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Abstract:- For evaluating the macroscopicity of superposition states in classic mechanical systems, we suggest an 

objective measure that is accessible through experimentation. One can measure the level of macroscopicity 

attained in various experiments based on the observable results of a minimum, macrorealist extension of modern 

classical mechanics. Numerous experiments have widely and independently supported general relativity. The 

interaction of the two theories has never been tested, though, as all tests that examined how gravity affects classic 

mechanical systems are compatible with Newtonian, non-relativistic gravity. 
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1. Introduction 

Modern physics is being driven by investigations into the quantum superposition principle at the edge of classical 

mechanics. This is illustrated by the superposition states of 1014 electron counter running currents [1, 2], the 

Bose-Einstein condensed atoms [3, 4], and complex molecules [5]. For the magnitude of superposition states 

containing macroscopically diverse features of complicated quantum systems, many measurements have been 

proposed [5–11].  

The majority of them discuss particular quantum state types or representations or list the operational resources 

needed to study them. We still don't have a way for assigning a precise and impartial measure to all experimental 

testing of the quantum superposition principle, despite the fact that the majority of ideas appear to be based on a 

shared information-theoretic framework [12].  

The dynamics of the many-body density operator describes its observable implications, which are all that 

empirically counts. We contend that fundamental consistency, symmetry, and scaling considerations result in a 

clear, parametrizable description of the effects of a minimally invasive change [13].  Numerous researchers studied 

quantum reference frames [14-16], photons [17], quantum interference [18, 21], relativity effects in quantum [22] 

and quantum fields [23-25]. 

The change must function to 'classicalize' the state development in the sense that super positions of 

macroscopically different mechanical states quickly become mixes. One can treat (nonrelativistic) quantum and 

classical mechanics in a common general formalism thanks to the operational description of quantum theory, 

which is based on the state operator, its fully positive and trace-preserving time evolution, and a consistent rule 

of assigning probabilities to measurements [19].  

2. Superposition in general relativity 

In the context of dynamical semigroups, it is consequently straightforward to explain an objective change of the 

quantum time evolution.  

According to general relativity, gravity affects how quickly time passes. This produces a number of impacts that 

have all been well investigated. In [3], the researcher has analysed actual clocks moving at different speeds and 

altitudes to determine both the general and particular relativistic time dilation.  
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All additional tests of general relativity, as well as the Shapiro effect, Pound-Rebka experiment, and Hafele-

Keating experiment, may be completely explained by the principles of classical mechanics. Classical 

electrodynamics in curved space-time can be used to describe the Pound-Rebka. 

The suggested experiment tries to approach region are mutually incompatible. In order to do this, experimental 

results should be in conflict with models of both quantum and classical mechanics. We look at how and in what 

sense this is conceivable in the part that follows.  

3. Methods 

Absolute location cannot have any physical significance, according to general covariance. 

For illustration, let's take a look at a situation where there are two particles, one localised at 𝑥1 and the other at 

𝑥1 + 𝛿𝑥, a translated position. This case is analogous in any translationally invariant theory to the case where the 

first particle is given location 𝑥1 − 𝛿𝑥 and the second particle is given position 𝑥1.  

Any distinction between the two scenarios is purely visible and may be traced to the coordinate system used, 

which highlights that only relative distances have physical significance and that coordinate systems serve an 

important but secondary function. This part explains why, against intuition, this notion does apply to quantum 

theory.  

The two states can be connected for each individual amplitude by a passive translation, denoted by the unitary 

operator 𝑃̂(𝛿𝑥𝑖), which causes a change in the classical coordinates identifying the locations and renames the 

particle's base states:  

|𝑥⟩1|𝑥 + 𝛿𝑥𝑖⟩2 = 𝑃̂(𝛿𝑥𝑖)|𝑥 − 𝛿𝑥𝑖⟩1|𝑥⟩2.                  

Importantly, there is also a mapping between the superposition states, represented by the letter 𝑃̂: 

1

√2
|𝑥1⟩1(|𝑥1 + 𝛿𝑥1⟩2 + |𝑥1 + 𝛿𝑥2⟩2)

 =
𝑃̂

√2
(|𝑥2 − 𝛿𝑥1⟩1 + |𝑥2 − 𝛿𝑥2⟩1)|𝑥2⟩2,

       

 

Figure 1. General relativity [1]. 

In this scenario, we don't need to use those extra DoFs. We stress that above equation demonstrates the 

conventionality of selecting and naming base states for a classic mechanical system. We also agree that, even in 

cases where there is no classical coordinate transformation that such a unitary representation expresses, the 

flexibility to rename applicable to bases. In Figure. 1, we represent the general relativity previously stated 

transformation of coordinates to the unitary suggested by the above equation as a "superposition" of translations. 
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In order to create a classical manifold g with x-parameterized coordinates, we must account for a mass in a 

classical configuration. This configuration and the manifold can be given a semi classical state, denoted by |𝑞(𝑥)⟩. 

Now let's generalise this to a mass that is in a superposition of the configurations |𝑞1(𝑥1)⟩, |𝑞2(𝑥2)⟩, each of which 

generates a manifold: 

|𝜓⟩ =
1

√2
(|𝑞1(𝑥1)⟩ + |𝑞2(𝑥2)⟩),      

If  𝑥1, 𝑥2 are coordinates related to the configurations, such as coordinates centred at the location of the mass. In 

this situation, the mass configuration may be considered to be quantum-controlled by a supporting system that 

can be set up and tested in the proper states. Each control state is connected to a mass configuration that connects 

to the other quantum degrees of freedom through a classical manifold and gravitational field.  

4. Experimental Results 

This fundamental premise is the foundation of several contemporary studies in the field of space time super 

positions, such as investigations of the theories of gravitationally induced entanglement [26,27], atom 

interferometry [20,28], space time quantum reference frames with general relativity [22], decoherence [29] and 

on quantum communication via Newtonian gravity [30]. 

As we return to generic situations in the discussion, we primarily concentrate on super positions of space times 

connected by a diffeomorphism in this section. 

The semi classical states 𝑞1(𝑥1), 𝑞2(𝑥2) are related by some passive unitary |𝑞1(𝑥1)⟩, |𝑞2(𝑥2)⟩  

|𝜓̃⟩ =
1

√2
(𝐼 + 𝑃̂(𝛿𝑥))|𝑞1(𝑥1)⟩,      

However it should be noted that the two states are equal, we have used the symbol |𝜓̃⟩ ≡ |𝜓⟩ This connection 

results from the unitary operator representation of symmetries. We stress the space times are not actively translated 

by the mass through some pre-existing curved space time. 

Let's take a look at a few more quantum degrees of freedom (DoF) in general relativity, some states, and a 

|𝜓⟩ =
1

√2
(|𝑞1(𝑥1)⟩ + |𝑞2(𝑥2)⟩)|𝜙⟩.      

In the subsequent parts and the Methods, we will use our method while taking into account each one of them. The 

physical system that the state represents may, for instance, be undergoing perhaps in interaction. Eq. (4) is merely 

predicated on the illogical presumption state. Once more, assuming an uncorrelated starting point is not necessary; 

in fact, Section 3 will also consider correlated initial states. The hypothetical tests represented by the table 1 below. 

Table 1. Hypothetical experiments 

Hypothetical experiments 𝝁 

Oscillating micromembrane 13.5 

Hypothetical huge SQUID 16.5 

Talbot-Lau interference at 105amu 16.5 

Satellite atom (Cs) interferometer  16.5 

Micromirror that oscillates   21.0 

Nanosphere interference 19.5 

Talbot-Lau interference at 108 amu 21.3 

Schrödinger gedanken experiment ∼ 55 
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Figure 2. Speculative percentage of attempts. 

 

Figure 3. Potential outcomes 

5. Discussion 

The preceding study showed that, in general, space time super positions with amplitudes that are related 

appropriately adjusted. Encourages reconsider about quantum gravity that might be drawn from such instances. 

In this part, we use our method, which has recently generated a lot of attention since it offers the possibility of 

observing the general relativity and super position in classical mechanics.  

These "gravitationally-induced entanglement" (GIE) systems postulate that the observation of demonstrate the 

quantum nature of gravity. 
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|𝜓⟩ =
1

√2
(|𝑥1, 𝜒1⟩ + |𝑥2, 𝜒2⟩),       

Tr𝜒 |𝜓⟩⟨𝜓| =
1

2
(

1 |𝜈|2

|𝜈|2 1
) →

1

2
(

1 0
0 1

),      

The offdiagonal components of the decreased density matrix will eventually get suppressed for identifiable states 

of the radiation, leaving a characteristic mixing of the two black hole sites.  

The pertinent query, depending on the framework presented thus far. As we have indicated, it is crucial to use in 

order to fully understand. Above equation becomes a product state, for instance, when the origin of the coordinates 

is specified as the position of the black hole. 

𝑃̂𝜌̂𝑃̂† =
1

2
∑  𝑖,𝑗 𝑃̂𝑖|𝑥𝑖 , 𝜒𝑖⟩⟨𝜒𝑗 , 𝑥𝑗|𝑃̂𝑗

†,       

⟨Ω|𝑃̂ 𝜌̂𝑃̂†|Ω⟩

=
1

4
(⟨Ω1, 𝑥1|𝑃̂1|𝑥1, 𝜒1⟩⟨𝜒1, 𝑥1|𝑃̂1

†|𝑥1, Ω1⟩

 +⟨Ω1, 𝑥1|𝑃̂1|𝑥1, 𝜒1⟩⟨𝜒2, 𝑥2|𝑃̂2
†|𝑥2, Ω2⟩

 +⟨Ω2, 𝑥2|𝑃̂2|𝑥2, 𝜒2⟩⟨𝜒1 , 𝑥1|𝑃̂1
†|𝑥1, Ω1⟩

+⟨Ω2, 𝑥2|𝑃̂2|𝑥2, 𝜒2⟩⟨𝜒2, 𝑥2|𝑃̂2
†|𝑥2, Ω2⟩)

 + orthogonal terms. 

     

The black hole's imperfect isolation from the external DoFs that determine its state must thus be taken into 

consideration in order to get decoherence. In this regard, Hawking ra diation-induced decoherence of black holes 

is not fundamental. Examples like these, according to show a "false loss of coherence". According to the basic 

notion, decoherence may frequently be deduced from a system's connection to example.  

6. Conclusion 

We propose an experimentally verifiable, objective metric for the macroscopicity of superposition states in 

classical mechanic quantum systems. On the basis of the observable outcomes of a minimal, macrorealist 

extension of classical mechanics, one may gauge the degree of macroscopicity reached in diverse experiments. 

General relativity has been extensively and independently supported by a number of experiments. However, since 

all experiments that looked at how gravity impacts quantum systems are consistent with Newtonian, non-

relativistic gravity, the interplay of the two theories has never been investigated. However, all general relativity 

experiments may be explained in terms of super positional classical mechanics. 
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