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Abstract: A modified computational model is introduced for analysis of axisymmetric vibrations of a non-

homogeneous annular plate with variable thickness resting on elastic foundation. In this analysis the 

differential quadrature method (DQM) is employed to solve the governing equation and the results are 

compared with the values obtained by quintic spline technique under similar parametric conditions. The 

convergence and stability analysis of the method for the proposed model is presented. Accuracy of the 

results, obtained during implementation of the method, represent an excellent agreement with exact as well as 

existing numerical solutions which reflects the efficiency and versatility of the method, and ensure the 

flexibility of the mathematical model. 
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1. Introduction  

Damping forces are small compared to elastic and inertia forces, however, have significant influence on 

vibration analysis of a system under certain special circumstance, therefore it attracts researchers constantly 

to refresh their thinking and re-modify their models. Either removal of energy by radiation or dissipation is 

the true cause of damping in any system. This is why the internal dissipation is expected and analyzed under 

frequency domain in many applications of vibration theory. Crandall [1] observed if the internal dissipation is 

due to a linear relaxation mechanism there will be a pronounced increase in loss factor when the oscillation 

frequency approaches the relaxation frequency. It is the prime point for predicting the damped free vibration 

of the actual physical system.  

Analysis of plate vibration, established in 1787 with Chladni’s work Leissa[2], made a way to study the 

effect of different aspects via mathematical modelling of plate vibrations along with consideration of 

different plate such as  parameters such as orthotropy, variable thickness, non-homogeneity and elastic 

foundation,  and has been continuing till today.   

Due to immense use of circular and annular plates of variable thickness in aerospace industry, electronic and 

optical equipment’s and missile technology, the study of vibrational behavior of such plates is the area of 

advanced research. While surveying the literature, author came across various models in account for non-

homogeneity parameter [3-9] and finally assumed the variation in Young’s modulus and density in distinct 

manner as considered earlier [10-11].Various models, approximating the supporting foundation, such as 

Winkler, Vlasov and Pasternak have been proposed[12-17], however, most of the studies have been carried 

out with Winkler model of foundation, and so as in this paper. 

Present computational modeling, a simple and practical way, to calculate natural frequencies of normal 

modes of damped free vibrations of a non-homogeneous annular plate with arbitrary thickness variations for 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

_______________________________________________________________________________________ 

170 

three different edge conditions along with elastic foundation which develops a new methodology, an ill-

closed form solution, so that a designer can evaluate the natural frequencies as well as determine the damping 

coefficient comparing experimental and theoretical values. The author has contributed with consideration of 

viscous damping for rectangular plates [18-19] , circular plates[20-23], using quintic spline technique. After 

seeing trend of research for damped vibration analysis for different plates[24-27], this study is carried by 

,using differential quadrature method as this method provides more accurate results. Authors [29-31] 

discused Nonlinear transient response of graphene platelets reinforced metal foams annular plate. 

Authors [32-40] presented vibration analysis of the related work.  

The governing equation which provides the more realistic model after incorporating the damping effect is 

expressed as follows:  
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 Where, a is radius of annular plate, the flexural rigidity =
𝐸ℎ3

12(1−𝜐2)
, w the transverse deflection, t the time, K 

is damping constant and Kf is Winkler type elastic foundation constant. Under the assumption that Young’s 

modulus and thickness h are function of space variable r only. Now equation (1) reduced to 
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Further to non-dimension Alize the problem, 𝑥 =
𝑟

𝑎
, 𝑤 =

𝑤

𝑎
, ℎ =

ℎ

𝑎
   are assumed. In order to make the mode 

more flexible, certain assumptions are made as follows: 

1. A tapered annular plate with quadratic thickness variation with the expression ℎ = ℎ0(1 + 𝛼𝑥 + 𝛽𝑥2), 

such that |𝛼| ≤ 1, |𝛽| ≤ 1 and +𝛽 > −1, is considered which helps to analyze vibrations in liner, parabolic 

and quadratic annular plates with the same model, where ℎ0 is the thickness at the center of the plate, α and β 

are taper parameters, and variable coefficients. 

2. To introduce the non-homogeneity in the material, Young’s modulus and density have been assumed to 

vary exponentially with 𝐸 = 𝐸0𝑒𝜇𝑥 , 𝜌 = 𝜌0𝑒𝜂𝑥, in radial direction differently. where, μ and η are non-

homogeneity parameters, and 𝜌0 is the density and 𝐸0 is Young’s Modulus of plate material at inner edge, 

x=ε.  

3. For harmonic motion, the solution can be assumed 𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝑒−𝛾𝑡 𝑐𝑜𝑠 𝑝 𝑡, where p is the radian 

frequency and 𝛾 is decay constant. 

Following the above assumptions, the equation (2) reduced to 

𝑊𝑥𝑥𝑥𝑥+2/{(1+𝜇x)+3(𝛼+2𝛽𝑥)/(1+𝛼𝑥+𝛽𝑥2)}𝑤𝑥𝑥𝑥 

+1/𝑥2[-1+(2+𝜐)x{𝜇+3(𝛼+2𝛽𝑥)/(1+𝛼𝑥+𝛽𝑥2)}+𝑥2 

{𝜇2+(6𝛽+6(𝛼+2𝛽𝑥))/(1+𝛼𝑥+𝛽𝑥2)+6(𝛼+2𝛽𝑥)2/(1+𝛼𝑥+𝛽𝑥2)2}]𝑤𝑥𝑥+1/𝑥3 

[(1−𝑥𝜇+3(𝛼+2𝛽𝑥)/(1+𝛼𝑥+𝛽𝑥2)+𝑥2𝜐{(𝜇2+((6𝛽+6(𝛼+2𝛽𝑥))/(1+𝛼𝑥+𝛽𝑥2)+6(𝛼+2𝛽𝑥)2/(1+𝛼𝑥+𝛽𝑥2)2]𝑤𝑥+12(1−𝜐
2)/𝐸0h0

3(1+𝛼𝑥+𝛽𝑥2)3{𝑎2𝜌0h0(1+𝛼𝑥+𝛽𝑥2)𝑒(𝜂−𝜇)𝑥(𝛾2−𝑝2)−𝑎𝐾𝛾𝑒−𝜇𝑥+𝑎𝐾𝑓𝑒−𝜇𝑥}𝑤=0.   

   

                                                                               (3) 

Where, 𝛾 =
𝐾

2𝜌0𝑒𝜂𝑥𝑎ℎ0(1+𝛼𝑥+𝛽𝑥2)
,  since Eq. (3) must be satisfied for all values of t. 
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For the parametric study, equation(3) (after simplification) can be expressed as 

𝑆0
𝑑4𝑊

𝑑𝑥4 + 𝑆1
𝑑3𝑊

𝑑𝑥3 + 𝑆2
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𝑑𝑥2 + 𝑆3
𝑑𝑊

𝑑𝑥
+ 𝑆4𝑊 = 0,                                                                    (4) 

where,   
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𝑆2 = 𝑄2 + 𝑅 + {(2 + 𝜐)𝑄/𝑥} − {1/𝑥2}, 
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 Once the value of eigenvalue parameter is obtained, then angular frequency p can also be calculated using 

the formula 
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 In many applications, damping, where it is light, resonant motion and this effect can be expressed in terms of 

loss factor at resonance. 

A theoretical parametric study is carried out by using DQM method [28] in order to solve equation (4) which 

is a fourth-order linear differential equation with variable coefficients and its exact solution is not possible.  

In recent years, quadratic thickness along with such kind of non homogeneity but without considering 

damping effect on circular and annular plates have been solved by using several kinds of numerical schemes 

including DQM. Due to the versatility of the method, in this paper, DQM is used to obtain non dimensional 

damped natural frequencies, also accuracy and efficiency of the proposed method are demonstrated by means 

of numerical as well as graphical illustrations. 

 

2. Description of the Method  

Let the computational domain  [ε,1] is discretized by taking m grid points,  x_m in the direction of   where 

(m-2) interval grid points, chosen for collocation, are the zeros shifted Chebyshev polynomial of order (m-2) 

with orthogonality range (ε,1) given by 

𝑥𝑘+1 =
1

2
[(1 + 𝜀) + (1 − 𝜀) 𝑐𝑜𝑠 (

2𝑘−1

𝑚−2

𝜋

2
)] , 𝑘 = 1,2, . . . , (𝑚 − 2).                         (5) 

It is assumed that the solution W(𝑥, 𝑡) of equation (4) at the grid 𝑥𝑖 and at the time t  is 

W(𝑥𝑖, 𝑡) = 𝑤(𝑥𝑖, 𝑡), 𝑖 = 1,2,3, … , 𝑚. 

2.1 Computation of the Weighting Coefficients 

According to differential quadrature method, derivatives of W(x) is given by 
𝑑𝑛𝑊(𝑥𝑖)

𝑑𝑥𝑛 = ∑ 𝑐𝑖𝑗
(𝑛)

𝑊(𝑥𝑗), 𝑛 = 1,2,3,4𝑖 = 1,2, . . . , 𝑚𝑚
𝑗=1 〗                              (6) 

 

Where 𝑐𝑖𝑗
(𝑛)

are weighting coefficients at discrete point 𝑥𝑖. 
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Following Shu[28], the weighting coefficients in equation (6) are given by 

𝑐𝑖𝑗
(𝑛)

=
𝑀(1)(𝑥𝑖)

(𝑥𝑖−𝑥𝑗)𝑀(1)(𝑥𝑗)
, 𝑖, 𝑗 = 1,2, . . . , 𝑚; 𝑖 ≠ 𝑗                                                                              (7)  

where 

𝑀(1)(𝑥𝑖) = ∏ (𝑥𝑖 − 𝑥𝑗)𝑚
𝑗=1
𝑗≠𝑖

,                                                                                                                          (8)  

and 

𝑐𝑖𝑗
(𝑛)

= 𝑛 (𝑐𝑖𝑖
(𝑛−1)

𝑐𝑖𝑗
(1)

−
𝑐𝑖𝑗

(𝑛−1)

(𝑥𝑖−𝑥𝑗)
) , 𝑖, 𝑗 = 1,2, . . . , 𝑚; 𝑖 ≠ 𝑗; 𝑛 = 2,3,                                                                   (9)  

𝑐𝑖𝑖
(𝑛)

= − ∑ 𝑐𝑖𝑗
(𝑛)

, 𝑖 = 1,2, . . . , 𝑚; 𝑛 = 1,2,3,4𝑚
𝑗=1
𝑗≠𝑖

                                                            (10)                      

    (10) 

2.2 Execution of the Method 

Discretizing the equation (4) at nodes 𝑥𝑖 , 𝑖 = 3,4, . . . , 𝑚 − 2equation (4) reduces to , 

𝑃0
𝑑4𝑊(𝑥𝑖)

𝑑𝑥4 + 𝑃1,𝑖
𝑑3𝑊(𝑥𝑖)

𝑑𝑥3 + 𝑃2,𝑖
𝑑2𝑊(𝑥𝑖)

𝑑𝑥2 + 𝑃3,𝑖
𝑑𝑊(𝑥𝑖)

𝑑𝑥
+ 𝑃4,𝑖𝑊(𝑥𝑖) = 0,   (11) 

Substituting the expressions for first four derivatives at node 𝑥𝑖  in equation (11) using relations (6) to (10) 

becomes 

∑ (𝑃0𝑐𝑖𝑗
(4)𝑚

𝑗=1 + 𝑃1,𝑖𝑐𝑖𝑗
(3)

+ 𝑃2,𝑖𝑐𝑖𝑗
(2)

+ 𝑃3,𝑖𝑐𝑖𝑗
(1)

)𝑊(𝑥𝑗) + 𝑃4,𝑖𝑊(𝑥𝑖) = 0, 𝑖 = 3,4, . . . , (𝑚 − 2).    (12) 

The satisfaction of equation (12) at (m-4) nodal points 𝑥𝑖 , 𝑖 = 3,4, . . . , (𝑚 − 2) provides a set of (m-4) 

equations in terms of unknowns 𝑊𝑗, 𝑗 = 1,2, . . . , 𝑚(where𝑊𝑗stands for 𝑊(𝑥𝑗)),which can be written in matrix 

form as  

[𝐵][𝑊∗] = [0],          (13) 

Where B and W* are matrices of order (m-4)*m and m*1, respectively.  

 

2.3 Boundary Conditions  

   

Finally, for complete specification of mathematical model discussed above, appropriate boundary conditions 

are employed to solve system of linear equations (13).  

The following three cases of boundary conditions are considered by satisfying the relations, along with 

Eq.(13) which leads to three different cases for different boundaries: 

Table 1. Different system of linear equations for diffrent boundary Conditions. 

Boundary Condition Mathematical expression Corresponding different sets of 

equations 

Clamped at both the edges 
𝑊 =

𝑑𝑊

𝑑𝑋
= 0 [

𝐵

𝐵𝑐
] {𝑊∗} = {0} 

Clamped at inner edge and simply supported  at outer 

edge 
𝑊 =

𝑑2𝑊

𝑑𝑋2
+

𝜐

𝑋

𝑑𝑊

𝑑𝑋
= 0 [

𝐵

𝐵𝑠𝑠
] {𝑊∗} = {0} 

clamped at inner edge and free outer edge 
𝑊 =

𝑑3𝑊

𝑑𝑋3
+

1

𝑋

𝑑2𝑊

𝑑𝑋2
−

1

𝑋2

𝑑𝑊

𝑑𝑋
= 0 [

𝐵

𝐵𝑓
] {𝑊∗} = {0} 

 

Finally, these systems (Table 1) can be solved using computational skills on different programming 

platforms. In this study a mathematical programme is developed to validate the mathematical model. 

 

3. Results and Discussion  

This section explaines the results of research as well as the comprehensive discussion on convergence and 

stability of used method and developed model, comparitive study with existing results. Results are presented 

in figures, graphs and tables. The  complete discussion is being made in three sub-sections. 

 

3.1. Convergence and Stability Analysis of the method 

Stability of the method of solution depends upon the obtained mathematical model up to a great extent. 

However, if the differential equation is unstable, the stability of the system completely relies on the roots of 
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the characteristic equation of “coefficient matrix” B, as the solutions can directly be obtained by using these 

eigenvalues. Thus, to prove the convergence and the stability of the solution up to four decimal places, a 

computer program was run to get appropriate values of non-dimensional frequency parameter. Figure 1 

demonstrates that percentage error in the numerical values of non-dimensional frequency Ω up to fourth 

decimal places with the increase in the number of grid points which decides the suitable number for internal 

grid points for the domain. During numerical computation, it is found that the convergence of results depends 

on the value of n and becomes stable which leads to reliable results. A comparative study for evaluation of 

non-dimensional frequency Ω for a uniform homogeneous annular plate is demonstrated table 2. 

 
Figure 1. Stability analysis: Convergence of the normalized frequency parameter Ω/ Ω* when (a) C-C 

Plate   (b) C-SS Plate (c) C-F Plate vibrates in ◊first mode, ○ second mode and  *third mode for 

υ=0.3,α=-0.5,β=0.0,η=-0.5,μ=-0.5,Dk =0.0, Ef =0.0, and Ω* -obtained using 26 grid points. 

 

Table 2 Comparison of dimensionless frequency parameter keeping:µ=0.0, η=0.0, α=0.0, β=0.0 and 

ε=0.3. 

  Poisson Ratio υ=0.3 Poisson Ratio υ=0.33 

 C-C C-S C-F 

 Mode I Mode II Mode III Mode I Mode II Mode III Mode I Mode II Mode III 

Using DQM 45.3462 125.3621 246.1573 29.9777 100.4228 211.1294 6.6604 42.6142 123.4661 

Using Quintic Spline 45.3461 125.3631 246.1626 29.9776 100.4235 211.1336 6.6603 42.6142 123.4671 

Exact Values taken by 

Leissa 
45.2 125   29.9 100         

 

3.2.  Stability Analysis of the model 

In order to prove the stability of the obtained ordinary differential equation (mathematical model), it is 

adequate to get non-positive values of oscillatory component in the assumed solution, or in other words 

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓(−𝛾) < 0 at each node. A particular case of aluminum material has been considered to show the 

authenticity/stability of the mathematical model (Figure 2-5). In the present example the material properties 

E=70 GPa and ρ =2,702 kg/m3 considered to illustrate the deflection of plates with different boundary 

conditions while vibrating in first two modes, with or without considering the damping. 
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Figure 2. Stability analysis: Non-positive values of oscillatory component (decay constant) 

corresponding to different grid sizes. 

 

 
Figure 3. Deflection under first two modes for C-C aluminum material (a) with damping parameter (b) 

without damping parameter. 

 
Figure 4. Deflection under first two modes for C-SS aluminum material (a) with damping parameter 

(b) without damping parameter. 

 
Figure 5. Deflection under first two modes for C-F aluminum material (a) with damping parameter (b) 

without damping parameter. 
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3.3. Parametric Study 

After analyzing the stability and accuracy of the scheme, primarily the effect of damping parameter over the 

natural frequencies for the first three modes is observed as well as compared, since this factor is introduced 

and brings novelty using another advanced method in the paper. Table 3 demonstrates the comparison of 

numerical results with those obtained by another method called Quintic Spline Technique [17] which shows 

that present results are comparatively computationally cheaper and better.  Simultaneously Table 3 also 

depicts that the parametric values of non-dimensional frequency are decreasing with the increasing value of 

damping parameter. Same has been depicted through figure 7.  Just to show the flexibility of the model a few 

numerical studies are demonstrated with respect to parabolic variation, as this model provides the liberty to 

choose linear, parabolic as well as quadratic variation in thickness. From figure 7 and 8, increasing behavior 

of Ω has been observed under the effect of elastic foundation for first three modes, with or without damping 

effect, respectively. After analyzing the normalized displacement behavior, from figure 9, values of Ω for 

Uniform plate is also analyzed , it shows that frequencies for uniform plates are smaller than the parabolic 

plates with thinner outer edge and greater than the parabolic plate with thicker edge irrespective of the value 

of other plate parameters. 

 
Figure 6. Effect of damping parameter: C-C Plate, ▬;C-SS Plate,---;C-F Plate, -.-.; vibrate in *, I- 

mode; ○, II-mode; and  ∆, III- mode for υ=0.3,α=-0.5,β=-0.1,η=-0.5,μ=-0.5, Ef =0.0, and Ω* -obtained 

using 26 grid points. 

Table 3. Comparison of dimension less Ω  with the variation of damping parameter Dk for all three 

boundary conditions, keeping µ=-0.5, η=-0.5, α=-0.5, β=-0.1, and ε=0.3. 

 
 Mode Dk=0 Dk=0.1 Dk=0.2 Dk=0.3 Dk=0.4 Dk=0.5 

Clamped-

Clamped 

edge 

Condition 

Using QST 

at N=320 

I 27.1716 27.1705 27.1675 27.1623 27.1551 27.1459 

II 75.6216 75.6212 75.62 75.618 75.6152 75.6116 

III 149.02 149.02 149.019 149.018 149.017 149.015 

Using DQM 

at N=30 

I 27.1718 27.1616 27.1513 27.141 27.1308 27.1205 

II 75.6216 75.6176 75.6136 75.6096 75.6056 75.6016 

III 149.018 149.016 149.013 149.011 149.009 149.007 

Clamped-

Simply 

Supported 

edge 

Conditions 

Using QST 

at N=320 

I 20.4357 20.4341 20.4294 20.4216 20.4107 20.3967 

II 63.1054 63.1049 63.1033 63.1008 63.0972 63.0926 

III 130.445 130.445 130.444 130.443 130.441 130.439 

Using DQM 

at N=30 

I 20.4359 20.4203 20.4047 20.3891 20.3734 20.3578 

II 63.1054 63.1002 63.0951 63.09 63.0848 63.0797 
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III 130.443 130.44 130.438 130.435 130.433 130.43 

Clamped-

Free edge 

Conditions 
Using QST 

at N=320 

I 6.4782 6.47 6.4455 6.4044 6.3464 6.2711 

II 30.723 30.7217 30.7178 30.7114 30.7024 30.6909 

III 79.874 79.8735 79.8722 79.8699 79.8668 79.8628 

Using DQM 

at N=30 

I 6.3271 6.2429 6.1575 6.0709 5.9831 5.8939 

II 30.6597 30.6469 30.634 30.6212 30.6083 30.5955 

III 79.838 79.8335 79.829 79.8245 79.82 79.8155 

 

 
Figure 7. Effect of Winkler type foundation: C-C Plate, ▬;C-SS Plate,---;C-F Plate, -.-.; vibrate in *, I- 

mode; ○, II-mode; and  ∆, III-mode for υ=0.3,α=-0.5,β=-0.1,η=-0.5,μ=-0.5, Dk =0.5, and Ω* -obtained 

using 26 grid points. 

 

 
Figure 8. Parabolic plates vibrating under (a) I-mode   (b) II- mode (c) III- mode keeping elastic 

foundation and non-homogeneity parameter under consideration for:µ=0.5, η =0.5, with edge 

conditions: “◊ C-C plate ; ○ C-S plate; *C-F edge;” for different value of taper constant :“―, α =-0.1; -

--,α =0.0.;-.- α =0.1” . 
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Figure 9. Normalized displacement for parabolic C-F, C-S, C-C Plates, for non-homogeneity 

parameter, µ=0.5, density parameter, η=0.5, for “―, first mode;――,Second mode, .-.-.,Third mode;” 

with different value of taper constant : “ ◊,, α=-0.1; o, α=0.0; *, α=0.1. 

 

4. Conclusion  

Computational model for natural frequencies of a non-homogeneous annular plate with varying thickness 

under the effect of Winkler type elastic is modified by considering the effect of damping and then solved by 

differential quadrature method, which produces highly accurate as well as reasonably stable results.Study of 

damping parameter encourages us to incorporate this factor in the study of vibration analysis of more 

complex structure in terms of material as well as physical properties. Hence the present study will be a 

benchmark to evaluate more accurate results even for highly complex combination of different parameters of 

vibrating plates of different types.   
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