesis, detecting feature 

types and learning which technique is suitable, constructing a classification model, and developing a deployment 

method. These are then followed by monitoring the evaluated model, drawing plans for ATA, and creating 

counter-measured modules. The ATA deployment will instantiate the model at the network endpoint and continue 

to respond appropriately to the model's selection.The threat analysis step is opposite to the network defense task, 

which involves analyzing network traffic to find probable malicious behavior. They outline some of these barriers, 
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such as the difficulty with deploying, maintaining, and modeling the amount of a wide range of consideration 

values (which may be caused by institutional or technical decisions), gathering and normalizing data from local 

and online sources that would remain complete, unique, original, and timely. Another barrier is the inability to 

differentiate between different attack types and thereby create a plan that counters different types of attack details. 

There is also a trade-off between the costs of false positives and attack forms, as there is evidence that active 

response deployment is monetarily and technologically costly. 

 

Fig. 7. Support Vector Machine (SVM) Algorithm 

5.2 Integrating Machine Learning in Network Security 

Security agents at different monitoring points exchange the patterns that they receive based on these breakdowns 

so that all agents have the same records of network activities and can effectively cooperate in defending the 

network by sharing classifiers. Trend Micro Incorporated developed a C&C Communication Classification 

Technology. This technology finds bots at an earlier stage of infection through real-time detection of bot 

communication. BotHunter provides encrypted network traffic to MLST and scans the packet payload using Snort 

signatures. NetCap is signature-based software for detecting DNS exfiltration. It is a C++ console application that 

can detect a large number of different threat types. NetCap can be a useful option in the fight against targeted or 

opportunistic cybercrime. In the protection of data moving through the networks, priority should be given to data 

of organizations that others are interested in finding.The ultimate goal of data protection is to monitor data 

movement through the networks and take steps to delete or stop the movement. The defense system must have the 

ability to automatically determine the type of transmitted files to take steps to prevent transmission. Many 

organizations have security agents at different monitoring points across their networks. These agents scan the 

traffic at their monitoring points and try to determine which monitoring network activities are associated with 

malicious activities. The resulting pattern vectors are simply the names of files and the frequencies with which 

they appear in collected logs. Each security agent further distills its records of network activities into classifiers 

to share them with other security agents. In this diagram, dividing file samples into feature vectors, each 

representing a set of connection features, and the corresponding classification is shown in Figure 1c. It is known 

that attackers can modify the artifact in their payload by using evasion techniques such as dynamic DNS for their 

botnet Institute file. To help affected parties avoid using the method of communication associated with a botnet, 

they distribute the newly modified file as quickly as possible. 

6 Challenges  

There are growing challenges in large-scale malware classification. Most classification algorithms need to train a 

large dataset to perform well. The same problem exists in malware classification. There is no large malware dataset 

for malware classification and evaluation. Due to the strict laws or regulations prohibiting malware running, many 

types of malware never exist as execution on some publicly available regions. Forever online analysis has been 

static and low false discovery rate result. Many characteristics-based algorithms are trying to classify the samples 
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from their static information. Forever static-based techniques cannot discriminate many concealed malware, as 

they are relatively easy to evade static detection. It is rare to find a beautiful magical security technology that does 

not need to consume computing power. Most of the security technologies are incredibly resource-hungry. 

Even traditional security technologies have evolved to machine learning versions, and resource consumption has 

become heavier. The security machine learning will never understand the security needs to run in response to 

every transaction, every transaction needs to be analyzed online. The performance of existing high-performance 

hardware will naturally become insufficient. The current general-purpose machine learning integrated chip, such 

as NVIDIA Tesla V100, may not be able to support some security algorithms. Although there are already AI 

specialized chips, such as the admired Google TPU or the powerful Cambricon, after all, the AI chips are just 

simplified chips – the equality transformation from complex computing tree structure to the many SISO node and 

edge structure cannot solve the underlying challenge of security machine learning needed of outrageous 

computing power.The evolution of security technologies to incorporate machine learning has indeed brought 

about significant advancements, yet it also introduces challenges related to computational resources. Traditional 

security measures have transitioned to more sophisticated machine learning models, which require substantial 

computing power for effective operation. This shift is driven by the need to analyze every transaction in real-time 

to identify potential security threats promptly. However, even with high-performance hardware like the NVIDIA 

Tesla V100 or specialized AI chips such as Google TPU and Cambricon, there remains a demand for more 

efficient and powerful computing solutions. AI chips, while specialized, often simplify complex computing tasks 

into structured nodes and edges, but they may struggle to meet the intense computational demands of security 

machine learning. As the field continues to advance, addressing these computational challenges will be crucial for 

developing robust and scalable security solutions capable of handling the evolving landscape of cybersecurity 

threats. 

6.1 Ethical and Legal Implications in Next-Gen Cyber Defense  

The integration of next-generation cyber defense technologies brings forth significant ethical and legal 

considerations that demand careful attention. Ethically, the deployment of automated systems for threat detection 

and response raises concerns about privacy, as these technologies often require access to extensive data sets. 

Safeguarding individuals' privacy rights through robust data protection measures such as anonymization and strict 

access controls is paramount. Moreover, ensuring transparency and accountability in the operation of these 

systems is essential to maintain trust and mitigate risks of misuse or unintended consequences. Legally, adherence 

to regulations such as GDPR in Europe or CCPA in California is critical, as these frameworks govern data 

handling practices and impose stringent requirements on data collection, storage, and processing. Addressing 

ethical and legal implications not only fosters responsible innovation in cyber defense but also ensures that these 

technologies are deployed in a manner that respects individual rights and complies with applicable laws and 

regulations globally. Furthermore, ethical considerations in next-generation cyber defense encompass the need 

for fairness and non-discrimination in algorithmic decision-making. Ensuring that automated systems do not 

perpetuate biases or unfairly target specific groups is crucial for maintaining societal trust and equity. This 

involves continuously evaluating algorithms for bias, conducting regular audits, and implementing mechanisms 

to rectify any identified issues promptly. Additionally, the ethical implications extend to the responsible use of 

advanced technologies like artificial intelligence (AI) and machine learning (ML) in cyber defense. Ethical 

guidelines should promote the development and deployment of these technologies in ways that prioritize human 

well-being, uphold fundamental rights, and align with ethical principles of beneficence and justice. Collaboration 

between cybersecurity experts, policymakers, and ethicists is essential to navigate these complex issues and 

establish frameworks that ensure both effective defense against cyber threats and ethical integrity in technology 

implementation. 

7 Conclusion 

Defense at network speed requires cyber solutions that are network-native, and importantly, act automatically. 

Too often in defending networks today, final decision authority can be on the wrong end of a very fragile link. 

Network-native security—where the technology solution is native to the network layer and internet stack—creates 
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game-changing blue territory that today’s cyber conflict cannot tolerate. This article flushes out a central issue 

that can change the rules of the cyber conflict game. We have a tsunami of network data, a shortage of cyber 

experts, and an adversary who is automating their hacking techniques—allowing automated offensive advantages 

in the wild while we are impeded by analog defenses during the subsequent cyber wargaming and building.We 

summarize a prototype of the Automated Defensive Cyber Differentiation Research (ADC2DR) system that 

scores Malware Classification to better determine our Cyber Adversary’s Purpose and Rationale. The research 

community could readily incorporate and validate the MISP viewer and feature selection from additional Threat 

Intelligence Platforms and add filtering of the Threat Intelligence data to provide the most actionable attributes of 

malware to the in-network classifier. The sophisticated malware classification already developed by the Drexl 

team is well ahead of other research and commercial tools and successfully employs MISP data. Adding that 

functionality from the community would significantly improve any in-network classifier meant to feed AI cyber-

defense or policy analysis. 

7.1 Future Trends 

Automated malware classification, especially in realistic network conditions, is one of the most significant trends 

in cutting-edge computer security. In practical environments, under-alerting is one of the most harmful, 

frustrating, and difficult problems to alleviate. Therefore, reducing false alarms using intelligent techniques is an 

ever-increasing necessity. In addition, adaptive and more sophisticated malware can easily evade detection. The 

capabilities of malware continue to evolve and increase. Therefore, it is important to enable automated malware 

classification to deal with these types of threats. Next-generation advanced malware threats will present 

exponentially more data and challenges, reflected in the increasingly fast increase in 'size' (in bits) of what needs 

to be analyzed. Estimates that global IP traffic will grow to 1.3 Zettabytes per year by 2016. This does not include 

advanced cyber threat data used in network security. Counting, visualizing, and analyzing advanced cyber threat 

data not only require massive storage capabilities (e.g., directional storage techniques, solid-state disk) but also 

very large memory and I/O bandwidth to handle big data significantly faster. Similarly, the NIST confirms that 

today's computing power is a major bottleneck for big data security. It may take over 32 days for a supercomputer 

with one million cores to crack a 128-bit AES in 10 seconds. With the advent of quantum, biological, or other 

newer computing technologies, this estimate will change. As the volume and complexity of advanced malware 

threats continue to grow, the demand for robust automated malware classification systems becomes increasingly 

critical in modern cybersecurity. These systems must address the challenges of under-alerting and false alarms 

effectively by integrating intelligent techniques that adapt to evolving malware tactics. Moreover, the rapid 

expansion of global IP traffic, projected to reach 1.3 Zettabytes annually by 2016, underscores the immense scale 

of data that needs analysis in network security. Handling this data requires not only substantial storage capacity, 

such as advanced directional storage techniques and solid-state disks, but also significant improvements in 

memory and I/O bandwidth to process big data efficiently. Current computing power limitations identified by 

NIST highlight the need for breakthroughs in computational technologies to enhance the speed and efficacy of 

big data security operations. Future advancements, whether through quantum computing, biological computing, 

or other emerging technologies, hold promise for revolutionizing how we approach cybersecurity challenges in 

the digital age. 
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