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Abstract: In the present paper analytical and numerical results are reported for analytical approximate solution 

of nonlinear dynamic system containing fractional derivative by modified decomposition method. Comparison 

with the exact and numerical solution shows that the present method performs extremely well in terms of 

accuracy, efficiency and simplicity. 
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1. Introduction 

Recently a great deal of interest has been focused on Adomian’s Decomposition Method (ADM) and its 

applications to a wide class of physical problems containing fractional derivatives [6,7].The fractional 

differential equations appear more and more frequently in different research areas and engineering applications.  

The fractional derivatives have been occurring in many physical problems such as frequency dependent 

damping behavior of materials, motion of a large thin plate in a Newtonian fluid, creep and relaxation functions 

for viscoelastic materials, the controller for the control of dynamical systems, etc. [15,20]. Phenomena 

in electromagnetic, acoustics, viscoelasticity, and electrochemistry and material science are also described by 

differential equations of fractional order [1,11]. The solution of the differential equation containing fractional 

derivative is much involved. An effective and easy-to-use method for solving such equations is essentially 

needed for the tackling of physical situations. 

Fractional calculus has been used to model physical and engineering processes that are found to be best 

described by fractional differential equations. For that reason we needed a reliable and efficient technique for 

the solution of fractional differential equations. In this connection, it is worthwhile to mention that the recent 

papers on numerical solutions of fractional differential equations are available from the notable works of 

Diethelm et al[16]. 

The ADM employed here is adequately discussed in published literature [2,4,21], but it still deserves emphasis 

to point out the very significant advantages over other methods. The said method can also be an effective 

procedure for the solution of time fractional nonlinear dynamic system. Nonlinear systems are generally 

analyzed by approximation methods which involve some sort of linearization. These replace an actual nonlinear 

system with a so-called equivalent linear system and employ averaging which is not generally valid. While the 

linearization commonly used is adequate in some cases, they may be grossly inadequate in others since 

essentially real phenomena (shock waves in gas dynamics, for example) can occur in nonlinear systems which 

cannot occur in linear systems. Thus, the correct solution of a nonlinear system is a much more significant 

matter than simply getting more accuracy when we solve the nonlinear system rather than a linearized 

approximation. Thus, if we want to know how a physical system behaves, it is essential to retain the 

nonlinearity, not just solve a convenient mathematical model. 
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In this paper, we use Adomian’s modified decomposition method [2,10] to obtain a solution for nonlinear time 

fractional dynamic systems. The decomposition method provides an effective procedure for analytical solution 

of a wide class of linear and nonlinear dynamical systems representing real physical problems. This method 

efficiently works for initial value or boundary value problems and for linear and nonlinear ordinary, partial, 

differential equations and integral equations. Moreover, we have the advantage of a single global method for 

solving linear and nonlinear systems. Recently, solution of fractional differential equations and the solution of 

some complicated physical system containing fractional derivatives has been obtained by decomposition and 

modified decomposition method [5,7]. 

2. Mathematical Aspects 

2.1 Mathematical Definition 

The mathematical definition of fractional calculus has been the subject of several different approaches [2,4]. The 

most frequently encountered definition of an integral of fractional order is the Reimann-Liouville integral, in 

which the fractional order integral is defined as  

,                                                                                                            

(2.1) 

while the definition of fractional order derivative is 

,                                              

(2.2) 

where ,is the order of the operation and is an integer that satisfies . 

3. The Decomposition Method 

Let us discuss a brief outline of the Adomian decomposition method, in general. For this, let us consider an 

equation in the form 

,                                                                                                                                               

(3.1) 

where is an easily or trivially invertible linear operator, is the remaining linear part and represents a 

nonlinear operator. 

The general solution of the given equation is decomposed into the sum 

,                                                                                                                                                               

(3.2) 

where is the complete solution of . 

From eq. (3.1), we can write 

.                                                                                                                                               

(3.3) 

Because is invertible, an equivalent expression is 

.                                                                                                                          
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For initial-value problems we conveniently define for as the fold definite integration operator 

from to . For the operator , for example, 

We have 

                                                                                                                                         

(3.5) 

and therefore, 

.                                                                                                     

(3.6) 

For boundary value problems (and if desired, for initial value problems as well) indefinite integrations are used 

and the constants are evaluated from the given conditions. Solving for yields 

.                                                                                                                 

(3.7) 

The first three terms in eq.  (3.6) or eq.(3.7) are identified as in the assumed decomposition . 

Finally, assuming is analytic, we write  

,where ’s are special set of polynomials obtained for the particular 

nonlinearity and were generated by Adomian [11,12].These  polynomials depend, of course, on 

the particular nonlinearity. 

The ’s are given as follows: 

, 

, 

, 

 

and can be found from the formula(for )  

,                                                                                                                                    

(3.8) 

where the are products or sums of products of components of whose subscripts sum to , divided 

by the factorial of the number of repeated subscripts [11]. This formula is easy to set computer code to get as 

many polynomials as we need in calculation of the numerical as well as explicit solutions. 

Recently, the Adomian decomposition method is reviewed and a mathematical model of Adomian polynomials 

is introduced [7,13].Therefore, the general solution becomes 
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,                                                                                                                     

(3.9) 

,                                                                                                              

(3.10) 

where and ,                                                                                                                        

(3.11) 

so that , .                                                                                              

(3.12) 

Using the known , all components etc. are determinable by  

using eq. (3.12). Substituting these etc. in eq. (3.2), is obtained. 

Recently, Wazwaz [13] proposed that the construction of the zeroth component of the decomposition series can 

be defined in a slightly different way. In [13],he assumed that, if the zeroth component and the function

is possible to divide into two parts such as and , then one can formulate the recursive algorithm for

and general term in a form the modified recursive scheme as follows :  

, 

,. 

. 

. 

.                                                                                                               

(3.13) 

This type of modification is giving more flexibility to the Adomian  decomposition method (ADM) in order to 

solve complicated nonlinear differential equations. In many cases the modified decomposition scheme avoids 

the unnecessary computation especially in calculation of the Adomian polynomials. The computation of these 

polynomials will be reduced very considerably by using the modified decomposition method (MDM).It is worth 

noting that the zeroth component is defined, then the remaining components , can be completely  

determined. As a result, the components is identified and the series solutions thus entirely determined. 

However, in many cases the exact solution in a closed form may be obtained. The decomposition series solution 

(3.2) generally converges very rapidly in real physical problems [11]. The rapidity of this convergence means 

that only few terms are required for this purpose. Convergence of this method has been rigorously established 

by Cherruault [7], Abbaoui and Cherruault [8] and Himoun at al [9].  

The practical solution will be the term approximation .  

, ,                                                                                                                                       

(3.14) 
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4. Fractional Dynamic  Models and the Solution 

Considering the viscoelastic behaviour of an one-degree-of-freedom oscillator consisting of a discrete mass and 

a viscoelastic spring governed by a fractional calculus law in conjunction with Newton’s second law, we have 

the equation in the form  

,                                                                                                                   

(4.1) 

subject to the initial condition 

, ,                                                                                                                                                           

(4.2) 

where , and represent the mass, damping and stiffness coefficients respectively, is the externally 

applied force, is the displacement and is the fractional derivative of order of the displacement

. 

We adopt Modified Decomposition Method (ADM) for solving eq.(4.1) under initial conditions (4.2). In the 

light of this method, we assume that  

 

to be the solution of  eq. (4.1). 

Now, eq. (4.1) can be written as 

                                                                                         

(4.3) 

Let us suppose that, , which is an easily invertible linear operator. Now comparing eqs. (4.3) and (3.1), 

we can observe that  in eq. (3) represents the remaining linear operator and the nonlinear part 

is . 
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, 

 

 

and so on.                                                                                                                                                                                        

(4.5) 

Therefore, by decomposition method, we can write, 

                                 

(4.6) 
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(4.7) 

We employ the modified recursive scheme as follows : 
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Therefore, the general solution of  eq.(4.1) is  
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(4.9) 

5. Implementation of the Method 

Let us consider the following motion equation of a one-degree-of-freedom oscillator 
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.                                                                          

(5.3) 

For the sake of convenience of the readers, we can give the first few Adomian polynomials for

of the nonlinearity as 
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and so on.                                                                                                                                                                                        

(5.4) 

The rest of the polynomials can be constructed in a similar manner. 

We will then obtain 
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Therefore, the series solution (4.9) becomes 
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(5.6) 

6. Numerical Results and Discussion 

In the present numerical computation we have assumed , and , as is taken in [219]. It is 

interesting to note that the graph obtained in our case coincide with the exact solution 

in fig. 1 eq. (5.6) has been used to draw the graph as shown in fig. 1. 

Table 1 analyzes the two-term approximate numerical solution , exact solution , and the absolute error 

and relative error between them. 

Table 2 analyzes the three-term approximate numerical solution , exact solution , and the absolute error 

and relative error between them. 

From above two tables we observe that our approximate solution is in good agreement with the exact solution. 

Of course the accuracy can be improved by computing more terms in the decomposition method. 

                                          

Fig.1.Displacement of the one-degree-of-freedom oscillator (Time vs displacement). 

 

Table I: The exact solution, numerical solution  , absolute error and relative error. 

Time  Exact solution  Numerical solution  
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0.75 -0.01265625 -0.014513086 0.001856836 0.146712982 

1.00 0.14 0.138915566 0.001084434 0.007745954 

 

Table II:The exact solution, numerical solution  3, absolute error and relative error. 

Time  Exact solution

 

Numerical solution  

 

Absolute error 

 

Relative error 

 

0.25 0.00171875 0.001717552 1.19822E-06 0.000697147 

0.50 -0.015 -0.015011315 1.13148E-05 0.000754321 

0.75 -0.01265625 -0.012610457 4.57934E-05 0.003618248 

1.00 0.14 0.140338625 0.000338625 0.00241875 

The above results may be compared obtained in [25]. 

7. Conclusion 

Nonlinear phenomena play a crucial role in applied mathematics and physics. The nonlinear problems are 

solved easily and elegantly without linearizing the problem, by using the Adomian decomposition method 

(ADM) [2,4,5].The present problem deals with the nonlinear dynamic system containing time fractional 

derivative and it has been solved analytically by ADM. 

The advantage of this global methodology lies in the fact that it not only leads to an analytical continuous 

approximation which is very rapidly convergent [4,18,20] but also shows the dependence giving insight into the 

character and behaviour of the solution just as in a closed form solution[4,7,12,20]. The ADM is straight 

forward and rapid stabilization to an acceptable accuracy is evident when numerical computation of the analytic 

approximation is carried out [4,7,12]. 

The present analysis exhibits the applicability of ADM to solve time fractional nonlinear differential equation. 

In our previous paper we have already as well as successfully exhibit the applicability of ADM to obtain a 

solution for nonlinear physical systems containing fractional order derivative. Moreover, this method does not 

require any transformation techniques, linearization, discretization of the variables and it does not make closer 

approximation or smallness assumptions. If, therefore, provides more realistic series solution that generally 

converge very rapidly in real physical problems. When solutions are computed numerically, the rapid 

convergence is obvious. Finally we point out that, although other methods are available, the present method can 

yield very satisfactory solution without suffering traditional difficulty. 
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