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Abstract:- This study explores the use of differential equation-based mathematical models to understand and 

control the spread of Nipah virus (NiV) and COVID-19. By examining transmission dynamics and key 

epidemiological parameters, the research evaluates the effectiveness of intervention strategies such as 

vaccination, quarantine, social distancing, and public health campaigns. The analysis highlights the high fatality 

rate and zoonotic transmission of NiV compared to the high transmissibility and socioeconomic impact of 

COVID-19. Insights from these models aim to inform strategic interventions for mitigating future outbreaks, 

drawing comparisons to enhance public health responses to both pathogens. 

Keywords: Nipah virus (NiV), COVID-19, Vaccination efficacy, Outbreaks, Transmission. 

 

1. Introduction 

The emergence of novel infectious diseases presents significant challenges to global public health. Two such 

pathogens, the Nipah virus (NiV) and the coronavirus disease 2019 (COVID-19), have caused substantial 

morbidity and mortality. The Nipah virus, first identified in Malaysia in 1998, is a zoonotic pathogen with a 

high fatality rate, often causing severe respiratory and neurological symptoms [1][2]. In contrast, COVID-19, 

caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), emerged in late 2019 and rapidly 

escalated into a global pandemic, characterized by its high transmissibility and significant socioeconomic 

impact [3-5].   

 Mathematical modeling, particularly through differential equations, has proven to be an invaluable tool in 

understanding and controlling the spread of infectious diseases [6-7].  This study, titled "Mathematical 

Strategies Using Differential Equations for Controlling Nipah Virus and COVID-19: A Combined Study," aims 

to develop and analyze mathematical models that can effectively describe the transmission dynamics of both 

Nipah virus and COVID-19. By leveraging these models, we seek to propose strategic interventions that could 

mitigate the spread of these pathogens. 

 Nipah virus is a highly lethal pathogen with an estimated case fatality rate of 40 % 𝑡𝑜 75 %, varying by 

outbreak and health care context [8-10].  The primary mode of transmission is through direct contact with 

infected animals or their bodily fluids, and human-to-human transmission has also been documented [11].  

Previous outbreaks have highlighted the virus's potential to cause severe outbreaks with high mortality rates, 

necessitating robust control measures [12].  Mathematical models for NiV have primarily focused on 

understanding its transmission dynamics and evaluating the impact of various intervention strategies. 

 COVID-19 has reshaped the modern world, leading to unprecedented public health measures and global 

scientific collaboration. The disease is primarily transmitted through respiratory droplets, with secondary 

transmission occurring via fomites and close contact [13-14].  The rapid spread of SARS-CoV-2 has prompted 

extensive research into its epidemiological characteristics and control mechanisms. Mathematical models have 

been crucial in forecasting infection rates, evaluating the effectiveness of interventions such as social distancing, 

quarantine, and vaccination, and informing public health policies [15].   
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  Differential equations provide a framework for modeling the dynamic behavior of infectious diseases by 

describing the rate of change of populations within a system. For infectious disease modeling, compartmental 

models such as the Susceptible-Infectious-Recovered (SIR) model and its variants are widely used [16].  These 

models divide the population into compartments and use differential equations to describe the flow of 

individuals between compartments based on disease transmission rates, recovery rates, and other factors. In the 

context of NiV and COVID-19, differential equations can capture the complexities of transmission dynamics, 

including the effects of latency periods, varying contact rates, and heterogeneous mixing patterns within 

populations [17-18].  By fitting these models to epidemiological data, we can estimate key parameters, predict 

future outbreaks, and evaluate the potential impact of different control strategies [19-20].   

  In this research article with the help of mathematical models using differential equations that we represent the 

transmission dynamics of Nipah virus and COVID-19. We estimate the critical parameters influencing the 

spread of both viruses using available epidemiological data. Also we analyze the effectiveness of various 

intervention strategies, including vaccination, quarantine, social distancing, and public health campaigns, in 

controlling the spread of these diseases. We compare and contrast the transmission dynamics and control 

measures of NiV and COVID-19, identifying similarities and differences that could inform future outbreak 

response strategies. 

 

2. Mathematical Model 

We formulate a mathematical model to describe the transmission dynamics of the Nipah virus (NiV) or COVID-

19. The progression of NiV or COVID-19 within the population is simplified into four, representing different 

groups of individuals. 𝑆  denotes Individuals vulnerable to contracting NiV or COVID-19, 𝐸 denotes individuals 

who have come into contact with NiV or COVID-19 but are not yet infectious, 𝐼 denotes individuals who are 

infected with NiV or COVID-19 and capable of transmitting the virus. 𝑅 denotes individuals who have 

recovered from NiV or COVID-19 and are immune. 

 
Figure 1: Flow diagram for a model system (2.1) to (2.4). 

 

                  
𝑑𝑆

𝑑𝑡
= 𝐴 − 

𝛽 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼)

𝑁
𝑆𝐼 − 𝜇 𝑆,                                                        …(2.1) 

                  
𝑑𝐸

𝑑𝑡
=

𝛽 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼)

𝑁
𝑆𝐼 − 𝛽1𝐸 − 𝑘1𝐸 − 𝜇 𝐸,                                        …(2.2)   

                                  
𝑑𝐼

𝑑𝑡
= 𝛽1𝐸 − 𝑘2 𝐼 −  𝜇1 𝐼 − 𝜇 𝐼,                                                                    …(2.3)       

                  
𝑑𝑅

𝑑𝑡
= 𝑘1 𝐸 +  𝑘2 𝐼 − 𝜇 𝑅                                                                            …(2.4) 

with the condition that  

                                    𝑆(0), 𝐸(0), 𝐼(0) and   𝑅(0) ≥ 0 

where,   𝑁 =  𝑆 + 𝐸 + 𝐼 + 𝑅.                            

 This approach not only provides insights into the spread of NiV but also serves as a foundation for comparing 

and contrasting with COVID-19 transmission dynamics. By leveraging these mathematical strategies, we aim to 

propose effective intervention measures to control the spread of both Nipah virus and COVID-19. 
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Table 1: Table of Description 

                Variable and Parameter 

 

                                 𝑆 

                                 𝐸 

                                 𝐼 

                                 𝑅 

                                 𝐴 

                                 𝛽 

                                 𝛽1 

                                 𝜇 

                                 𝜇1 

                                 𝑘1 

                                  

                                  

                                 𝑘2 

                                  

                                  

                                 𝜂 

                                 𝛿 

 

                                  𝛾 

 

                                 𝛼 

                                 𝜆 

                         Description 

 

               Fraction of susceptible case 

               Fraction of exposed case 

               Fraction of infected case 

               Fraction of recovered case 

               Recruitment Rate  

 Rate of effective transmission of Nipah Virus 

             Progression rate of infection 

              Natural death rate 

               Death rate due to disease       

        Recovery rate of exposed individuals 

                       due to awareness 

       Recovery rate of infectious individuals 

                       due to treatment 

                Number of quarantine  individuals 

           Availability of isolation centers    

           Enhanced personal hygiene due to public      

           enlightenment 

           Rate of public enlightenment 

           Surveillance coverage 

 

Let us now outline Equations (2.1)-(2.4) of our model in detail. We begin with the birth rate, represented by 𝐴, 

which indicates the influx of individuals becoming susceptible. From this, we subtract the term  𝜇 𝑆,  accounting 

for the natural death rate within the susceptible population, as shown in Equation (2.1). 

  In this equation, the second term  
𝛽 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼)

𝑁
𝑆𝐼 quantifies the rate at which susceptible individuals 

become exposed, as illustrated in Figure 1. This same term is also added in Equation (2.2), where it represents 

the new exposures. In addition to this, Equation (2.2) includes the terms   𝜇 𝐸, and  𝑘1𝐸  which denote the rates 

at which exposed individuals die from natural causes (not necessarily NiV or COVID-19), transition to the 

infected category, and recover, respectively.                                                

 

3. Model analysis 

3.1. Feasible solution 

  The feasible solution set, which remains positively invariant under the model, is describe by 

                                  Ω =  { (𝑆, 𝐸, 𝐼, 𝑅) ∈  𝑅+
4 :  𝑆 + 𝐸 + 𝐼 + 𝑅 = 𝑁 }               

It will be demonstrated from Equations (2.1) to (2.4) that the region remains positively invariant. The total 

population is expressed as 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅. 

        By adding Equations (2.1) to (2.4), we get 

For constant parameters  𝐴, 𝑣, 𝑣𝑠  and  𝜇. 

                                                           
𝑑𝑁

𝑑𝑡
  = 𝐴 − 𝜇1 𝐼 − 𝜇 𝑁                                            ...(3.1) 

Thus, from above it is clear that if the system is disease free (𝑖. 𝑒. 𝐼 = 0) then equation (3.1) takes the form as 
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𝑑𝑁

𝑑𝑡
  = 𝐴 − 𝜇 𝑁                                                        ...(3.2) 

3.2. Methods of  solution               

Above equation (3.2) can be written as           

                                                           
𝑑𝑁

𝑑𝑡
+ 𝜇 𝑁 = 𝐴               

This is a linear differential equation of oder one and degree one. 

        Compare above equation with 
𝑑𝑁

𝑑𝑡
+ 𝑃𝑁 = 𝑄 then 𝑃 = 𝜇  𝑎𝑛𝑑 𝑄 =  𝐴. 

        Integrating factors 𝑒𝜇𝑡 , its solution is given by 𝑁(𝑡) =
𝐴

𝜇
+  𝐶𝑒𝜇𝑡 . 

At 𝑡 = 0 

                           𝑁(0) =  
𝐴

𝜇
+  𝐶 

           Thus,                𝐶 =  𝑁(0) − 
𝐴

𝜇
          

  Hence the solution is given by 

                          𝑁(𝑡) =  
𝐴

𝜇
+ {𝑁(0) − 

𝐴

𝜇
} 𝑒𝜇𝑡           

  When 𝑡 → ∞  𝑡ℎ𝑒𝑛 𝑁(𝑡) ≥  
𝐴

𝜇
. Therefore, Ω is positively invariant. 

3.3. Existence of steady states of the system 

The equilibrium points of the system can be found by setting the rate of change of all compartments to zero. 

     Thus,   
𝑑𝑆

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0. 

From (2.1) to (2.4),  we have 

                                   𝐴 − 
𝛽 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼)

𝑁
𝑆𝐼 − 𝜇 𝑆 = 0,               ...(3.3) 

                                              
𝛽 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼)

𝑁
𝑆𝐼 − 𝑟1𝐸 = 0,                                              ...(3.4) 

                                                                     𝛽1 𝐸 − 𝑟2 𝐼 = 0,                                               ...(3.5) 

                                                       𝑘1 𝐸 +  𝑘2 𝐼 − 𝜇 𝑅 = 0                                                ...(3.6) 

  where       𝑟1 = 𝛽1  +  𝑘1  + 𝜇   𝑎𝑛𝑑  𝑟2 = 𝜇1  +  𝑘2  + 𝜇.     

From equation (3.5) 

                                                𝐼 =  
𝛽1 𝐸

𝑟2
                                                                                 ...(3.7) 

Using these value in (3.4), we get  

                                           
𝛽 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼)

𝑁
𝑆.

𝛽1 𝐸

𝑟2
− 𝑟1𝐸 = 0 

              or,                       (
𝛽𝛽1 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼)

𝑁 𝑟2
𝑆 − 𝑟1) 𝐸 = 0 

From above, either 𝐸 = 0 𝑜𝑟  
𝛽𝛽1 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼)

𝑁 𝑟2
𝑆 − 𝑟1 = 0.  

                                                          𝑆 =
𝑟1 𝑟2 𝑁

𝛽𝛽1 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼)
                                            ...(3.8) 

Similarly we can find the value of E, I and R which is given as 

                                             𝐸 =
𝐴𝛽 𝛽1 𝑟2 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆  𝛼)−𝑟1 𝑟2

2   𝜇 𝑁

𝛽 𝛽1 𝑟1 𝑟2 (1−𝜂 𝜆 𝛾)(1−𝛾  𝜆  𝛼)
                                   ...(3.9) 
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                                             𝐼 =
𝛽𝛽1 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼)−𝑟1 𝑟2 𝜇 𝑁

𝛽  𝑟1 𝑟2 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆  𝛼)
                                           ...(3.10) 

and   𝑅 = 
𝐴𝛽 𝛽1 𝑘1 𝑟2 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆   𝛼)−𝑘1 𝑟1 𝑟2

2 𝜇 𝑁+𝐴𝛽 𝛽1
2 𝑘2(1−𝜂 𝜆 𝛾)(1−𝛾 𝜆  𝛼)−𝛽1 𝑘2 𝑟1 𝑟2 𝜇 𝑁

𝛽  𝑟1 𝑟2 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆  𝛼) 
  ...(3.11) 

  Conversely, when 𝐸 =  0, Equation (3.7) gives us 𝐼 =  0. Similarly, for these values, Equation (3.6) results in 

𝑅 =  0. Consequently, from Equation (3.3), we obtain  𝑆 =  𝐴. Therefore, the disease-free equilibrium (DFE) 

point is (
𝐴

𝜇
 ,0 ,0, 0 ) and the endemic equilibrium point is (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗), where: 

                                                                 𝑆∗  =  
𝑟1𝑟2 𝑁

𝛽1 𝑇
 , 

   𝐸∗  =  
𝐴 𝛽1 𝑟2 𝑇 −  𝑟1 𝑟2

2 𝜇 𝑁

𝛽 𝑟1𝑟2 𝑇
, 

                                                                𝐼∗  =  
𝐴𝛽1 𝑇−𝑟1 𝑟2 𝜇 𝑁

𝑟1𝑟2 𝑇
    and 

                                                               𝑅∗  =   
𝐴𝛽1 𝑘1 𝑟2 𝑇− 𝑘1𝑟1 𝑟2

2 𝜇 𝑁 + 𝐴𝛽1
2 𝑘2𝑇 –𝛽1𝑘2 𝑟1𝑟2 𝜇 𝑁

𝛽1 𝑟1 𝑟2 𝑇
 

          Where,     𝑇 = 𝛽 (1 − 𝜂 𝜆 𝛾)(1 − 𝛾 𝜆  𝛼). 

 

3.4. Basic reproductive number                                        

          The basic reproduction number, 𝑅0, quantifies the potential for disease transmission within a population. 

Mathematically, 𝑅0 is a threshold parameter that indicates the stability of a disease-free equilibrium and relates 

to the epidemic's peak and final size. It represents the expected number of secondary infections caused by a 

single primary case in a fully susceptible population. If 𝑅0 is less than 1, introduced infected individuals will, on 

average, fail to replace themselves, preventing the disease from spreading. Conversely, if 𝑅0 exceeds 1, the 

number of infected individuals will grow with each generation, leading to disease spread. While 𝑅0is crucial for 

determining whether a diseases can invade a fully susceptible population, it may become less accurate as 

conditions change during the spread. Nonetheless, in many disease transmission models, the peak prevalence of 

infected hosts and the epidemic's final size both increase with 𝑅0, making it a valuable metric for assessing 

disease spread. 

        The new infections come from the term involving  𝛽  in the equation for E: 

                      𝐹 = [
𝛽 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼)}

𝑁
𝑆𝐼

0
]                                                                                  

The transition terms include all other terms that do not represent new infections: 

                      𝑉 = [
𝛽1 𝐸 + 𝑘1 𝐸 + 𝜇 𝐸
− 𝑘2 𝐼 + 𝜇1 𝐼 + 𝜇 𝐼

]                           

The Jacobian matrices of 𝐹 and 𝑉 are calculated at the disease-free equilibrium (DFE), where 𝑆 = 𝑁, 𝐸 = 0,

𝐼 = 0 𝑎𝑛𝑑 𝑅 = 0. 

                                      𝐽𝐹 = [

𝜕𝐹1

𝜕𝐸

𝜕𝐹1

𝜕𝐸
𝜕𝐹2

𝜕𝐸

𝜕𝐹2

𝜕𝐸

]                                                                                  

 

                                         = [0
𝛽 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼)}

𝑁
 𝑆

0 0
]                 

                                         = [
0 𝛽 (1 − 𝜂 𝜆 𝛾)(1 − 𝛾 𝜆 𝛼) 
0 0

]                                                                                                                                                   

Now,  

 

                                   𝐽𝑣 = [

𝜕𝑉1

𝜕𝐸

𝜕𝑉1

𝜕𝐸
𝜕𝑉2

𝜕𝐸

𝜕𝑉2

𝜕𝐸

]                
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                                         = [
𝛽1  +  𝑘1   + 𝜇 𝛽 (1 − 𝜂 𝜆 𝛾)(1 − 𝛾 𝜆 𝛼) 

−𝛽1  𝑘2  + 𝜇1  + 𝜇
]                                               

The next-generation matrix is  

                                                         𝐾 =  𝐽𝐹  𝐽𝑉
−1                                                                                                    ...(3.12) 

                                         = [

1

 𝛽1 + 𝑘1  +𝜇
0 

𝛽1

(𝛽1 + 𝑘1  +𝜇)(𝑘2 +𝜇1 +𝜇)
 

1

𝑘2 +𝜇1 +𝜇

]                    

        

Using the value of 𝐽𝐹   and 𝐽𝑉
−1   in equation (3.12), we get                     

Now,    

            𝐾 =  [
0

𝛽 𝛽1 (1 − 𝜂 𝜆 𝛾)(1 − 𝛾 𝜆 𝛼

(𝛽1  +  𝑘1   + 𝜇)(𝑘2  + 𝜇1  + 𝜇)
 

0 0

].                                                                                                    

The basic reproductive number 𝑅0 is the largest eigenvalue (spectral radius) of the matrix  

 K. Here, it is simply the value in the matrix : 

              

                              𝑅0 = 
𝛽 𝛽1 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼

(𝛽1 + 𝑘1  +𝜇)(𝑘2 +𝜇1 +𝜇)
.  

Thus, the basic reproductive number 𝑅0 is : 

           

                                             𝑅0 = 
𝛽 𝛽1 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼

(𝛽1 + 𝑘1  +𝜇)(𝑘2 +𝜇1 +𝜇)
.                                                                  ...(3.13) 

3.5. Stability analysis 

Mathematical models are becoming increasingly complex as they incorporate higher degrees of nonlinearity to 

address real-world problems. Finding explicit solutions for these models is nearly impossible. While numerical 

simulations can provide good approximate solutions with fixed parameters, the general solution may remain 

elusive. In such cases, stability analysis is a valuable tool to understand the behavior of the solutions. Stability 

analysis can effectively predict the long-term behavior of model solutions. Generally, two types of stability 

analysis are widely used: local and global. Local stability focuses on the behavior of the model solution near an 

equilibrium point, whereas global stability describes the solution's behavior across the entire domain. 

3.5.1. Local stability analysis 

In this section, we aim to demonstrate that the DFE point is locally stable using the following theorem 

Theorem 1. The disease free equilibrium 𝐸{𝐷𝐹𝐸} of the system (2.1) to (2.4) is locally asymptotically stable if 

𝑅0  <  1 and unstable if 𝑅0  >  1. 

Proof.  First we determine the Jacobian Matrix at DFE. The Jacobian matrix 𝐽 of the system at any point 

(𝑆, 𝐸, 𝐼, 𝑅)  is derived by taking the partial derivatives of each equation with respect to each variable. 

                                         𝐽𝐹 =

[
 
 
 
 
 
 
𝜕𝑓1

𝜕𝑆

𝜕𝑓1

𝜕𝐸
𝜕𝑓2

𝜕𝐸

𝜕𝑓

𝜕𝐸

  

𝜕𝑓1

𝜕𝐼

𝜕𝑓1

𝜕𝑅
𝜕𝑓2

𝜕𝐸

𝜕𝑓

𝜕𝐸
𝜕𝑓3

𝜕𝑆

𝜕𝑓3

𝜕𝐸
𝜕𝑓4

𝜕𝑆

𝜕𝑓4

𝜕𝐸

  

𝜕𝑓3

𝜕𝐼

𝜕𝑓3 

𝜕𝑅
𝜕𝑓4

𝜕𝐼

𝜕𝑓4

𝜕𝑅 ]
 
 
 
 
 
 

                                                                                  

Evaluating the partial derivatives at the DFE  (𝑆0, 𝐸0, 𝐼0, 𝑅0) =  (𝑁, 0, 0, 0) 

                                         𝐽𝐹 =

[
 
 
 
−𝜇 0
0 −(𝛽1 + 𝑘1 + 𝜇1)

  
−𝛽 (1 − 𝜂 𝜆 𝛾)(1 − 𝛾 𝜆  𝛼) 0

     𝛽 (1 − 𝜂 𝜆 𝛾)(1 − 𝛾 𝜆  𝛼)  0

0 −(𝑘2  + 𝜇1  + 𝜇)
0 𝑘1

            
−(𝑘2  + 𝜇1  + 𝜇)          0

𝑘2 −𝜇 ]
 
 
 
                         

  To determine the local stability of the DFE, we need to find the eigenvalues of the Jacobian matrix. The DFE is 

locally asymptotically stable if all the eigenvalues have negative real parts. 

       Let us solve for the eigenvalues of 𝐽.          



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

256 

                                                          |(𝐽 − 𝜆′ 𝐼| = 0                                                                       ...(3.14) 

where 𝐼 is an identity matrix and 𝜆′  is an eigen value. 

                              

[
 
 
 
−𝜇 − 𝜆′ 0

0 −(𝛽1 + 𝑘1 + 𝜇1) − 𝜆′
  

−𝛽 (1 − 𝜂 𝜆 𝛾)(1 − 𝛾 𝜆  𝛼) 0

     𝛽 (1 − 𝜂 𝜆 𝛾)(1 − 𝛾 𝜆  𝛼)  0

0                 𝛽1

0                𝑘1
                 

−(𝑘2  + 𝜇1  + 𝜇) − 𝜆′          0

𝑘2      −𝜇 − 𝜆′ ]
 
 
 

= 0               

  This determinant leads to a characteristic polynomial. The eigenvalues can be determined by solving this 

polynomial equation. However, from the structure of the Jacobian matrix, we can observe that there are two 

eigenvalues that are straightforward 𝜆1 = −𝜇 and 𝜆4 = −𝜇 (from the first row/column and from the fourth 

row/column). 

       For the 2 ×  2 submatrix involving 𝐸 and 𝐼 :       

 

                                             |
−(𝛽1 + 𝑘1  + 𝜇1) − 𝜆 𝛽 (1 − 𝜂 𝜆 𝛾)(1 − 𝛾 𝜆  𝛼)

𝛽1 −(𝑘2  + 𝜇1  + 𝜇) − 𝜆′ 
| = 0      

 

Or,   [−(𝛽1 + 𝑘1  + 𝜇1) − 𝜆][−(𝑘2  + 𝜇1  + 𝜇) − 𝜆′] − [𝛽 (1 − 𝜂 𝜆 𝛾)(1 − 𝛾 𝜆  𝛼)]𝛽1 = 0 

Or,    [ (𝛽1  + 𝑘1  + 𝜇1) + 𝜆′][(𝑘2  + 𝜇1  + 𝜇) + 𝜆′] = 𝛽 𝛽1 (1 − 𝜂 𝜆 𝛾)(1 − 𝛾 𝜆  𝛼) 

 

Solving this quadratic equation gives us the other two eigenvalues. The critical threshold 𝑅0 can be inferred 

from the signs of these eigenvalues: 

                                                    𝑅0 = 
𝛽 𝛽1 (1−𝜂 𝜆 𝛾)(1−𝛾 𝜆 𝛼

(𝛽1 + 𝑘1  +𝜇)(𝑘2 +𝜇1 +𝜇)
                                                           ...(3.15) 

If 𝑅0 < 1, the real parts of all eigenvalues are negative, and the DFE is locally asymptotically stable. If 𝑅0 > 1,  

at least one eigenvalue has a positive real part, making the DFE unstable. 

 

   Therefore, the local stability analysis concludes that the DFE is locally asymptotically stable if  

   𝑅0 < 1 and unstable if 𝑅0 > 1. 

 

3.5.2. Global stability analysis 

    We will verify the global stability of the model by applying the Lyapunov principle, which is based on the 

following lemma. 

    Lemma 1. The Disease- free Equilibrium (DFE) of the system is globally asymptotically stable if 𝑅0 <

1.  𝐼𝑓  𝑅0 > 1,  the DFE is unstable. 

Proof.  As we know that the Disease-Free Equilibrium (DFE) is (𝑆, 𝐸, 𝐼, 𝑅) =  (𝑆0, 0, 0, 0) 

   Assuming a constant population size 𝑁 the DFE is: 

                                                         𝑆0 =
𝐴

𝜇
, 𝐸 = 0, 𝐼 = 0  and    𝑅 = 0. 

     A common choice for a Lyapunov function in epidemiological models is 𝑉 =  𝐸 + 𝐼. This function is non-

negative and zero only at the DFE. 

     Now, we find the time derivative of 𝑉.  

                                                  
𝑑𝑉

𝑑𝑡
= 

𝑑𝐸

𝑑𝑡
+ 

𝑑𝐼

𝑑𝑡
 

                                                 
𝑑𝑉

𝑑𝑡
 =  (

𝛽(1− 𝜂𝜆𝛾)(1−𝛾𝜆 𝛼)

𝑁
𝑆𝐼 − (𝛽 + 𝑘1 + 𝜇)𝐸 ) − (𝛽1𝐸 − (𝑘2 + 𝜇1 + 𝜇)𝐼)  

                                                           =  
𝛽(1− 𝜂𝜆𝛾)(1−𝛾𝜆 𝛼)

𝑁
𝑆𝐼 − (𝑘1  + 𝜇)𝐸 − (𝑘2  + 𝜇1 + 𝜇)𝐼 

Now, we evaluate the Lyapunov derivatives at the DFE, 𝑆 =  
𝐴

𝜇
, 𝐸 = 0, 𝐼 = 0  and 𝑅 = 0: 
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𝑑𝑉

𝑑𝑡
=  

𝛽(1 −  𝜂𝜆𝛾)(1 − 𝛾𝜆 𝛼)

𝑁
.
𝐴

𝜇
𝐼 − (𝑘1  + 𝜇)𝐸 − (𝑘2 + 𝜇1 + 𝜇)𝐼 

 Simplifying, we get 

 

                          
𝑑𝑉

𝑑𝑡
= (

𝛽(1− 𝜂𝜆𝛾)(1−𝛾𝜆 𝛼)𝐴

𝜇𝑁
 −  (𝑘2 + 𝜇1  + 𝜇))  𝐼 − (𝑘1  + 𝜇)𝐸                        ...(3.16) 

For the DFE to be globally asymptotically stable, 
𝑑𝑉

𝑑𝑡
 must be non positive. This condition is satisfied if the 

coefficient of 𝐼 is non-positive and 𝐸 is always non positive. 

Thus, we require  

                                
𝛽(1− 𝜂𝜆𝛾)(1−𝛾𝜆 𝛼)𝐴

𝜇𝑁
< (𝑘2 + 𝜇1  + 𝜇).                                                       ...(3.17) 

This condition is equivalent to 𝑅0 < 1 where 

 

                                               𝑅0 = 
𝛽𝛽1(1− 𝜂𝜆𝛾)(1−𝛾𝜆 𝛼)𝐴

(𝛽1+ 𝑘1 +𝜇 )(𝑘2 +𝜇1 +𝜇)
.                                                       ...(3.18) 

 If 𝑅0 < 1, then  
𝑑𝑉

𝑑𝑡
≤  0 , indicating that the DFE is globally asymptotically stable. 

   Hence using Lyapunov function 𝑉 = 𝐸 + 𝐼 and its derivative, we conclude that the Disease- free Equilibrium 

(DFE) of the system is  globally asymptotically stable if 𝑅0 < 1. If  

     𝑅0 > 1, the DFE is unstable, and the disease will spread in the population.  

4.  Numerical simulation 

 We present numerical simulations of the proposed control problem, utilizing clinically approved values relevant 

to Bangladesh for Nipah virus in case I and COVID-19 of India in case II, as outlined in Table 2. Our primary 

goal is to examine and understand the impact of control parameters, specifically the number of quarantined 

individuals 𝜂 and enhanced personal hygiene due to public awareness 𝛾. Figures (2) − (8) illustrate the 

numerical outcomes of the model for varying control parameters. Figure 2 depicts the typical behavior of the 

susceptible, exposed, infected, and recovered populations without any control measures for Nipah virus in 

Bangladesh. It reveals that the number of susceptible individuals decreases from the initial stage due to the 

diminishing nature of this compartment over time, with the exposed population exhibiting a similar trend. 

                                                 

Table 2: Table of Description 

           Parameter       Case I/ Reference    Case II/ Reference 

             𝑨        4751 day−1[21] 35542 day−1[22] 

              𝛽        0.75 day−1[23]         0.75 day−1[19] 

              𝛽1          0.60 day−1[23]         0.60 day−1[23] 

              𝜇         3.8642 × 10−5 [24]      3.8642 × 10−5 [20] 

             𝜇1        0.76 day−1[24]      0.8 day−1 [25] 

             𝑘1         0.15 day−1[23]      0.15 day−1[23] 

             𝑘2         0.09 day−1[23]      0.09 day−1[23] 

             𝜂         0 [Assumed]         0 [Assumed] 

             𝛿         0.65 [23]         0.45 [25] 

             𝛾         0 [Assumed]         0 [Assumed] 
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            𝛼         0.90 [23]         0.85 [26] 

             𝜆         0.85 [23]        0.85 [23] 

 

In this scenario, the contact rate significantly influences the spread of the disease throughout the population. 

Close observation of the infected compartment reveals that the number of infected individuals rises sharply in a 

short time from the initial state, reaching its peak within three days before gradually declining. This figure also 

shows that the number of recovered individuals increases steadily over time. When control measures are 

applied, changes in the compartment dynamics are observed, as illustrated in Figures (2)-(8). 

It can be observed from Figure 3 (𝜂 = 0 and 𝛾 = 0.25) that the infected compartment behaves differently 

compared to the previous figure, indicating that when control parameters are applied, the number of infected 

individuals decreases to zero after approximately 27 days. In Figure 4 (𝜂 = 0.50 and 𝛾 = 0.25), the rate of 

decline increases, with the infected population reaching zero after about 17 days. In Figure 5 (𝜂 = 0.75 and 𝛾 =

0.50) the infected population reaches zero in approximately 13 days. Figures 6 and 7 (𝜂 = 0.75 and 𝛾 = 1.0) 

and (𝜂 = 1.0 and 𝛾 = 0.75) show that the infected population reaches zero after roughly 10 days. When 

considering (𝜂 = 1.0 and 𝛾 = 1.0) as shown in Figure 8, the infected population decreases to zero in 10 days. 

These graphs illustrate that the control parameters have a significant impact on the spread of the disease within 

the population. A higher control rate logically leads to a lower infection rate. 

 
 

Figure 2: Dynamics of the compartments for the values of the control parameter 𝜼 = 𝟎 and 𝜸 = 𝟎 with 

𝑹𝟎 =  𝟎. 𝟕𝟏. 
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Figure 3: Dynamics of the compartments for the values of the control parameter 𝜼 = 𝟎 and 𝜸 = 𝟎. 𝟐𝟓 

with 𝑹𝟎 =  𝟎. 𝟓𝟏. 

 

 
Figure 4: Dynamics of the compartments for the values of the control parameter 𝜼 = 𝟎. 𝟓𝟎 and 𝜸 = 𝟎. 𝟐𝟓 

with 𝑹𝟎 =  𝟎. 𝟒𝟏. 
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Figure 5: Dynamics of the compartments for the values of the control parameter 𝜼 = 𝟎. 𝟕𝟓 and 𝜸 = 𝟎. 𝟓𝟎 

with 𝑹𝟎 =  𝟎. 𝟐𝟓. 

 

 
Figure 6: Dynamics of the compartments for the values of the control parameter 𝜼 = 𝟎. 𝟕𝟓 and 𝜸 = 𝟏. 𝟎 

with 𝑹𝟎 =  𝟎. 𝟏𝟎. 
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Figure 7: Dynamics of the compartments for the values of the control parameter 𝜼 = 𝟏. 𝟎 and 𝜸 = 𝟎. 𝟕𝟓 

with 𝑹𝟎 =  𝟎. 𝟏𝟓. 

 

 
Figure 8: Dynamics of the compartments for the values of the control parameter 𝜼 = 𝟏. 𝟎 and 𝜸 = 𝟏. 𝟎 

with𝑹𝟎 =  𝟎. 𝟎𝟖. 
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Figure 9:  Sensitivity analysis of Nipah and COVID-19 under various control parameters. 

 

 
Figure 10:  Sensitivity analysis of Nipah and COVID-19 under various control parameters. 

The sensitivities of the control parameters also affect the basic reproduction number, 𝑅0 . It can be observed that 

higher values of the control parameters lead to a reduction in the basic reproduction number.Moreover, as 

shown in Figures 9 and 10, the Nipah virus spreads more quickly than COVID-19. However, the recovery 

period for COVID-19 is longer than that for the Nipah virus. This highlights the significant role of control 

measures in managing the transmission and recovery processes of these diseases 

 

5.  Conclusion 

 We have developed a unified control model for the transmission of NiV and COVID-19. The progression of the 

disease outbreak is influenced by various control parameters, but we primarily focus on two: the number of 

quarantined individuals and the improvement in personal hygiene due to public enlightenment programs. 

 Our findings strongly suggest that increasing the number of quarantined individuals and enhancing personal 

hygiene can significantly reduce the spread of the disease in the shortest possible time. The key conclusion from 

our results is that higher values of these control parameters can effectively lower the basic reproduction rate. 
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 Furthermore, as depicted in Figures 9 and 10, we observed that the Nipah virus spreads more rapidly than 

COVID-19. However, the recovery time for COVID-19 is longer compared to the Nipah virus. This underscores 

the critical impact of control measures in managing the transmission and recovery dynamics of these diseases. 

This research provides valuable insights into the control of infectious diseases and can be instrumental in 

guiding public health strategies for managing future outbreaks. By understanding the dynamics of disease spread 

and the effectiveness of control measures, policymakers and health professionals can better prepare for and 

mitigate the impact of potential epidemics and pandemics. 
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