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Abstract: We theoretically investigate the dispersion relation of a waveguide array made of metamaterials. The unit 

cell contains three waveguides with adjustable optical properties. We model the propagation of high-intensity 

electromagnetic waves in the array by a generalized nonlinear Schrodinger equation replacing the Laplacian 

operator with the graph Laplacian. We found that when the nonlinear coefficient matrix is a null matrix, the 

dispersion curve supports three branches, each corresponding to three energy bands and one perfectly flat. On the 

other hand when it is a matrix of ones the degeneracy of the dispersion curve is decreased and the flat band is 

located on the top of the dispersive bands. Hence, this study revealed the impact of high-intensity optical light to 

manipulate the band structure of a photonic Lieb lattice made of metamaterial. 
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1. Introduction 

The graph theory approach has gained popularity in the field of complex optical networks in recent years. 

The propagation of electromagnetic waves in a complex optical network in the nonlinear regime has been discussed 

adopting stationary scattering theory on quantum graphs [1]. Utilizing the diophantine equations and the mapping 

procedure onto a Cayley graph, an iteration algorithm has been proposed to solve the nonlinear Schrodinger lattices 

[2]. The continuous-time quantum walks spatial search on a planar triangular optical lattice has been analyzed 

through numerical simulations and has been realized experimentally [3]. The dynamics of light through coupled 

arrays of non-identical waveguides with nonuniform coupling strengths has been studied using the graph Laplacian 

approach [4]. The completely integrable nonlinear Schrodinger model with an infinite number of constants of 

motion on the networks with vertices and bonds has been studied [5]. The analysis of soliton solutions of the cubic 

nonlinear Schrodinger equation on the network with the tadpole graph has been investigated [6]. The optical 

bistability and Ikeda instability during the dynamics of light within InGaAsP-InP-modified add-drop resonator has 

been investigated using a graphical approach [7].  

On the other hand, there is a great interest in the investigations of the photonic spectrum of optical lattices 

with flat bands because of their potential application. The dispersion relation with flat bands admitted by photonic 

lattices of optical waveguides fabricated by Bessel beam multiplexing optical induction in the photorefractive media 

has been studied [8]. The localization of electromagnetic wave in photonic flat-band lattices in the quantum regime 

has been studied [9]. The circumstances to exhibit the diffractionless modes in a Kerr nonlinear Lieb lattice have 

been investigated [10]. The stability of the flat band modes in a rhombic nonlinear optical waveguide array depends 

on the intensity per waveguide [11]. Moreover, the experimental realization of the studies on flat bands has been 

reported [12, 13]. The emergence of nontrivial topological nearly flat bands can be modeled by the short-ranged 

tight-binding Hamiltonian [14]. The two-dimensional lattices formed by Sierpinski gasket fractal geometries as the 

basic unit cells can exhibit dispersion relations with multiple flat bands [15]. The coincidence of the flat-band 
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eigenstate in both real and momentum spaces is necessary for the real-energy flat band in a two-dimensional non-

Hermitian Lieb lattice [16].  

Moreover, the nonlinear evolution of electromagnetic waves in waveguide arrays made of metamaterials 

has attracted widespread interest in recent years. The condensate solutions for electromagnetic pulse propagating in 

metamaterial waveguide array have been discussed [17]. The generation of staggered and unstaggered discrete 

solitons in metamaterial waveguide array near the zero-diffraction points has been reported [18]. The modulation 

instability and the generation of ultrashort pulses are highly influenced by the interaction of nonlinear effects of 

individual waveguides [19]. The diffractionless wave solutions in the non-Kerr photonic Lieb lattice with 

metamaterials have been derived and the stability of the solution has been analyzed [20].  

Here we investigate the photonic spectrum pertaining to a waveguide array made of metamaterials. The 

unit cell of the waveguide array consists of three waveguides of different optical properties as depicted in Fig. 1. We 

model the nonlinear evolution of electromagnetic waves in the array by a generalized nonlinear Schrodinger 

equation replacing the Laplacian operator with the graph Laplacian. Taking the engineering freedom of metamaterial 

to tune material parameters into account, we analyze the dispersion relation for all possible combinations of 

nonlinear coefficient matrix including the defocussing nonlinearity. Here we report the impact of high-intensity 

optical light to manipulate the band structure of a photonic Lieb lattice made of metamaterial. 

 

 
FIG. 1: The graphical representation of the unit cell of the photonic Lieb lattice with metamaterials. The 

vertices in the graph stand for waveguides and bonds represent the coupling between them. The arrows are oriented 

arbitrarily. 

 

2. Theoretical model 

The unit cell of the lattice consists of three waveguides, 1, 2 and 3. 𝐴𝑛,𝑚 , 𝐵𝑛,𝑚  and 𝐶𝑛,𝑚  stand for the 

amplitude of the waves propagating in waveguide 1, 2 and 3, respectively. The waveguides are nonidentical, they 

have different electromagnetic wave propagation characteristics such as refractive index, dielectric polarization 

propagation constant, etc. We will replace the waveguide array with its graphical representation. We consider the 

array as a graph 𝐺 𝜌, 𝜎 , which consists of a node-set 𝜌 and a branch set 𝜎. Here the branch set  𝜎  is an unordered 

pair of distinct nodes. Let us assume the elements in node set and branch set as 𝜌 =   1, 2, 3… . 𝑗  and 𝜎 =

  1, 2, 3… . 𝑘 , respectively such that 𝑗 >  1 and 𝑘 >  0. The graphical representation of a cross-section of 𝑛𝑡ℎ  unit 

cell of the photonic Lieb lattice made of metamaterials is shown in Fig. 2, which has 𝑗 = 3 nodes and 𝑘 = 2 branches. 

The vertices in the graph stand for waveguides and bonds represent the coupling between them. The propagation of 

high-intensity electromagnetic waves in the array can be modeled by a generalized nonlinear Schrodinger equation 

replacing the Laplacian operator by the graph Laplacian as follows, 
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𝑖  𝜎1
𝜕𝐴𝑛 ,𝑚

𝜕𝜉
 +

𝜕𝐴𝑛 ,𝑚

 𝜕𝑡
  =

 𝛼 𝐴𝑛,𝑚  −  𝐵𝑛−1,𝑚   +  𝛼 𝐵𝑛,𝑚  −  𝐴𝑛,𝑚 +  𝛽 𝐶𝑛,𝑚  −  𝐴𝑛,𝑚 +

                                                                                         𝛽 𝐴𝑛,𝑚  −  𝐶𝑛,𝑚−1  − 𝛾1 𝐴𝑛,𝑚  
2
𝐴𝑛,𝑚 ,                                         (1a) 

 𝑖  𝜎2
𝜕𝐵𝑛 ,𝑚

 𝜕𝜉
 +

𝜕𝐵𝑛 ,𝑚

 𝜕𝑡
   =  𝛼 𝐵𝑛 ,𝑚  −  𝐴𝑛,𝑚  +  𝛼 𝐴𝑛+1,𝑚  −  𝐵𝑛 ,𝑚  − 𝛾2 𝐵𝑛,𝑚  

2
𝐵𝑛,𝑚 ,                                       (1b) 

 𝑖  𝜎3
𝜕𝐶𝑛 ,𝑚

 𝜕𝜉
 +

𝜕𝐶𝑛 ,𝑚

 𝜕𝑡
   =  𝛽 𝐶𝑛,𝑚  −  𝐴𝑛,𝑚 +  𝛽 𝐴𝑛,𝑚+1  −  𝐶𝑛,𝑚 − 𝛾3 𝐶𝑛,𝑚  

2
𝐶𝑛,𝑚 .                                               (1c) 

 

where the pair (n, m) of integers locates the unit cell in the two-dimensional Lieb lattice. σj with 𝑗 = 1, 2 and 3 stands 

for the sign of refractive index in respective waveguides. γj with 𝑗 = 1, 2 and 3 are the selfphase modulation 

coefficients in waveguides 1, 2, and 3 respectively.  

 

 
FIG. 2: Graphical representation showing the arraignment of unit cells in the waveguide array. Shaded portion in 

the graph shows the  𝑛,𝑚 𝑡ℎ  unit cell and adjacent waveguides directly coupled to it in the nearest neighbor unit 

cells. 

 

Moreover, 𝛼 and 𝛽 are the coupling coefficients along branches 1 and 2, respectively. To express the above set of 

Eq. 1 in a generalized form system of equation let us consider Fig. 2. Fig. 2 shows the coupling of  𝑛,𝑚  𝑡ℎ  unit cell 

with the nearest neighboring unit cells of the array. The shaded portion in the graph shows the  𝑛,𝑚  𝑡ℎ  unit cell and 

adjacent waveguides directly coupled to it in the nearest neighbor unit cells. The generalized form of system of Eq. 

(1) can be expressed as,  

                                 𝑖𝑆𝛹𝜉  +  𝑖𝛹𝑡  =  𝐺1𝛹 +  𝐺2𝛷 −  𝛤𝑃 𝛹 ,                           (2)  

 where 𝑆 is the refractive index matrix, 𝛹 amplitude matrix, which corresponds to the  𝑛,𝑚  𝑡ℎ   unit cell of the 

lattice and 𝛷 is the amplitude matrix corresponds to the waveguide connected to  𝑛,𝑚  𝑡ℎ  unit cell from nearest 

neighboring unit cells. The 3 × 3 matrices 𝐺1 and 𝐺2 are graph Laplacian. Γ and P(Ψ) are the nonlinear coefficient 

matrix and the matrix corresponds to the self-phase modulation, respectively. Which are given by, 

𝑆 =  𝜎1  𝜎2  𝜎3  ,  

𝛹 =   

 𝐴𝑛,𝑚  

𝐵𝑛,𝑚

𝐶𝑛,𝑚

 ,  
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𝛷 =   

𝐴𝑛,𝑚+1  

𝐵𝑛−1,𝑚  

𝐶𝑛,𝑚−1

  ,  

𝐺1  =   
0 𝛼 𝛽 
−𝛼 0 0
−𝛽 0 0

  ,  

𝐺2  =   
0 −𝛼 −𝛽 
𝛼 0 0
𝛽 0 0

  ,  

𝛤 =  𝛾1  𝛾2 𝛾3   

 and  

𝑃 𝛹 =  

 

 
 

 𝐴𝑛,𝑚  
2
𝐴𝑛,𝑚  

 𝐵𝑛,𝑚  
2
𝐵𝑛,𝑚  .

 𝐵𝑛,𝑚  
2
𝐵𝑛,𝑚

 

 
 

  

Considering the symmetry of the structure, here we have assumed the amplitudes of the wave propagating in all 1-

nodes connected to are  𝑛,𝑚 𝑡ℎ  unit cell are equal. 

 

3. Dispersion Relation 

Now we derive the dispersion relations satisfied by the waves in the Lieb lattice made of metamaterials. Let 

us assume the quasiharmonic waves with the following form as the solution of Eq. (2),  

𝛹 =  𝜓𝑒−𝑖𝜔𝜏 +𝑖𝑘𝑧𝜁+𝑖𝑘1𝑛+𝑖𝑘2𝑚 ,                            (3)  

where 

 𝜓 =  

𝐴0 
𝐵0  
𝐶0

 ,  

𝑘𝑧  is a small correction to the wave vector along the propagation direction, 𝑘1  =  𝑘𝑥ℎ  and 𝑘2  =  𝑘𝑦ℎ  are 

normalized transverse wave-numbers. ℎ is the lattice parameter of the waveguide array. Also 𝑘𝑥  and 𝑘𝑦  are the quasi 

(Bloch) momenta of the two dimensional photonic Lieb lattice. After substituting Eq. (3) in Eq. (2) one can arrive in 

the following equation,  

𝐷𝑚𝜓 =  0               (4)  

where  

𝐷𝑚  =   

𝜔 −  𝑘𝑧  +  𝑓1  𝜅1
∗ 𝜅2

∗

𝜅1 𝜔 +  𝑘𝑧  +  𝑓2 0

 𝜅2 0 𝜔 + 𝑘𝑧  +  𝑓3

  ,  

also, where  

𝐹 =   

𝑓1 

𝑓2 
𝑓3

   =  𝛤 𝜓 2 ,  

which provides the nonlinearity contribution of dispersion relation originated as a result of Kerr nonlinearity. and the 

refractive index matrix is given by,  

𝑆 =   1 −1 −1  .  

The normalized wave numbers in Eq. (4) are given by ,  

𝜅1  =  𝛼(1 + 𝑒𝑖𝑘1  ),            (5a)  

𝜅2  =  𝛽(1 +  𝑒𝑖𝑘2  ).            (5b)  

 Non-zero solutions of Eq. (4) exist only when the determinant associated the matrix Dm vanishes. This 

vanishing condition leads to the dispersion satisfied by the array. 
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3.1 Linear case 

Let us consider the case where the nonlinear coefficient matrix (𝛤) is a null matrix, which leads to linear 

polarization in all the nodes of the graph given in Fig. 1. Here we plot the frequency of electromagnetic waves 

passing through the lattice against the two-dimensional Bloch wave vectors denoted by 𝑘1 and 𝑘2 (dispersion 

relation) for linear polarization case in Fig. 3. It should be noted that the dispersion curve supports three 

branches, each of which corresponds to three energy bands. One of them is a perfectly flat, similar dispersion 

curve that can be observed in the case of photonic Lieb lattices and kagome lattices [13] and is known as a flat 

band. The other two are dispersive curved bands. The flat bands are static, and do not support the propagation of 

the localized state, and hence the localized states of flat bands are diffractionless. From Fig. 3, it is clear that at 

first Brillouin zone boundaries, the two curved dispersive bands intersect with the degenerate flat band located 

in the middle of them. 

 

 
 

FIG. 3: Linear dispersion relation of the Lieb lattice with metamaterials. 

 

3.2 Nonlinear case 

Now, we will discuss the nature of the dispersion curve when the nonlinear coefficient matrix (𝛤) is not a null 

matrix. Taking the advantage of engineering freedom of a metamaterial waveguide array, we here consider 

combinations of linear and nonlinear nodes. As a result, the nonlinear coefficient matrix of the waveguide array 

is a tunable matrix and hence it can support different dispersion curves depending upon the nature of 

nonlinearity. 

Fig. 4 represents the dispersion curves supported by the waveguide array for different nonlinear coefficient 

matrices. Fig. 4(a) corresponds to the case where the nonlinear coefficient matrix, 𝛤 =  1 0 0 . Comparing 

above 𝛤 matrix with refractive index matrix 𝑆 = ( 1 −1 −1 )  . one can see that in this case all positive 

index nodes are nonlinear with focussing nonlinearity, whereas all negative index nodes are linear. Compared 

with linear case here the flatband is shifted towards high and positive frequency from zero. 
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FIG. 4: (Color online.) Nonlinear dispersion relation of the Lieb lattice with metamaterials. 

 

Now, consider the case 𝛤 =  0 1 1 ., where all positive index nodes are linear and all negative index nodes are 

nonlinear with focussing nonlinearity. Here the flat band is shifted further towards high and positive frequency, 

however, the dispersive band remains unchanged. When 𝛤 is a matrix of ones, the dispersion relation is depicted in 

Fig. 4(c). When all the nodes are nonlinear the degeneracy of the dispersion curve is decreased and the flat band is 

located on the top of the dispersive bands. The dispersive bands are shifted towards low and negative frequency 

regimes. Now we discuss the impact of defocussing nonlinearity associated with the waveguides. In this situation at 

least one of the elements in the Γ is a negative quantity. Fig. 4(d) depicts the case with 𝛤 = ( 1 −1 −1 ). That is 

all the positive index nodes of the array are with focussing nonlinearity and all the negative index nodes of the array 

are with defocussing nonlinearity. In this case, the upper conical band is shifted upwards, whereas the flat band and 

lower dispersive bands are shifted downwards. Now the situation is different when the positive index nodes of the 

array are with defocussing nonlinearity and all the negative index nodes of the array are with focussing nonlinearity 

as shown in Fig. 4(e). The lower dispersive band is shifted downwards, on the other hand, the upper dispersive band 

and flat band are shifted upwards to a positive frequency regime. Now, when all the nodes are with defocusing 

nonlinear type polarization, the dispersion curve is depicted in Fig. 4(f). That is when 𝛤 = ( −1 −1 −1 ), the 

positions of dispersive bands are similar to the linear case and the flat band shifted downwards to negative frequency. 

Thus we can conclude that the nonzero nonlinear coefficient matrix alters the position of the flat band and conical 

band. In other words, the high-intensity optical light can be used to shift degenerate as well as dispersive bands and 

to manipulate the band structure of a photonic Lieb lattice made of metamaterial. 

 

4. Conclusion 

In this paper, we have theoretically studied the nature dispersion relation pertaining to a waveguide array 

made of metamaterials adopting the graph Laplacian approach. The waveguide array consists of unit cells with three 

waveguides of different optical properties. We have modeled the propagation of the high-intensity electromagnetic 

wave in the array by a generalized nonlinear Schrodinger equation replacing the Laplacian operator with the graph 

Laplacian. Considering the engineering freedom of metamaterial, we have studied the dispersion relation for all 
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possible combinations of nonlinear coefficient matrix including the defocussing nonlinearity. We have found that 

when the nonlinear coefficient matrix is a null matrix the dispersion curve supports three branches, each of them 

corresponds to three energy bands and one of them is perfectly flat. On the other hand when it is a matrix of ones the 

degeneracy of the dispersion curve is decreased and the flat band is located on the top of the dispersive bands. Thus 

this study reports the impact of high-intensity optical light to manipulate the band structure of a photonic Lieb lattice 

made of metamaterial. 
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