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Abstract:- In this paper, we consider the initial value problem ( 1.V.P) of a second order linear delay differential
equation. We apply Emad — Sara integral transform technique to find the solution of this problem. Furthermore,
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1. Introduction

The delay differential problems have found applications in a wide variety of science in addition to engineering,
physics, biotechnology and other scientific fields [2, 3].

These delay problems have for instance, been applied in networks [2], population [2], and bistable devices [2].

There are many researchers who have investigated oscillation hopf bifurcation, numerical aspect and asymptically
stability analysis for delay differential problems [2, 3].

On the other hand integral transforms are used to solve application problems in mathematics and other fields [4-
15] therefore, it is useful tool for physicists and engineers.

2. Basic Concepts

Definition (2.1): let £ (t) be an integrable function defined for t > 0, v # 0 is a positive real parameter, the Emad—
Sara integral transform T (v)of f (t)by the form:

_i [ vt —
T0) =5 [ e f@de = BSF@)
t=0

Provided the integral exists for some parameter v, [1] proposition (2.1) Let f(t) be a real function with these
features:

1. f(t) is a piecewise continuous in every finite interval 0 <t < ¢t; (t; > 0)
2. f(¢) is of exponential order, that is, 3a, N > 0 and t; > 0 e*|f(t)| < N fort > t,
Then the Emad-Sara integral transform exist for v >oc [1].
3. The Emad-Sara Transform for Some Basic Functions [1]
In the following values of some basic important functions in Emad - Sara transform
1. ES{p}= 1%,v > 0,p is a constant

n!
pn+3’

2. ES{t"} =

v>0nezt

1

3. ES{er}= v2(v-p)’

v > p,pis a constant
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4. ES{sin(pt)} = 172(17:;+pz)' v # 0,p isa constant
5. ES{cos(pt)} = m, v # 0,p isa constant
6. ES{sinh(pt)} = 1;2(1;:;—;;2)' v > |p|,p isa constant

7. ES{cosh(pt)} = W%,v > |p|,p isa constant

p?)

4. The Inverse of Emad-Sara Integral Transform for Some Importart Functions [1]

In the following the inverse of Emad-Sara transform for some basic functions.

1. (ES)! {1}3} =1

2. EH M ml=Snezt
R

4. (ES)™ {ragim) = sin®)

@9 () = o9

6. ()| (vlz_l)} = sinh(t)
7. (ES)™{;z} = cosh(®)

5. The Emad-Sara Integral Transform of Derivatives [1]

Function f(t) defined as the Emad — Sara integral transform of T(v) = ES{f(¢t)} then:

L ES{f'(®} =L2+vT(w)

" -f'©® -f(0)
2. ES{f" (0} =L—— LR v21(v)
3. Ingeneral,ne z*

_fn-1) 0
estrr) = L@y vesire-v oy

Now consider the delay differential problem:
w@®+auv@)+bu't—1t)+cul®)+dult—1)=f(1)

Where t > 0.

Andu(t) =9(@) —t<t<0,u'(0) =y

Where a, b, c and d are real constants, f(t) and 9(t) are given real functions and sufficient smooth functions. y
is a real number and 7 is a positive constant large delay.

Therem (5.1): Let 9(¢), 9’ (t) are continuous function on the closed interval [—7,0],7 > 0 and T (v) is the Emad
—Sara transform of f(t) in equation (1). then the exact solution of equations (1) —(2) is

T()+F ()

w(®) = B (2L

} where:

KWw)=v?4+av+c+ (bv+d)e™™"
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y 1 ., be™""9(0) ,
F(v) = =t (v9(0) + aﬁ(O)); —-b9"(v) + —Qz " as'(v)
And
9'(V) = viz Jo_ et Dy(e)dt ;9" (v) = viz o eIy dt

Proof:

To proof the problem (1)-(2) applying the Emad —Sara transform it is known the Emad- Sara transform of the
derivatives of u(t) is:

ES{u/ (D)} = ;—Zlu(O) + v ES{u(t)}

And

—9(0)
‘UZ

EStu'(©)} =

+ v ES{u(t)}

ES(u" (0} = 52 - X9 4 v? Esqu(n))

7 - 9(0
ES(u" ()} =% - X2

2 v

+ v? ES{u(t)}

The Emad — Sara integral transform for (¢t — ), from the definition gets:

ES{u(t — 1)} = — [,7 e™ u(t — T)dt

After replacing integral variable by: t = x + 7,x = t — v we find that:

ES{u(t —1)} = vizfxi_r e VO*D y(x)dx

1 (o) (o)
== [f e V0D p(x)dt + j e vx+T) u(x)dx]
v -T -

— viZ f:‘: e~V +D) p(x)dt

1

+ —ze'wf e " u(x)dx
v -T

Thus we get:
ES{u(t — 1)} =9'(v) + e ""ES{u(t)}
Similary, the Emad — Sara transform for u'(t — 7) we can write as

ESQu/(t—1)} = i 2 et (t = )dt

1 [ee)
=— e VHD 4/ (x)dt
Ve Jy=—1
L= —v(x+T) 1 -t B EETY
= e p(x)dt + ?e e " u'(x)dt
=T =T
We have:

ES{u'(t — )} =p" () + e V" Es{u’'(t)}
Using the Emad Sara transform to eq.(1) gets:
ES{u" ()} + a ES{u'(t)} + bES{u'(t)} + cES{u(t)} + d ES{u (t — 1)} = Es{f(t)}.

And applying above equations we obtain:
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v(0 2 19(0) " —vT _Ul—ﬁ(o)
v—Z—T+v ES{u(®)} + av ES{u(t)} —a 2 +bI9"(W)+be " vEs{u(t)}—be —z

+cES{u(®)}+d9'(w) + de VES{u(t)} = ES{f ()}

(W?+av+be  +c+de "ES{u(t)}

- 9(0 9(0 9(0
=T(v)+v—]2/+%+a 152)+b19”(17)+be"”%—dl9’(v)

It can be reduced to:

T(w) + F(v)

EStu(®)} = K@)

6. Application

In this section we introduce delay differential problem that demonstrate the validity of the obtained result (exact
solutions):

Example (6-1): we consider the following delay differential problem:

u'(@t) =3u' () +u'(t—1) 4+ 2u(t) —u(t —1) = 0,wheret <0

Subject to u(t) = et, t € [-1,0],u'(0) =1

If we take into consideration

So,

And

ES{0}=T(w) =0,F(v) = %(v —2e "), Kw)=v?>+3v+2+@w—1e™?

v—2+4+e7? )

1
ES{u(®)} = ﬁ(w —Dw—-2+e™)

1
ES{u(t)} = o —1) take inverse

-1

u(t) = et is the exact solution of the above delay differential problem.

7.

Conclusion

In this paper, the Emad_Sara integral transform is applied th evaluate the exact solution of a second order linear
delay differential equations, demonstrating its efficacy as a technique for finding the exact solutions to a broad
class of differential equations. This means that the technique given here can be used to issues of the neutral delay
kind as well as the Volterra delay integro-differential kind.
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