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Abstract 

In this paper, a non-chain ring R = ℤ3 + 𝑤ℤ3 + 𝑤
2ℤ3 +𝑤

3ℤ3, 𝑤
4 = 𝑤. The ring acquires its ideals and maximal 

aspirations. Cyclic Codes over R were characterised in terms of their structure and generators. Additionally, the 

parameters of several quantum error-correcting codes are found using the cyclic and negacyclic codes over R. 

Many different systems for information storage and retrieval can be built using these codes. 
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I. Introduction 

Coding theory originated in the late 1940s and had its roots in engineering. It is the branch of communication 

theory that deals with the mathematical study of codes with a view to their employment in communication 

systems, usually for the purpose of increasing their efficiency and reliability. The algebraic structure of linear 

codes is suitable for both encoding and decoding. Since the 1960s, linear codes over finite rings have been used. 

The most significant linear code in coding theory is the cyclic code. E. Prange [16] was the first to study cyclic 

codes. Cyclic codes are widely studied because of their algebraic structure and good error correction capability. 

The structure of cyclic, quasi-cyclic, and cons acyclic codes is defined over finite rings [3, 20]. A lot of work has 

been done on cyclic code over finite rings. Simeon Ball [17] described the various kinds of cyclic codes and how 

to use them to create designs. There is a generator for each cyclic code. 

Chen et al.'s [6] method of factoring the polynomial X2 m pn-1 over a finite field led to the discovery of the 

generators of cyclic codes. The generators of cyclic codes with odd length and their dual codes over ℤ4 were 

addressed by Abualrub [1]. Cyclic codes of length 2 k were categorised in [10] over the Galois ring GR (4, m). 

B.R.MC. Donald [13] examined the elements in finite rings. Under the gray map from ℤ4 to F2 
2, certain suitable 

nonlinear codes can be found as the binary images of various cyclic codes. Such works inspire me to conduct 

research on chain rings. They [11,19] examined the structure of cyclic codes and the quantity of codewords over 

finite chain rings ℤ4 + uℤ4 and ℤ𝑞 + uℤ𝑞 . 

Mohammed [15] achieved the generalization of cyclic codes over F𝑞 + uF𝑞 + u2 F𝑞 +⋯+ uk − 1 F𝑞 with 

arbitrary length. The structure of cyclic codes and their idempotents with odd length over F𝑞 were obtained by 

Bocong Chen et al. [4]. Hai Q. Dinh [14] studied cyclic codes of p𝑠 length over F𝑝𝑚 + uF𝑝𝑚. Gao [11] investigated 

the cyclic codes over ℤ𝑞 + 𝑤ℤ𝑞, where 𝑤2 = 0 and q is the power of a prime. Several families of codes over 

finite rings were studied in [1,2,15] over ℤ4, ℤ2 + vℤ2, v
2 = v; ℤ2 + 𝑤ℤ2 + vℤ2 + 𝑤vℤ2, 𝑤

2 = v2 = 0; ℤ𝑝
𝑟 +

𝑤ℤ𝑝
𝑟 +⋯ .+𝑤𝑘−1ℤ𝑝

𝑟 , 𝑤𝑘 = 0, where p is a prime. 

According to the paper [12], self-dual cyclic codes of length 𝑛 over F𝑞 exist when both 𝑛 and 𝑞 are even. With 

the parameters ( n, n + 1/2 ) and ( n, n − 1/2 ), two binary cyclic codes were introduced, and they produced 

certain quadratic residue codes when n is prime. Previous research indicates that when (n, q) = 1, there is no 

cyclic self-dual code over F𝑞. 

Constacyclic codes, which Wolfmann [18] first developed over a finite commutative ring, are a generalization of 

cyclic codes. In [8,9], they showed the repeated-root self-cyclic codes of length 3𝑝𝑠 over 𝐹𝑝𝑚 and generator 

polynomials of all constacyclic codes of length with multiples of 2,3, and 6 over F𝑝𝑚 + uF𝑝𝑚 and calculated the 

number of codewords in each of those cyclic codes. Zhu [20], who looked at the constacyclic codes across non-

chain rings, found that the constacyclic image underneath the gray map is linear cyclic. 
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M. Miwa [14] discussed even repeated root codes and length codes over a ring. He [3] obtained the generators of 

quasi-cyclic codes and the quantity of codewords. Many techniques and plenty of approaches are implemented to 

provide positive varieties of codes with precise parameters and properties. This examination of finite rings became 

precipitated after the accomplishment of gray maps. Calderbank [5] built quantum error-correcting codes from 

classical error-correcting codes. But Dertil [7] built many nice quantum codes with the help of cyclic codes over 

finite fields or finite rings with self-orthogonal (or dual containing) properties. In this paper, we define a non-

chain ring R = ℤ3 +𝑤ℤ3 + 𝑤
2ℤ3 + 𝑤

3ℤ3, 𝑤
4 = 𝑤. The ideals and maximal ideals of the ring are acquired. The 

structure and generators of cyclic codes over R were determined. Moreover, from the cyclic and negacyclic codes 

over R , the parameters of some quantum errorcorrecting codes These codes have many applications in 

constructing information storage and retrieval systems. 

This paper is structured as follows: Section II contains the fundamentals of coding theory. The Gray images of 

cyclic and quasi-cyclic codes over R are defined in Section III. A necessary condition for a code to be cyclic is 

given in Section IV. Finally, in Section V, some quantum error correction codes and their parameters are listed. 

II. Preliminaries 

In order to derive some cyclic codes over a ring, we must be aware of some fundamentals of coding theory. A 

subset I of a commutative ring ℜ is called an Ideal of ℜ if (i) I is a subring of R and (ii) I is closed under 

multiplication. An Ideal of a ring ℜ generated by one element is called principal ideal. If every ideal of ℜ is 

principal, then ℜ is a principal ideal ring. An ideal 𝑀 of a ring ℜ is called a maximal ideal if 𝑀 ≠ 𝑅 and the only 

ideal containing M are M and ℜ.Ideals M and N in a ring ℜ are called comaximal if M+ N = ℜ. Let ℜ be a ring. 

Then ℜ is called a chain ring if its ideals form a finite chain. A ring ℜ is called a local ring if the set of non-units 

of ℜ is closed under addition. 

In coding theory, a linear code is an error-correcting code for which any linear combination of codewords is also 

a codeword. Linear codes are used in forwarding error correction and are applied in methods for transmitting 

symbols (e.g., bits) on a communications channel. 

A linear code of length n and rank k is a linear subspace C with dimension k of the vector space F𝑞𝑛 where F is 

the finite field. Such a code is called a QR code. The dual code C⊥ of C is C⊥ = {𝑥/∀𝑦 ∈ C, 𝑥. 𝑦 = 0} where 𝑥 =

(𝑥0, 𝑥1, …… , 𝑥𝑛−1), 𝑦 = (𝑦0, 𝑦1, … . , 𝑦𝑛−1). If x. y = 0, then x and y are said to be orthogonal. A code C is self-

orthogonal if C ⊆ C⊥. 

A linear code C is cyclic if every cyclic shift of a codeword is a codeword. That is, (c0, c1, … , c𝑛−1) ∈ C implies 

that (c𝑛−1, c0, … , c𝑛−2) ∈ C. The dual of a cyclic code is also cyclic. 

A constacyclic code is a linear code with the property that for some constant 𝜆 if                         (c1, c2, … . , c𝑛) is 

a codeword, then so is (𝜆c𝑛, c1, … . , c𝑛−1).A negacyclic code is a constacyclic code with 𝜆 = −1. The Hamming 

distance between two code words is the number of non-zero bits that are different between two-bit strings, and it 

is denoted by the function d(x, y), where x and y are codewords. The Lee distance between two codewords x, y ∈

𝑍𝑚
𝑛  is d𝐿(x, y) = 

∑ 

𝑛

𝑖=1

min(|𝑥𝑖 − 𝑦𝑖|, 𝑚 − |𝑥𝑖 − 𝑦𝑖|) 

III. Gray map over ℤ𝟑 + 𝒘ℤ𝟑 +𝒘
𝟐ℤ𝟑 +𝒘

𝟑ℤ𝟑 

In this section, we study units, ideal structure, and the properties of the ring ℤ3 + 𝑤ℤ3 + 𝑤
2ℤ3 + 𝑤

3ℤ3. We 

introduce a Gray map. 

Hereafter, R = ℤ3 + 𝑤ℤ3 + 𝑤
2ℤ3 + 𝑤

3ℤ3, where 𝑤4 = 𝑤 and ℤ3 = {0,1,2} throughout this paper. It is a 

commutative ring with characteristic 3.Clearly R ≅ ℤ3[𝑤]/< 𝑤
4 − 𝑤 >.Any element r

∘
 of R can be expressed 

uniquely as r
∘
= p + q𝑤 + r𝑤2 + s𝑤3, where p, q, r, s ∈ ℤ3. 

For any 𝑟
∘

1, 𝑟
∘

2 ∈ 𝑅, the Lee distance is given by 

d𝐿(r
∘

1, 𝑟
∘

2) = 𝑊𝐿(r
∘

1 − o2) 

The maximal ideals of R with 27 elements. 
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These two ideals ⟨𝑤⟩ and ⟨2 + 𝑤⟩ are comaximal and R is a semi-local ring. That is ⟨𝑤⟩ + ⟨2 + 𝑤⟩ = R. 

The ideals with 81 elements that generate the ring R and also the generator of these ideals are the units of the ring. 

 
3. Zero ideal of R , 

< 0 >= {0} 

since the ideals ⟨𝑤⟩ and ⟨2 + 𝑤⟩ are not comparable, R is a non-chain ring. 

Since ℤ3 is a field, then, its ideals are trivial ones. Since R does not have a unique maximal ideal, R is not the 

principal ideal ring. 

The Gray map from ℤ3 + 𝑤ℤ3 +𝑤
2ℤ3 + 𝑤

3ℤ3 to 𝑍3
4 is defined as follows: 

𝜓: R → 𝑍3
4 

(p + q𝑤 + r𝑤2 + s𝑤3) → (p, p + q + r + s, p + 2q + r + 2 s, p + q + 2r + 2 s) 

For any 𝑟
∘

1 ∈ R, Lee weight of 𝑟
∘

1 is 𝑊𝐿(𝑟
∘

1) = 𝑊𝐻 (𝜓 (𝑟
𝑟

2)). 

The map 𝜓 is an isometry that transforms the Lee distance. in the ring R to the Hamming distance in ℤ3
4. 

The Gray map can be extended from R𝑛 to ℤ3
4𝑛. 

Theorem: 3.1 

The Gray map 𝜓 is a distance preserving map from ( 𝑅𝑛, Lee weight) to (ℤ3 
4𝑛, Hamming weight).Moreover it is 

an isometry from 𝑅𝑛 to ℤ3 
4𝑛. 

Proof: 

For any 𝑟
∘

1, 𝑟
∘

2 ∈ R and 𝛼 ∈ ℤ3. 

 

 
So 𝜓 is linear. 
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𝜓 is a distance preserving map. 

Theorem 3.2 

If 𝑟̇ = 𝑝 + 𝑞𝑤 + 𝑟𝑤2 + 𝑠𝑤3 of 𝑅 is unit iff 𝑝 ≠ 0 and 𝑝 + 𝑞 + 𝑟 + 𝑠 ≠ 0(mod3) 

Proof: 

Let r
∘
= p1 + q1𝑤 + r

∘

1𝑤
2 + s1𝑤

3 is a unit of R . 

Then 𝑟
∘

1 ⋅ 𝑟
∘

2 = 1(mod3), where 𝑟
∘

2 = p2 + q2𝑤 + r2𝑤
2 + s2𝑤

3 is inverse of 𝑟
∘

1. 

(p1 + q1𝑤 + r1𝑤
2 + s1𝑤

3)(p2 + q2𝑤 + r2𝑤
2 + s2𝑤

3) = 1 

since 𝑟
∘

1 is unit, p1 ⋅ p2 = 1. 

Hence p ≠ 0. 

Assume, p1 + q1 + r
∘

1 + s1 ≡ 0(mod3) 

Then p1 = p2 = S2 

which is contradiction. Therefore p + q + r + s ≠ 0(mod3). 

If r is unit, then p ≠ 0 and p + q + r + s ≠ 0(mod3). similarly,the converse part is also true. 

Theorem:3.3 

A ring 𝑅 with unity is local, if the non-unit elements of 𝑅 is an ideal of 𝑅. 

Proof: 

R − U(R) = {0, 𝑤2, 2𝑤3, 2𝑤, 1 + 𝑤 + 𝑤3 +⋯ . }, where U(R) = group of units of R . 

since 𝑅 − 𝑈(𝑅) does not satisfy associative property, R-U(R) is not an ideal of 𝑅. 

Therefore, R is not a local ring. 

 

Theorem: 3.4 

If 𝐵 is a linear code of length 𝑛 over ℤ3 + 𝑤ℤ3 + 𝑤
2ℤ3 +𝑤

3ℤ3 with 

|𝐵| = 3 and minimum Lee weight 𝑤𝐿  then 𝜓(𝐵) is [4𝑛, 𝑘, 𝑑𝐻] ternary linear codes over ℤ3. 

Theorem: 3.5 

If B is self-orthogonal then 𝜓(B) is self orthogonal. 

Proof: 

Let B be self-orthogonal and 

𝑟
∘

1 = p1 + q1𝑤 + r1𝑤
2 + s1𝑤

3, 𝑟
𝑟

2 = p2 + q2𝑤 + r2𝑤
2 + s2𝑤

3 ∈ B  

Where p1, p2, q1, q2 , r1, r2,  s1,  s2 ∈ ℤ3. 

Since 𝑟
∘

1, 𝑟
∘

2 = 0, 

(p1 + q1𝑤 + r1𝑤
2 + s1𝑤

3) ⋅ (p2 + q2𝑤 + r2𝑤
2 + s2𝑤

3) = 0
p1p2 = p1q2 + p2q1 + s2q1 + r1r2 + q2 s1 =

p2r1 + r1 s2 + p1r2 + q1q2 + s1r2 = p1 s2 + q1r2 + q2r1 + p2 s1 = 0

𝜓(r1) ⋅ 𝜓(r2) = (p1, p1 + q1 + r1 + s1, p1 + 2q1 + r1 + 2 s1, p1 + q1 + 2r1 + 2 s1) ⋅ (p2
p2 + q2 + r2 + s2, p2 + 2q2 + r2 + 2 s2, p2 + q2 + 2r2 + 2 s2)

 

Hence, 𝜓(B) is self orthogonal. 

IV. Cyclic Codes over ℤ𝟑 +𝒘ℤ𝟑 +𝒘
𝟐ℤ𝟑 +𝒘

𝟑ℤ𝟑 

In this part, the structure of linear and cyclic codes over R is studied, and generators of cyclic (negacyclic) rings 

are generated. 

Define 

B1 = {p ∈ ℤ3/p + q𝑤 + r𝑤
2 + s𝑤3 ∈ B} 

            B2 = {p + q + r + s/p + q𝑤 + r𝑤
2 + s𝑤3 ∈ B} 
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                   B3 = {p + 2q + r + 2 s/p + q𝑤 + r𝑤2 + s𝑤3 ∈ B} 

                                      B4 = {p + q + 2r + 2 s/p + q𝑤 + r𝑤2 + s𝑤3 ∈ B} 

Then B1,  B2,  B3, and B4 are ternary codes of length n . The linear code B of length n over R can be uniquely 

expressed as 

B = (1 + 2𝑤 + 2𝑤2 +𝑤3)B1⊕ (2𝑤 + 2𝑤2)B2⊕ (2𝑤2 + 𝑤3)B3⊕ (2𝑤 + 𝑤3)B4 

 

 

 

Theorem:4.1 

Let 𝐵 be a linear code of length 𝑛 over 𝑅 Then 𝜓(𝐵) = 𝐵1⊗𝐵2⊗𝐵3⊗𝐵4 and |𝐵| = |𝐵1||𝐵2||𝐵3||𝐵4| 

 

Proof: 

For any (p0, p1, p2, … . p𝑛−1, p0 + q0 + r0 + s0, p1 + q1 + r1 + s1, …. 

p𝑛−1 + q𝑛−1 + r𝑛−1 + s𝑛−1, p0 + 2q0 + r0 + 2 s0 

p1 + 2q1 + r1 + 2 s1, … , p𝑛−1 + 2q𝑛−1 + r𝑛−1 + 2 s𝑛−1 

p0 + q0 + 2r0 + 2 s0, p1 + q1 + 2r1 + 2 s1, … 

p𝑛−1 + q𝑛−1 + 2r𝑛−1 + 2 s𝑛−1) ∈ 𝜓(B) 

 

Let m𝑖 = p𝑖 + q𝑖𝑤 + r𝑖𝑤
2 + s𝑖𝑤

3, i = 0,1,2, … . n − 1. 

Since 𝜓 is bijection 

m = (m0,  m1, … .m𝑛−1) ∈ B 

By the definition of B1,  B2,  B3 and B4, 

we get, 

(p0, p1, p2, … , p𝑛−1) ∈ B1, 

(p0 + q0 + r0 + s0, p1 + q1 + r1 + s1, … , p𝑛−1 + q𝑛−1 + r𝑛−1 + s𝑛−1) ∈ B2, 

(p0 + 2q0 + r0 + 2 s0, p1 + 2q1 + r1 + 2 s1, … , p𝑛−1 + 2q𝑛−1 + r𝑛−1 + 2 s𝑛−1) ∈ B3, 

(p0 + q0 + 2r0 + 2 s0, p1 + q1 + 2r1 + 2 s1, … , p𝑛−1 + q𝑛−1 + 2r𝑛−1 + 2 s𝑛−1) ∈ B4 

 

So, 

𝜓(B) ⊆ B1⊗B2⊗B3⊗B4 

For any (p, q, r, s) ∈ B1⊗B2⊗B3⊗B4. 

where, 

p = (p0, p1, p2, … , p𝑛−1) ∈ B1 

q = (p0 + q0 + r0 + s0, p1 + q1 + r1 + s1, … , p𝑛−1 + q𝑛−1 + r𝑛−1 + s𝑛−1) ∈ B2 

r = (p0 + 2q0 + r0 + 2 s0, p1 + 2q1 + r1 + 2 s1, … , p𝑛−1 + 2q𝑛−1 + r𝑛−1 + 2 s𝑛−1) ∈ B3 

s = (p0 + q0 + 2r0 + 2 s0, p1 + q1 + 2r1 + 2 s1, … , p𝑛−1 + q𝑛−1 + 2r𝑛−1 + 2 s𝑛−1) ∈ B4 

 

 

Since B is linear, 

m = (1 + 2𝑤 + 2𝑤2 + 𝑤3)𝑥 + (2𝑤 + 2𝑤2)𝑦 + (2𝑤2 + 𝑤3)𝑧 + (2𝑤 + 𝑤3)𝑡 ∈ B 

(m) = (p, q, r, s) 

B1⊗B2⊗B3⊗B4 ⊆ 𝜓(B) 

Therefore, 𝜓(B) = B1⊗B2⊗B3⊗B4.  

𝜓(B) = |B1⊗B2⊗B3⊗B4| 

= |B1||B2||B3||B4| 

 

Theorem: 4.2 

For 𝑖 = 1,2,3,4. If 𝐺𝑖 's are generator matrix of ternary linear codes 𝐵𝑖  's then the generator matrix of 𝐵 is 
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(

 
 

(1 + 2𝑤 + 2𝑤2 + 𝑤3)𝐺1
(2𝑤 + 2𝑤2)𝐺2
(2𝑤2 + 𝑤3)𝐺3
(2𝑤 + 𝑤3)𝐺4 )

 
 

 

Proof: 

𝜓(B) = B1⊗B2⊗B3⊗B4 =

(

 
 
𝜓(1 + 2𝑤 + 2𝑤2 + 𝑤3)𝐺1

𝜓(2𝑤 + 2𝑤2)𝐺2
𝜓(2𝑤2 +𝑤3)𝐺3
𝜓(2𝑤 + 𝑤3)𝐺4 )

 
 

= (

𝐺1 0 0 0
0 𝐺2 0 0
0 0 𝐺3 0
0 0 0 𝐺4

)

 

Theorem:4.3 

Let us consider 𝐵 = (1 + 2𝑤 + 2𝑤2 + 𝑤3)𝐵1⊕ (2𝑤 + 2𝑤2)𝐵2⊕ (2𝑤2 + 𝑤3)𝐵3⊕ (2𝑤 +𝑤3)𝐵4 is a cyclic 

code over 𝑅 iff 𝐵𝑖  's are cyclic codes for 𝑖 = 1,2,3,4. 

Proof:  

Let us consider (p0, p1, … . , p𝑛−1) ∈ B1, (q0, q1, … . , q𝑛−1) ∈ B2, (r0, r1, … . r𝑛−1) ∈ B3, (s0,  s1, … . , s𝑛−1) ∈ B4. 

Assume m𝑖 = (1 + 2𝑤 + 2𝑤
2 + 𝑤3)p𝑖 + (2𝑤 + 2𝑤

2) + (2𝑤2 + 𝑤3)r𝑖 + (2𝑤 + 𝑤
3)s𝑖 for i = 1,2, … . n − 1.  

Then (m0,  m1, … .m𝑛−1) ∈ B. Since B is a cyclic code, (m0,  m1, … .m𝑛−2) ∈ B.  

Hence (p𝑛−1, p1, … . , p𝑛−2) ∈ B1, (q𝑛−1, q1, … , q𝑛−2) ∈ B2, (r𝑛−1, r1, … . r𝑛−2) ∈ B3, (s𝑛−1,  s1, … , s𝑛−2) ∈ B4.  

Therefore, B1,  B2,  B3  B4 are cyclic codes over ℤ3. 

Conversely, 

Suppose that B1,  B2,  B3 and B4 are cyclic codes over ℤ3. Let (m0,  m1, … .m𝑛−1) ∈ B where, 

m𝑖 = (1 + 2𝑤 + 2𝑤
2 + 𝑤3)p𝑖 + (2𝑤 + 2𝑤

2) + (2𝑤2 +𝑤3)r𝑖 + (2𝑤 + 𝑤
3)s𝑖  for    i = 1,2, … . n − 1.  

Then (p0, p1, … , p𝑛−1) ∈ B1, (q0, q1 , … , q𝑛−1) ∈ B2, (r0, r1, … . r𝑛−1) ∈ B3, (s0,  s1, … , s𝑛−1) ∈ B4  

Note that, (m𝑛−1,  m0, … .m𝑛−2) = (1 + 2w + 2𝑤
2 + 𝑤3)(p𝑛−1, p1, … , p𝑛−2) 

+(2𝑤 + 2𝑤2)(q𝑛−1, q1, … , q𝑛−2) 

+(2𝑤2 + 𝑤3)(r𝑛−1, r1, … . r𝑛−2) 

+(2𝑤 + 𝑤3)(s𝑛−1,  s1, … . , s𝑛−2)) ∈ C 

 

= (1 + 2𝑤 + 2𝑤2 + 𝑤3)B1⊕ (2𝑤 + 2𝑤2)B2⊕ (2𝑤2 +𝑤3)B3⊕ (2𝑤 + 𝑤3)B4 

So, B is cyclic code over R. 

Theorem: 4.4 

Let 𝐵 =< (1 + 2𝑤 + 2𝑤2 + 𝑤3)𝐵1⊕ (2𝑤 + 2𝑤2)𝐵2⊕ (2𝑤2 + 𝑤3)𝐵3⊕ (2𝑤 + 𝑤3)𝐵4 be a 

cyclic(negacyclic) code of length 𝑛 over 𝑅, Then 

𝐵 =< (1 + 2𝑤2 + 𝑤3)𝑓1(𝑥), (2𝑤 + 2𝑤
2)𝑓2(𝑥), (2𝑤

2 +𝑤3)𝑓3(𝑥), (2𝑤 + 𝑤
3)𝑓4(𝑥) > and |𝐵| =

34𝑛−(∑deg 𝑓𝑖(𝑥)) where f𝑖 's are generator polynomials of B𝑖 's for i = 1,2,3,4. 

Proof: 

since B𝑖 's are cyclic codes over R , 

B =< (1 + 2𝑤2 + 𝑤3)𝑓1(𝑥), (2𝑤 + 2𝑤
2)𝑓2(𝑥), (2𝑤

2 +𝑤3)𝑓3(𝑥), (2𝑤 + 𝑤
3)𝑓4(𝑥) > 

By theorem 4.1, |B| = |B1||B2||B3||B4| 

                                  = 3𝑛−deg 𝑓1 ⋅ 3𝑛−deg 𝑓2 ⋅ 3𝑛−deg 𝑓3 ⋅ 3𝑛−deg 𝑓4  

= 34𝑛−∑  4
𝑖=1  deg (𝑓𝑖) 

 

where 𝑓1, 𝑓2, 𝑓3, 𝑓4 are generator polynomials of 𝐵1 , 𝐵2, 𝐵3, 𝐵4 respectively. 

Corollary: 4.1 

Let 𝐵 =< 𝑓(𝑥) > be a negacyclic code of length 𝑛 over 𝑅 and 𝜓(𝑓(𝑥)) = (𝑓1, 𝑓2, 𝑓3, 𝑓4) with  

deg (𝑔𝑐𝑑(𝑓1, 𝑥
𝑛 + 1)) = 𝑛 − 𝑘1, deg (𝑔𝑐𝑑(𝑓2, 𝑥

𝑛 + 1)) = 𝑛 − 𝑘2,  
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deg (𝑔𝑐𝑑(𝑓3, 𝑥
𝑛 + 1)) = 𝑛 − 𝑘3, deg (𝑔𝑐𝑑(𝑓4, 𝑥

𝑛 + 1)) = 𝑛 − 𝑘4,  

Then |𝐵| = 3(𝑘1+𝑘2+𝑘3+𝑘4). 

Example: 4.1 

Let B =< 𝑓(𝑥) >= (1 + 𝑤3)𝑥7 + 𝑤𝑥6 + (2 + 𝑤2)𝑥5 + 𝑤2𝑥3 + 𝑥2 + 2 be a negacyclic code of length 13 over 

R . 

𝜓(𝑓(𝑥)) = (𝑥7 + 2𝑥5 + 2,2𝑥7 + 𝑥6 + 𝑥3 + 2,2𝑥6 + 𝑥3 + 2, 𝑥6 + 𝑥5 + 2𝑥3 + 2)

𝑓1 = gcd (𝑥
7 + 2𝑥5 + 2, 𝑥13 + 1) = 1

𝑓2 = gcd (2𝑥
7 + 𝑥6 + 𝑥3 + 2, 𝑥13 + 1) = (𝑥 + 1)(𝑥3 + 2𝑥 + 1)

𝑓3 = gcd (2𝑥
6 + 𝑥3 + 2, 𝑥13 + 1) = (𝑥 + 1)

𝑓4 = gcd (𝑥
6 + 𝑥5 + 2𝑥3 + 2, 𝑥13 + 1) = (𝑥 + 1)

|𝐵|= 345.

 

Let h𝑖(n) = (𝑥
𝑛 + 1)/(gcd (𝑓𝑖 , 𝑥

𝑛 + 1) B⊥ =< 𝜓−1( h1𝑅(n), h2𝑅(n), h3𝑅(n), h4𝑅(n)) > where h𝑖𝑅  be the 

reciprocal polynomial of h𝑖(𝑥) for i = 1,2,3,4. 

B⊥ =< 𝜓−1(𝑥13 + 1, 𝑥9 + 2𝑥8 + 2𝑥7 + 𝑥5 + 2𝑥3 + 𝑥2 + 1, 𝑥12 + 2𝑥11

+𝑥10 + 2𝑥9 + 𝑥8 + 2𝑥7 + 𝑥6 + 2𝑥5 + 𝑥4 + 2𝑥3 + 𝑥2 + 2𝑥 + 1
𝑥12 + 2𝑥11 + 𝑥10 + 2𝑥9 + 𝑥8 + 2𝑥7 + 𝑥6 + 2𝑥5 + 𝑥4

+2𝑥3 + 𝑥2 + 2𝑥 + 1) >

=< (1 + 2𝑤 + 2𝑤2 + 𝑤3)𝑥13 + (2𝑤 + 2𝑤2 + 2𝑤3)𝑥12 + (𝑤 + 𝑤2 + 𝑤3)𝑥11 + (2𝑤 + 2𝑤2 +

2𝑤3)𝑥10 + (𝑤3)𝑥9 + (2𝑤3)𝑥8 + (2𝑤 + 2𝑤2 + 𝑤3)𝑥7 +

(2𝑤 + 2𝑤2 + 2𝑤3)𝑥6 + (𝑤3)𝑥5 + (2𝑤 + 2𝑤2 + 2𝑤3)𝑥4 +

(2𝑤 + 2𝑤2 + 𝑤3)𝑥3 + (𝑤 + 𝑤2 + 2𝑤3)𝑥2 + (𝑤 + 𝑤2 + 𝑤3)𝑥 + 1) >

 

V. Quantum Codes from cyclic codes over R. 

We examine the dual nature of cyclic and their generators in this section. Some cyclic (negacyclic) codes can be 

used to create quantum error-correcting codes. 

Theorem:5.1 

A cyclic code 𝐵 with generator polynomial 𝑓(𝑥) contains its dual iff 𝑥𝑛 − 1 ≡ 0 (mod 𝑓𝑓∗)𝑓∗ is reciprocal 

polynomial of 𝑓. 

Proof: 

The proof is trivial. 

Theorem 5.2 

Let 𝐵 =< (1 + 2𝑤 + 2𝑤2 + 𝑤3)𝑓1, (2𝑤 + 2𝑤
2)𝑓2, (2𝑤

2 + 𝑤3)𝑓3, (2𝑤 + 𝑤
3)𝑓4 > be a cyclic (negacyclic) 

code of length 𝑛 over 𝑅. Then 𝐵⊥ ⊆ 𝐵 iff 𝑥𝑛 − 1 ≡ 0 (modf 𝑓𝑖 , 𝑓𝑖
∗)(𝑥𝑛 + 1 ≡ 0(modf𝑖 , 𝑓𝑖  

∗)) for 𝑖 = 1,2,3,4. 

Proof: 

Let 𝑥𝑛 − 1 ≡ 0(modf𝑖 , f𝑖  
∗)(𝑥𝑛 + 1 ≡ 0(modf𝑖 , f𝑖  

∗)) for i = 1,2,3,4. 

By using, 𝐵1
⊥ ⊆ B1, 𝐵2

⊥ ⊆ B2, 𝐵3
⊥ ⊆ B3, 𝐵4

⊥ ⊆ B4, 

((1 + 2𝑤 + 2𝑤2 + 𝑤3)𝐵1
⊥⊕ (2𝑤 + 2𝑤2)𝐵2

⊥⊕ (2𝑤2 + 𝑤3)𝐵3
⊥⊕ (2𝑤 + 𝑤3)𝐵4

⊥) ⊆

((1 + 2𝑤 + 2𝑤2 + 𝑤3)B1⊕ (2𝑤 + 2𝑤2)B2⊕ (2𝑤2 + 𝑤3)B3⊕ (2𝑤 + 𝑤3)B4)
 

So, 

< (1 + 2𝑤 + 2𝑤2 + 𝑤3)𝑓1 
∗, (2𝑤 + 2𝑤2)𝑓2 

∗, (2𝑤2 + 𝑤3)f3 
∗, (2𝑤 + 𝑤3)𝑓4 

∗𝑖 >⊆

< (1 + 2𝑤 + 2𝑤2 + 𝑤3)𝑓1, (2𝑤 + 2𝑤
2)𝑓2, (2𝑤

2 + 𝑤3)𝑓3, (2𝑤 + 𝑤
3)𝑓4 >

 

That is, B⊥ ⊆ B. 

Conversely, 

suppose that B⊥ ⊆ B. 

(1 + 2𝑤 + 2𝑤2 + 𝑤 3̅)𝐵1
⊥⊗ (2𝑤 + 2𝑤2)𝐵2

⊥⊗ (2𝑤2 + 𝑤3)𝐵3
⊥⊗ (2𝑤 + 𝑤3)𝐵4

⊥ ⊆ 

(1 + 2𝑤 + 2𝑤2 + 𝑤3)B1⊗ (2𝑤 + 2𝑤2)B2⊗ (2𝑤2 + 𝑤3)B3⊗ (2𝑤 + 𝑤3)B4 under mod(1 + 2𝑤 + 2𝑤2 +

𝑤3),mod(2𝑤 + 2𝑤2),mod(2𝑤2 +𝑤3) and mod(2𝑤 + 𝑤3). 

we have, 

𝐵𝑖
⊥ ⊆ B𝑖 for i = 1,2,3,4 

Therefore, 
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𝑥𝑛 − 1 ≡ 0(modf𝑖 , f𝑖  
∗) for i = 1,2,3,4 

Corollary: 5.1 

(1 + 2𝑤 + 2𝑤2 + 𝑤3)𝐵1⊕ (2𝑤 + 2𝑤2)𝐵2⊕ (2𝑤2 + 𝑤3)𝐵3⊕ (2𝑤 + 𝑤3)𝐵4 is a  

cyclic (negacyclic) code of length 𝑛 over 𝑅. Then 𝐵⊥ ⊆ 𝐵 iff 𝐵𝑖
⊥ ⊆ 𝐵𝑖 for 𝑖 = 1,2,3,4. 

Theorem:5.3 

(1 + 2𝑤 + 2𝑤2 + 𝑤3)𝐵1⊕ (2𝑤 + 2𝑤2)𝐵2⊕ (2𝑤2 + 𝑤3)𝐵3⊕ (2𝑤 + 𝑤3)𝐵4 is a cyclic  

(negacyclic) code of arbitrary length 𝑛 over 𝑅 with type 81𝑘127𝑘29𝑘13𝑘2. If 𝐵𝑖  
⊥ ⊆ 𝐵𝑖  where 𝑖 = 1,2,3,4 then 

𝐵⊥ ⊆ 𝐵 and there exists a quantum error-correcting code with parameter [4𝑛, (4𝑘1 + 3𝑘2 + 2𝑘3 + 𝑘4) − 4𝑛, 𝑑𝐿] 

where 𝑑𝐿 is the minimum lee weights of 𝐵. 

Example 5.1 

Let n = 8, we have 𝑥8 − 1 in ℤ3[x]. 

Let 𝑓1(𝑥) = 𝑓2(𝑥) = 𝑥
2 + 1, 𝑓3(𝑥) = 𝑓4(𝑥) = 𝑥

2 + 2𝑥 + 2. 

Thus B =< (1 + 2𝑤 + 2𝑤2 + 𝑤3)𝑓1, (2𝑤 + 2𝑤
2)𝑓2, (2𝑤

2 + 𝑤3)𝑓3, (2𝑤 + 𝑤
3)𝑓4 >. B is a linear cyclic code of 

length 8.  

Hence, we obtain a quantum code with parameters [32,12,2]. 

 

The parameters of Quantum codes 

n Generator Polynomials [[N, K, D]] 

8 𝑓1(𝑥) = 𝑓2(𝑥) = 𝑥
2 + 1, 𝑓3(𝑥) = 𝑓4(𝑥) = 𝑥

2 + 2𝑥 + 2 [32,12,2] 

12 𝑓1(𝑥) = 𝑓2(𝑥) = 𝑓3(𝑥) = 𝑓4(𝑥) = 𝑥 + 2 [48,38,2] 

17 𝑓1(𝑥) = 𝑓2(𝑥) = 𝑓3(𝑥) = 𝑓4(𝑥) = 𝑥 + 2 68,58,2] 

19 𝑓1(𝑥) = 𝑓2(𝑥) = 𝑓3(𝑥) = 𝑓4(𝑥) = 𝑥 + 2 76,66,2] 

20 𝑓1(𝑥) = 𝑓2(𝑥) = 𝑥
2 + 1, 𝑓3(𝑥) = 𝑓4(𝑥) = 𝑥

5 + 2𝑥4 + 2𝑥3 + 2𝑥2 + 2𝑥 [80,51,2] 

33 𝑓1(𝑥) = 𝑓2(𝑥) = 𝑓3(𝑥) = 𝑓4(𝑥) = 𝑥
5 + 2𝑥3 + 𝑥2 + 2𝑥 + 2 [132,82,2] 

36 𝑓1(𝑥) = 𝑓2(𝑥) = 𝑥
2 + 1, 𝑓3(𝑥) = 𝑓4(𝑥) = 𝑥 + 2 [144,127,2] 
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