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Abstract:- We investigate solutions of the two-dimensional semi-linear parabolic equations by a numerical 

method that employs cubic B- spline functions. Such type of equations arise in chemical reaction theory, 

mathematical biology, population dynamics, material science, and many other areas of science and engineering. 

The spirit of the method lies in the evaluation of first and second-order weighting coefficients by differential 

quadrature approximations. The two-dimensional equation has been discretized by the cubic B-spline 

differential quadrature method to obtain a system of ordinary differential equations(ODEs). A highly stability-

preserving SSPRK-43 method has been applied to solve the system of ODEs. This method uses less storage 

which reduces the accumulation of numerical errors. Solutions computed by implementing the modified 

differential quadrature method have been presented graphically and in tabular form. 

Keywords: Cubic B-spline Functions, Two dimensional parabolic equations, Differential quadrature technique, 

SSPRK-43 Method 

1. Introduction 

We consider over (𝑥, 𝑦) ∈ (𝑎, 𝑏) × (𝑐, 𝑑), the two dimensional parabolic equation given by 

                                            𝑢𝑡 = 𝑝(𝑡)(𝑢𝑥𝑥 + 𝑢𝑦𝑦) + 𝑓(𝑢, 𝑥, 𝑦, 𝑡),  𝑡 ∈ (0, 𝑇)                                      (1.1)  

There are a number of nonlinear partial differential equations for which analytical solutions are not feasible. 

Such equations are investigated by numerical techniques.  A number of numerical methods have been studied to 

solve the two dimensional semi-linear parabolic equation. The differential quadrature technique is proved to be 

a very strong alternative to the collocation, pseudo-spectral and Rayleigh Ritz methods. The theoretical analysis 

and numerical experiments prove that differential quadrature is very efficient for highly nonlinear problems. 

There are different kinds of basis functions which have been employed efficiently to solve the problems 

involving steep gradients. This striking feature of the differential quadrature method makes it very popular 

among the researchers. For problems with the regular geometries and problems of distributed-parameter systems 

the method is more efficient than the finite difference and finite element techniques. 

Milstein and Tretyakov [1] developed a probabilistic approach for constructing special layer methods to obtain 

numerical solutions of the Cauchy problem for semi-linear parabolic equations. Hochbruck and Ostermann [2] 

studied semi-linear parabolic problems by the explicit exponential Runge Kutta method. Dehghan [3] proposed 

the finite difference scheme to solve such type of equations. 

The differential quadrature method was developed by Bellman and his associated in 1970s. It is a numerical 

discretization technique. As a result of innovative work for the calculation of weighting coefficients,  differential 

quadrature method was developed as a discretization technique for the numerical solutions of differential 

equations. Dag et al. [4] proposed the cosine differential quadrature method to study the regularized long wave 

equations. Korkmaz [5] et. al developed the quartic B-spline differential quadrature technique to study the 

sinusoidal disturbance and shock wave solutions of Burgers' equations. Mittal and Bhatia [6] solved the 

hyperbolic partial differential equations by using spline differential quadrature method. Recently, the modified 

B-spline [7] and the Bernstein differential quadrature [8] methods have been applied by Mittal. The exponential 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

192 

cubic B spline [9] and trigonometric B-spline [10]  is applied by Dag and Zahra respectively to obtain numerical 

solutions of parabolic partial differential equations. 

The article is written as follows: 

1. In Section 2, the cubic B-splines have been introduced which is followed by the definition of the modified B-

spline functions. 

2. In Section 3, weighting coefficients have been calculated and implemented to the two dimensional problems. 

3. A matrix method has been applied to check stability of the proposed method in Section 4. 

4. In Section 5 , we check the applicability and efficiency of the method to solve parabolic problems by 

applying method on four important equations taken from the literature. Finally we sum up with a brief 

discussion concluding the findings of the method in section 6 . 

2. Modified Cubic B-spline Differential Quadrature Method 

Consider a partition of the domain Ω = (𝑎, 𝑏) × (𝑐, 𝑑) by the nodes 𝑥𝑖
′𝑠 and 𝑦𝑗

′𝑠 by taking 𝑁 and 𝑀 points along 

the co-ordinate directions 𝑥 and 𝑦 respectively such that 𝑥𝑖 − 𝑥𝑖−1 = ℎ and 𝑦𝑗 − 𝑦𝑗−1 = 𝑘. Cubic B-spline 

functions have been used for approximation as they offer smooth interpolation. 

The cubic B-splines at the nodes are defined by 

              𝑆𝑗(𝑥) =
1

ℎ3

{
  
 

  
 (𝑥 − 𝑥𝑗−2)

3
, 𝑥 ∈ [𝑥𝑗−2, 𝑥𝑗−1]

(𝑥 − 𝑥𝑗−2)
3
− 4(𝑥 − 𝑥𝑗−1)

3
, 𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗]

(𝑥𝑗+2 − 𝑥)
3
− 4(𝑥𝑗+1 − 𝑥)

3
, 𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1]

(𝑥𝑗+2 − 𝑥)
3
, 𝑥 ∈ [𝑥𝑗+1, 𝑥𝑗+2]

0  otherwise 

                                         (2.1)  

where {𝑆0(𝑥), 𝑆1(𝑥), 𝑆2(𝑥), … , 𝑆𝑁(𝑥), 𝑆𝑁+1(𝑥)} is a basis over the interval (𝑎, 𝑏). Cubic B-splines and 

derivatives have been evaluated by using above definition and have been presented in Table 1. 

 In this work cubic B- splines have been modified. Modified cubic B-splines at a boundary will provide full 

support and will give a system of equations in which the matrix is diagonally dominant.  

                                                                                TABLE 1 . 

𝑥 𝑥𝑗−2 𝑥𝑗−1 𝑥𝑗 𝑥𝑗+1 𝑥𝑗+2 

𝑆𝑖(𝑥) 0 1 4 1 0 

𝑆𝑖
′(𝑥) 0 

3

ℎ
 0 

−3

ℎ
 0 

𝑆𝑖
′′(𝑥) 0 

6

ℎ2
 

−12

ℎ2
 

6

ℎ2
 0 

Values at the knots for cubic B-splines and its derivatives 

The  modified cubic B-spline functions [11] at the nodes are defined by equations (2.2) − (2.6): 
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                       𝑆̃1(𝑥) = 𝑆1(𝑥) + 2𝑆0(𝑥),  𝑗 = 1                                                             (2.2)

                       𝑆̃2(𝑥) = 𝑆2(𝑥) − 𝑆0(𝑥),  𝑗 = 2                                                               (2.3)

                            𝑆̃𝑗(𝑥) = 𝑆𝑗(𝑥),  𝑗 = 3,4,5… .𝑁 − 2                                                      (2.4)

                 𝑆̃𝑁−1(𝑥) = 𝑆𝑁−1(𝑥) − 𝑆𝑁+1(𝑥),  𝑗 = 𝑁 − 1                                               (2.5)

                    𝑆𝑁̃(𝑥) = 𝑆𝑁(𝑥) + 2𝑆𝑁+1(𝑥),  𝑗 = 𝑁                                                            (2.6)

 

where the set {𝑆̃1(𝑥), 𝑆̃2(𝑥), … . 𝑆𝑁̃(𝑥)} constructs a basis. De Boor [12] has given many important properties of 

B-spline functions which reader may explore for detailed study of spline functions. 

3. Development of the Numerical Scheme 

To approximate the given partial differential equation, we first determine weighting coefficients as follows: 

Determination of weighting coefficients Differential quadrature method is basically a discretization technique 

for solving partial differential equations. The 𝑛-th derivative of 𝑢 at (𝑥𝑖 , 𝑦𝑗 , 𝑡) with respect to 𝑥 may be 

approximated as 

𝑢𝑥
(𝑛)
(𝑥𝑖 , 𝑦𝑗 , 𝑡) = ∑  

𝑁

𝑘=1

 𝑎𝑖𝑘
(𝑛)
𝑢(𝑥𝑘 , 𝑦𝑗 , 𝑡), 𝑖 = 1,2…𝑁, 𝑗 = 1,2…𝑀                                 (3.1)  

In a similar way 𝑚-th derivative of 𝑢 at (𝑥𝑖 , 𝑦𝑗 , 𝑡) with respect to 𝑦 may be approximated as 

𝑢𝑦
(𝑚)
(𝑥𝑖 , 𝑦𝑗 , 𝑡) = ∑  

𝑁

𝑘=1

 𝑏𝑗𝑘
(𝑛)
𝑢(𝑥𝑖 , 𝑦𝑘 , 𝑡), 𝑖 = 1,2…𝑁, 𝑗 = 1,2…𝑀                   (3.2)  

where 𝑎𝑖𝑗
(𝑛)

 and 𝑏𝑖𝑗
(𝑛)

 are weighting coefficients corresponding to derivatives with respect to 𝑥 and 𝑦 at the point 

(𝑥𝑖 , 𝑦𝑗). For the first order derivative, the differential quadrature approximation gives 

𝑆̃𝑙
′(𝑥𝑖) = ∑𝑗=1

𝑁  𝑎𝑖𝑗
(1)
𝑆̃𝑙(𝑥𝑗), 𝑙 = 1,2,3… . . 𝑁 and 𝑖 = 1,2. . 𝑁 

At point 𝑥1, we obtain as follows 

𝑆̃𝑙
′(𝑥1) = ∑𝑗=1

𝑁  𝑎1𝑗
(1)
𝑆̃𝑙(𝑥𝑗) where 𝑙 = 1,2,3… .𝑁 

A system of equations is obtained as follows 

(

 
 
 
 

6 1
0 4 1

1 4 1
. . . . . . . . . . . . . .

1 4 1
1 4 0

1 6)

 
 
 
 

×

(

 
 
 
 
 

𝑎11
(1)

𝑎12
(1)

⋅
⋅
⋅
⋅

𝑎1𝑁
(1)
)

 
 
 
 
 

=

(

 
 
 
 
 
 

−6

ℎ
6

ℎ
0
⋅
⋅
⋅
0 )

 
 
 
 
 
 

 

This tridiagonal system contains 𝑁 unknowns 𝑎11
(1)
, 𝑎12

(1)
, . . , 𝑎1𝑁

(1)
 which have been found by applying the Thomas 

algorithm. In a similar fashion, for the point 𝑥2, we write 

𝑆̃𝑙
′(𝑥2) = ∑𝑗=1

𝑁  𝑎2𝑗
(1)
𝑆̃𝑙(𝑥𝑗), 𝑙 = 1,2,3… .𝑁. 

We obtain a system of equations as below 
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This system is solved by the Thomas algorithm to find 𝑎21
(1)
, 𝑎22
(1)
, … , 𝑎2𝑁

(1)
. Proceeding in this way, we calculate 

weighting coefficients corresponding to the knots 𝑥3, 𝑥4…𝑥𝑁−1. At the knot 𝑥𝑁, 

𝑆̃𝑙
′(𝑥𝑁) = ∑𝑗=1

𝑁  𝑎𝑁𝑗
(1)
𝑆𝑙(𝑥𝑗), 𝑙 = 1,2,3… .𝑁, 

we obtain a system as follows, 

(

 
 
 
 

6 1
0 4 1

1 4 1
. . . . . . . . . . . . . .

1 4 1
1 4 0

1 6)

 
 
 
 

×

(

 
 
 
 
 

𝑎𝑁1
(1)

𝑎𝑁2
(1)

⋅
⋅
⋅
.

𝑎𝑁𝑁
(1)
)

 
 
 
 
 

=

(

 
 
 
 
 
 

0
0
0
⋅
⋅
−6

ℎ
6

ℎ )

 
 
 
 
 
 

 

Unknowns 𝑎𝑁1
(1)
, 𝑎𝑁2
(1)
, … , 𝑎𝑁𝑁

(1)
 are calculated by applying the Thomas algorithm again . Thus all the first order 

weighting coefficients have been determined. Weighting coefficients of order more than one have been 

determined by using a recursive formula given by Shu 13 as follows 

                         𝑎𝑖𝑗
(𝑟)
 = 𝑟 [𝑎𝑖𝑗

(1)
𝑎𝑖𝑖
(𝑟−1)

−
𝑎𝑖𝑗
(𝑟−1)

(𝑥𝑖 − 𝑥𝑗)
] , 𝑖 ≠ 𝑗                                                 (3.3)

                           𝑎𝑖𝑖
(𝑟)
 = − ∑  

𝑁

𝑗=1,𝑗≠𝑖

 𝑎𝑖𝑗
(𝑟), 𝑖 = 𝑗 and 𝑖 = 1,2…𝑁                                         (3.4)

 

Weighting coefficients corresponding to the spatial discretization in the 𝑦 direction may be evaluated following 

the same procedure as above. 

3.1. Implementation. : We discretize (1.1) by differential quadrature method as follows: 

𝑑𝑢𝑖,𝑗

𝑑𝑡
= 𝑝(𝑡) (∑  

𝑁

𝑘=1

 𝑎𝑖𝑘
(2)𝑢𝑘,𝑗 +∑  

𝑀

𝑘=1

 𝑏𝑗𝑘
(2)𝑢𝑖,𝑘) + 𝑓(𝑢𝑖 , 𝑥𝑖 , 𝑦𝑗 , 𝑡),  𝑖 = 1,2…𝑁,  𝑗 = 1,2…𝑀    (3.5)  

By applying boundary conditions, we obtain 
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𝑑𝑢𝑖,𝑗

𝑑𝑡
= 𝑝(𝑡) (∑  

𝑁−1

𝑘=2

 𝑎𝑖𝑘
(2)
𝑢𝑘,𝑗 + ∑  

𝑀−1

𝑘=2

 𝑏𝑗𝑘
(2)
𝑢𝑖,𝑘) + 𝑓(𝑢𝑖 , 𝑥𝑖 , 𝑦𝑗 , 𝑡) + 𝑎𝑖1

(2)
𝑢1,𝑗 + 𝑎𝑖𝑁

(2)
𝑢𝑁,𝑗 + 𝑏𝑗1

(2)
𝑢𝑖,1 + 𝑏𝑗𝑀

(2)
𝑢𝑖,𝑀(3.6)  

𝑖 = 2…𝑁 − 1, 𝑗 = 2…𝑀 − 1. 

It gives 𝑁 +𝑀 ordinary differential equations. For solving this system of equations, we have applied stage four, 

order three Runge Kutta[SSPRK-43] which is a strong stability preserving time stepping method. If 
𝑑𝑥

𝑑𝑡
= 𝐿(𝑥) is 

the system of ODEs. It is solved by SSPRK-43 time stepping scheme given by Spiteri and Ruuth [15] as 

follows: 

                                  𝑥(1) = 𝑥(𝑚) +
Δ𝑡

2
𝐿(𝑥(𝑚)                                                                                  (3.7)

                           𝑥(2) = 𝑥(1) +
Δ𝑡

2
𝐿(𝑥(1)                                                                                              (3.8)

                       𝑥(3) =
2

3
𝑥(𝑚) +

𝑥(2)

3
+
Δ𝑡

6
𝐿(𝑥(2)                                                                                (3.9)

                                   𝑥(𝑚+1) = 𝑥(3) +
Δ𝑡

2
𝐿(𝑥(3)                                                                                   (3.10)

 

Initial values are calculated by using initial condition of the problem. Hence the approximate values of w at any 

time are completely obtained. 

4. Numerical Stability 

For any numerical method, it is necessary that the approximations generated by the scheme are close to the true 

solution. In this context, it will be governed by the stability of the scheme which is often termed as numerical 

stability of the method. For this we have to be very careful in choosing step size in the numerical solver used. 

The numerical stability means that the errors introduced during calculation remains bounded. This is very 

necessary, since in any numerical scheme errors are impossible to avoid. We have to deal with discretization 

errors. If errors amplify without limit, they change the approximate 

solution so much which makes it useless. For finite difference schemes, von Neumann method may be used to 

check stability. For the present method, we have applied matrix analysis method 17 18 19 for stability of the 

system derived in differential quadrature method. System (3.6) may be written as 

          
𝑑[𝑢]

𝑑𝑡
= 𝐴[𝑢] + 𝑏                                                 (4.1)  

where [𝑢] is a vector of unknowns at the interior nodes of the domain and A is matrix of coefficients. Stability 

of numerical scheme is analyzed by finding the eigenvalues of matrix 𝐴. To obtain converged solutions, it is 

necessary that 𝐴 must have negative real eigenvalues. Matrix 𝐴 may be written as follows: 𝐴 = 𝐴1 + 𝐴2 

 

where 𝐼𝑀−2 is an identity matrix of order 𝑀 − 2. 

Similarly 𝐴2 = 𝑝(𝑡)

(

 

𝑃𝑖𝑗 𝑂 𝑂 𝑂

𝑂 𝑃𝑖𝑗 𝑂 𝑂
. . . . . . . . . . . .
𝑂 𝑂 𝑂 𝑃𝑖𝑗)

 , 
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where 𝑃𝑖𝑗 =

(

 
 

𝑏22
(2)

𝑏23
(2)

𝑏24
(2)

𝑏2,𝑀−1
(2)

𝑏32
(2)

𝑏33
(2)

𝑏34
(2)

𝑏3,𝑀−1
(2)

.⋅ … … . . . . .⋅

𝑏𝑀−1,2
(2)

𝑏𝑀−1,3
(2)

𝑏𝑀−1,4
(2)

𝑏𝑀−1,𝑀−1
(2)

)

 
 

. 

Stability of DQM scheme depends on eigenvalues of 𝐴. We have determined eigenvalues of 𝐴 and found them 

to be negative real(Figure 1) for different grid points which confirms that our scheme produces stable solutions. 

5. Numerical simulations 

In this section, numerical experiments have been performed by taking four important two dimensional equations 

to validate the efficiency and performance of the present method. To check the accuracy of the method, 

maximum absolute error norm is found as follows 

                      𝐿∞ = ∥∥𝑢exact − 𝑢𝑁∥∥∞ = max|𝑢𝑖,𝑗
exact − 𝑢𝑖,𝑗

𝑁 |                                       (5.1)  

here 𝑢𝑁 stands for numerical solution. 𝑢𝑖,𝑗
exact  and 𝑢𝑖,𝑗

𝑁  represent the exact and approximate solutions respectively 

at the point (𝑥𝑖 , 𝑦𝑗). Computed results have been presented in tables and also depicted in graphs. 

Example 1: We consider equation (1.1) with 𝑝(𝑡) =
1

2𝜋2
, 𝑎 = 1, 𝑏 = −1 and 𝑓(𝑢, 𝑥, 𝑦, 𝑡) = 0. The exact 

solution of the problem is 

𝑢(𝑥, 𝑦, 𝑡) = 𝑒−𝑡 sin(𝜋𝑥) sin(𝜋𝑦)                                    (5.2)  

By using equation (5.2), we can find initial and boundary conditions. The computed solutions at 𝑡 = 1.0 with 

𝑁 = 100 have been presented in Table 2. We can observe from maximum absolute errors that computed 

solutions are very close to analytical values. Root mean square (rms) and maximum absolute errors have been 

given in Table 3. CPU time is reported in the same table. We can observe that CPU time is very small. Solutions 

at 𝑡 = 0.5 and 𝑡 = 1.0 have been depicted in Figures 2 and 3 respectively. A 3-D view of solutions is also 

depicted in Figure 4. 

 

                                                                          Figure 1. Plot of eigenvalues 
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                                                                                TABLE 2 . 

(𝑥𝑖 , 𝑦𝑗) Numerical Solution Analytical solution Maximum absolute error (𝐿∞) 

(−0.9, −0.9) 0.066822 0.066820 2.19E − 06 

(−0.8, −0.8) 0.205653 0.205651 2.46E − 06 

(−0.7, −0.7) 0.283056 0.283054 1.57E − 06 

(−0.6, −0.6) 0.205651 0.205651 5.87E − 07 

(−0.5, −0.5) 0.000000 0.000000 0.000000 

(−0.4, −0.4) 0.205651 0.205651 2.22E − 07 

(−0.3, −0.3) 0.283054 0.283054 3.55E − 07 

(−0.2, −0.2) 0.205650 0.205650 5.80E − 07 

(−0.1, −0.1) 0.066820 0.066820 6.41E − 07 

(0.0,0.1) 0.000000 0.000000 0.000000 

(0.2,0.1) -0.127100 -0.127099 1.23E − 06 

(0.3,0.1) -0.174939 -0.174937 1.72E − 06 

(0.4,0.1) -0.205653 -0.205651 2.10E − 06 

(0.5,0.1) -0.216236 -0.216234 2.34E − 06 

(0.6,0.1) -0.205653 -0.205651 2.46E − 06 

(0.7,0.1) -0.174940 -0.174940 2.48E − 06 

(0.8,0.1) -0.127102 -0.127099 2.39E − 06 

(0.9,0.1) -0.066822 -0.066820 2.19E − 06 

 

                       Numerical and exact results of Example 1 at 𝑡 = 1.0 with 𝑁 = 100 

Example 2: Consider (1.1) with 𝑎 = −1, 𝑏 = 1, 𝑝(𝑡) = 1, and 𝑓(𝑢, 𝑥, 𝑦, 𝑡) =
1

1+𝑢2
+ 𝜑(𝑥, 𝑦, 𝑡). The exact 

solution is given by 

                          𝑢(𝑥, 𝑦, 𝑡) = 𝑒−𝑡 cos(𝜋𝑥) cos(𝜋𝑦)                                              (5.3)  
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                                           Figure 2. Numerical solutions of Example 1 at 𝒕 = 𝟎. 𝟓 

                                                                                  TABLE 3 . 

    

𝑡 𝐿∞ error 𝐿2 error CPU Time(s) 

1 3.01E − 04 2.92E − 03 1 

2 1.92E − 04 2.25E − 03 2 

5 1.64E − 05 1.85E − 04 5 

10 3.13E − 07 3.32E − 06 10 

20 2.93E − 11 3.01E − 10 19 

                              Numerical solutions of Example 1 with 𝑁 = 20 and Δ𝑡 = 0.001 

Here boundary conditions are the Dirichlet conditions. 

The initial condition is 

                                       𝑢(𝑥, 𝑦, 0) = cos(𝜋𝑥) cos(𝜋𝑦)                                                                             (5.4)  

The function 𝜓 has been found as follows 

𝜓 = −𝑒−𝑡 cos(𝜋𝑥) cos(𝜋𝑦) + 2𝜋2𝑒−𝑡 cos(𝜋𝑥) cos(𝜋𝑦) −
1

1 + 𝑒−2𝑡 cos2(𝜋𝑥) cos2(𝜋𝑦)
       (5.5)  
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Table 4 presents solutions at 𝑡 = 1 at different knots. Maximum absolute error norms at time levels from 𝑡 = 1 

to 𝑡 = 20 have been listed in Table 5 .  

 

                                              Figure 3. Numerical solutions of Example 1 at 𝒕 = 𝟏 

 

We can observe that CPU time is very less and absolute errors are also very small. Physical behavior of 

numerical solutions has been depicted in Figures 5 and 6 at 𝑡 = 1. Similar behavior of solution has been 

depicted by Liu et al. [16]. 

Example 3: Consider the following exact solution of (1.1) 

                 𝑢(𝑥, 𝑦, 𝑡) = 𝑒−𝑡 sin(2𝜋𝑥) sin(2𝜋𝑦)                                       (5.6)  

and following initial condition 

             𝑢( 𝑥, 𝑦, 0) = sin(2𝜋𝑥) sin(2𝜋𝑦)                                          (5.7)  

Also  𝑝(𝑡) = sin (𝑡), 𝑎 = −1, 𝑏 = 1, 𝑓(𝑢, 𝑥, 𝑦, 𝑡) =
1

1+𝑢2
+ 𝜓(𝑥, 𝑦, 𝑡). The boundary conditions have been taken 

from the analytical solution. 

𝜓 = −𝑒−𝑡sin (2𝜋𝑥)sin (2𝜋𝑦) −
1

1 + 𝑒−2𝑡 sin2(2𝜋𝑥) sin2(2𝜋𝑦)
+ 8𝜋2 sin(𝑡) 𝑒−𝑡 sin(2𝜋𝑥) sin(2𝜋𝑦) (5.8)  

We performed numerical experiments by taking different values of parameters. Numerical solutions for 𝑡 = 1 

have been represented in Table 6. We can observe that absolute errors are very small. Computed solutions have 

been presented graphically in Figures 7 and 8. Our method is giving very good solutions with very small CPU 

time. 
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                                                  Figure 4. 𝟑𝐃 view of solutions of Example 1 at 𝒕 = 𝟏 

 

                                           Figure 5. Numerical solutions of Example 2 at 𝒕 = 𝟏 
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                                           Figure 6. 𝟑𝐃 view of solutions of Example 2 at 𝒕 = 𝟏 

Example 4: Consider (1.1) with 𝑝(𝑡) =
1

1+𝑡2
, 𝑓(𝑢, 𝑥, 𝑦, 𝑡) =

1

1+𝑢2
+ 𝜓(𝑥, 𝑦, 𝑡).  Source function 𝜓 has been 

taken so that the exact solution is 

                                   𝑢(𝑥, 𝑡) = 𝑒−𝑡 cos(2𝜋𝑥) cos(2𝜋𝑦)                                                  (5.9)  

 

                                            Figure 7. Numerical solutions of Example 3 at 𝒕 = 𝟏 
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                                               Figure 8. 3 D view of solutions of Example 3 at 𝒕 = 𝟏 

                                                                      TABLE 4 . 

(𝑥𝑖 , 𝑦𝑗) Numerical Solution Analytical solution Maximum absolute error (𝐿∞) 

(−0.9, −0.9) 0.332729 0.332750 2.14E − 05 

(−0.8, −0.8) 0.240766 0.240780 1.43E − 05 

(−0.7, −0.7) 0.127092 0.127099 6.84E − 06 

(−0.6, −0.6) 0.035128 0.035129 9.15E − 07 

(−0.5, −0.5) 0.000000 0.000000 0.000000 

(−0.4, −0.4) 0.035130 0.035129 9.72E − 07 

(−0.3, −0.3) 0.127096 0.127099 2.81E − 06 

(−0.2, −0.2) 0.240772 0.240780 7.78E − 06 

(−0.1, −0.1) 0.332738 0.332750 1.19E − 05 

(0.1,0.1) 0.332738 0.332750 1.19E − 05 

(.2,0.1) 0.283044 0.283054 9.65E − 06 
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(.3,0.1) -0.205645 -0.205651 6.16E − 06 

(.4,0.1) -0.108115 -0.108117 1.73E − 06 

(.5,0.1) 0.000000 0.000000 0.000000 

(.6,0.1) -0.108109 -0.108117 8.35E − 05 

(.7,0.1) -0.205638 -0.205651 1.32E − 05 

(.8,0.1) -0.283037 -0.283054 1.73E − 05 

(.9,0.1) -0.332730 -0.332750 2.05E − 05 

 

                           Numerical and exact results of Example 2 at 𝑡 = 1.0 with 𝑁 = 60 

                                                                            TABLE 5 . 

    

t 𝐿∞ error 𝐿2 error CPU Time(s) 

1 5.08E − 03 1.76E − 02 3 

2 2.00E − 03 7.19E − 03 5 

5 1.43E − 05 3.28E − 04 12 

10 6.54E − 07 2.31E − 06 23 

20 2.92E − 11 1.02E − 10 46 

 

                              Numerical solutions of Example 2 with 𝑁 = 20 and Δ𝑡0.001 

so that the source function is 

𝜓 = −𝑒−𝑡 cos(2𝜋𝑥) cos(2𝜋𝑦) +
8𝜋2𝑒−𝑡 cos(2𝜋𝑥) cos(2𝜋𝑦)

1 + 𝑡2
−

1

1 + 𝑒−2𝑡 cos2(2𝜋𝑥) cos2(2𝜋𝑦)
(5.10)  

Boundary conditions have been taken from analytical solution. Initial condition is 

               𝑢(𝑥, 0) = cos(2𝜋𝑥) cos(2𝜋𝑦)                                            (5.11)  

Numerical simulations have been carried out for different parameters. It is observed that method is giving very 

good results (Table 7). Solution profiles have been presented in Figures 9 and 10. 

6. Conclusion 

Two dimensional semi-linear parabolic equation has been solved by the cubic B-spline differential quadrature 

method. Weighting coefficients have been evaluated by using cubic B-spline basis functions. Two dimensional 

parabolic equation is discretized by differential quadrature to get system of ordinary differential equations which 
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is solved by SSPRK-43 method to get the final solution. This is a relatively easy method and uses very less 

storage. Numerical solutions have been depicted graphically and also presented graphically. It is seen that 

approximate solutions coincide with the analytical values. The 

 

                                            Figure 9. Numerical solutions of Example 4 at 𝒕 = 𝟏 

 

                                         Figure 10. 𝟑𝐃 view of solutions of Example 4 at 𝒕 = 𝟏 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

__________________________________________________________________________________ 

205 

                                                                                TABLE 6 . 

(𝑥𝑖 , 𝑦𝑗) Numerical Solution Analytical solution Maximum absolute error (𝐿∞) 

(−0.9, −0.9) 0.127154 0.127099 5.43E − 05 

(−0.8, −0.8) 0.332786 0.332750 3.58E − 05 

(−0.7, −0.7) 0.332762 0.332750 1.16E − 05 

(−0.6, −0.6) 0.127102 0.127099 2.43E − 05 

(−0.5, −0.5) 0.000000 0.000000 0.000000 

(−0.4, −0.4) 0.127089 0.127099 9.92E − 06 

(−0.3, −0.3) 0.332731 0.332750 1.94E − 05 

(−0.2, −0.2) 0.332732 0.332750 1.83E − 05 

(−0.1, −0.1) 0.127091 0.127099 7.72E − 06 

(0.1,0.1) 0.127123 0.127099 2.37E − 05 

(.2,0.1) 0.205689 0.205651 3.84E − 05 

(.3,0.1) 0.205689 0.205651 3.84E − 05 

(.4,0.1) 0.127122 0.127099 2.25E − 05 

(.5,0.1) 0.000000 0.000000 0.000000 

(.6,0.1) -0.127129 -0.127099 2.94E − 05 

(.7,0.1) -0.205699 -0.205651 4.84E − 05 

(.8,0.1) -0.205707 -0.205651 5.58E − 05 

(.9,0.1) -0.127154 -0.127099 5.48 − 05 

 

                         Numerical and exact results of Example 3 at 𝑡 = 1.0 with 𝑁 = 60 
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TABLE 7 . 

(𝑥𝑖 , 𝑦𝑗) Numerical Solution Analytical solution Maximum absolute error (𝐿∞) 

(−0.9, −0.9) 0.240747 0.240780 3.37E − 05 

(−0.8, −0.8) 0.035126 0.035129 3.34E − 06 

(−0.7, −0.7) 0.035131 0.035129 1.85E − 06 

(−0.6, −0.6) 0.240770 0.240780 1.03E − 05 

(−0.5, −0.5) 0.367859 0.367879 2.04E − 05 

(−0.4, −0.4) 0.240763 0.240780 1.74E − 05 

(−0.3, −0.3) 0.035120 0.035129 9.44E − 06 

(−0.2, −0.2) 0.035119 0.035129 1.05E − 05 

(−0.1, −0.1) 0.127091 0.127099 7.72E − 06 

(.1,0.1) 0.240749 0.240780 3.16E − 05 

(.2,0.1) 0.091957 0.091970 1.30E − 05 

(.3,0.1) -0.091960 -0.091969 1.01E − 05 

(.4,0.1) -0.240751 -0.240780 2.90E − 05 

(.5,0.1) -0.297584 -0.297621 3.64E − 05 

(.6,0.1) -0.240750 -0.240780 2.91E − 05 

(.7,0.1) -0.091959 -0.091970 1.14E − 05 

(.8,0.1) -0.091958 -0.091970 1.18E − 05 

(.9,0.1) -0.240747 -0.240780 3.37E − 05 

 

                           Numerical and exact results of Example 4 at 𝑡 = 1.0 with 𝑁 = 80 

accuracy of the method has been measured by evaluating maximum absolute error norm and it is found that 

method is performing very efficiently. Differential quadrature method is a potential alternative to finite element 

and finite difference methods. We hope for further development in the applications of differential quadrature 

method to a fairly wide range of problems. 
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