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 Abstract 

Although clouds are crucial in controlling climate change, they are challenging to replicate in Earth system 

models (ESMs). Enhancing cloud representation is a crucial step towards more reliable climate change 

forecasts. In order to enhance comprehension of cloud representation and associated processes in climate 

models, this work presents a novel machine-learning framework based on satellite data. Coarse data may be 

assigned distributions of known cloud kinds using the suggested technique. It enhances the consistency of cloud 

process analysis and makes it easier to evaluate clouds in ESMs more objectively. Using cloud type labels from 

Cloud Sat as ground truth, the technique is based on deep neural networks labeling satellite data from the 

MODIS instrument with cloud categories established by the World Meteorological Organization (WMO). The 

technique works with datasets that provide physical cloud variable information at a temporal resolution that is 

high enough to be equivalent to MODIS satellite data. We use the technique using alternative satellite data, 

coarse-grained to usual resolutions of climate models, from the Cloud_cci project (ESA Climate Change 

Initiative). Our technique works with the common horizontal resolutions of ESMs, and the resultant cloud type 

distributions are physically consistent. We suggest that important variables needed by our approach be produced 

for next analysis of ESM data. This will make it possible to assess clouds in climate models more methodically 

by using tagged satellite data. 

Index Terms— Climate modeling, clouds, Cloud Sat, CUMULO dataset, ESA Cloud_cci, machine learning, 

Moderate Resolution Imaging Spectroradiometer (MODIS), process-oriented model evaluation. 

 

1. Introduction 

EARTH system models (ESMs, often called climate models) are valuable resources for both projecting climate 

change under many likely future scenarios and enhancing our knowledge of the current climate.Nonetheless, a 

significant obstacle for ESMs continues to be simulating clouds and how they interact with the climate system 

[1]. One of the main causes of inter-model spread has been found to be the way clouds are represented in these 

models [2], [3]. Therefore, resolving these challenges requires an enhanced cloud process representation in 

ESMs [4]–[6]. Long-term satellite products with near-global coverage provide observations that are often used 

to evaluate model performance [e.g. 7], [8]. These data have shown to be highly suitable for the assessment of 

climate models. However, the constraints and uncertainties of the observational products themselves—such as 

biases or inconsistent geographical and temporal coverage—limit this typical method in part [9]. We provide a 

novel method for evaluating ESMs that aims to alleviate some of the perceived drawbacks of using traditional 

observational data while also making process-oriented cloud assessment in climate models easier. We make 

advantage of preexisting information about the features of various cloud classes, which are derived from the 

World Meteorological Organization's (WMO) taxonomy of cloud types. Utilizing this earlier information, cloud 

operations may be emphasized for further analysis. Our method applies machine learning-based cloud 
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categorization techniques for satellite data [10]–[15] to climate models, which is a new discovery. Although 

machine learning-based cloud categorization is not a novel concept [e.g. 16], it has only recently been practical 

for large-scale applications because of the rise in processing power that is now accessible and the fact that the 

various approaches have varied characteristics. The supervised vs unsupervised nature of categorization 

techniques is a key differentiator. Whereas the latter seeks to automatically discover unique new classes, the 

former depends on already given classes. While unsupervised approaches provide the user more flexibility over 

the composition of the classes, supervised classification makes the assumption that the classes allocated to them 

are appropriate for the task at hand. Consequently, supervised approaches need a collection of labeled data but 

enable interpretation of the final findings without the need for extra analytic stages [11], [14]. Unsupervised 

approaches are preferred if finding as different classes as feasible is the aim or if there are no accessible 

previously labeled data [12], [13]. As far as we are aware, no high-resolution (O11 kmo) cloud class-labeled 

satellite data have been used so far for ESM analysis and assessment. Compared with rather coarse 

classifications, such as those employed, for instance, in the D-Series of the International Cloud Climatology 

Project (ISCCP, [17]), labeled datasets allow for a more comprehensive and direct interpretation of cloud types 

in the corresponding satellite data. The output of satellite simulators from models and clustering for satellite 

products have been employed in previous works for unsupervised cloud categorization [6, 18, 19, 19]. The 

selected clusters in these investigations are then allocated morphological cloud regimes based on the average 

physical attributes of each cluster. A categorization like this provides important insights into how different 

models more precisely depict clouds than would be possible with a basic climatology of physical factors. 

Nevertheless, the findings may be impacted by uncertainties and artifacts generated by the satellite simulators, 

in addition to being based on the relatively low resolution of 1280 kmo2 of the ISCCP-D1 [17] product [20], 

[21]. In a recent research, the quantity of each of the four cloud classifications per cell was assigned using a 

convolution neural network on 14000 kmo2 grid cells [22]. The classes in [22] came from WMO classes found 

from surface measurements, and the technique works with the output of climate models. In order to study certain 

cloud features like precipitation or radioactive impacts, several research have categorized satellite data by cloud 

regime [23], [24]. Using the 1_ _ 1_ resolution ISCCP-H output, cloud regime clustering techniques have 

recently been applied to current-generation climate models [25]. 

 

Fig.1. Two stages of machine-learning—a classifier and a regression model—are required to obtain 

cloud-type predictions on datasets with low horizontal resolution. 

2. Literature Survey 

P. P. Vignesh, J. H. Jiang, P. Kishore, H. Su, T. Smay, N. Brighton, and I. Velicogna,[1] In terms of skills and 

multimodal agreement, the seasonal and regional fluctuations of cloud fractions are compared across two 

generations of global climate model ensembles, namely the Coupled Model Intercomparison Project‐5 (CMIP5) 

and CMIP6, across the historical period. Compared to what the CMIP5 model predicted, we find a larger 

dispersion of historical cloud percentage changes in the CMIP6. In comparison to CMIP5, the worldwide mean 

cloud percentages in CMIP6 rose by around 4.5%, which was attributable to more changes in the northern than 

in the southern hemisphere. To comprehend the cloud fraction uncertainties in CMIP6 models, the 

CALIPSO_CLOUSAT data are used to verify the CMIP6 cloud fractions from recent years. At lower altitudes, 

there is a mean difference of 0.5% between the CMIP6 ensemble mean of cloud percentages and the data, 

indicating good agreement. In the upper troposphere, the CMIP6 cloud percentages are greater than the data at 

higher latitudes in both hemispheres, and the biases differ amongst models. The model has a 3% larger bias 

across the tropics, further revealing the spatial mismatch between the ensemble and data. Additionally, utilizing 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

_________________________________________________________________________________ 

 

34 

 

estimations of cloud fraction trends based on the robust regression approach, we detected a significant trend that 

has been occurring in the northern hemisphere since the mid-20th century. Finally, we use a straightforward 

regression approach to minimize the discrepancies between the model and data. The root mean square value 

dropped by over 28% and the correlation significantly enhanced, demonstrating how well the model and 

modified data compare.  

L. Denby, [2] The main source of ambiguity in estimations of climate sensitivity is the way shallow trade wind 

convective clouds are represented in climate models. Specifically, little is known about the radiative effect of 

cloud spatial structure. The first unsupervised neural network model that can identify cloud structure regimes in 

satellite photos on its own is presented in this paper. Equipped with 10,000 GOES-16 satellite photos (spanning 

the tropical Atlantic and boreal winter), the discovered regimes exhibit a hierarchical structure of organizational 

sizes, whereby sub-clusters possess unique radiative characteristics. The methodology enables the objective 

analysis of extremely large data sets by eliminating the need for laborious and subjective hand-labeled data 

based on predetermined structures. With the help of cloud formations that emerge in both, the model allows for 

the objective comparison of model behavior with observations, as well as the study of environmental 

circumstances in various organizational regimes and during regime transitions. These capabilities make it 

possible to identify physical linkages in cloud processes that were previously unknown, which improves the 

depiction of clouds in weather and climate models. 

W. J. Marais, R. E. Holz, J. S. Reid, and R. M. Willett [3] Multichannel spectral tests on individual pixels (i.e., 

fields of view) are used in the current cloud and aerosol detection techniques for multispectral radiometers, such 

as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer 

Suite (VIIRS). Phase and cloud top height are two examples of statistical factors that are often used in cloud and 

aerosol algorithms to classify clouds. Multispectral microphysical retrievals, on the other hand, give cloud 

classification information. Since clouds and aerosols have similar spectral characteristics in coarse-spectral-

resolution studies, there is ambiguity in distinguishing optically thick aerosols using these approaches. 

Furthermore, since low-altitude cloud regimes have similar spectral characteristics, it is challenging to 

determine cloud regimes (such as stratiform and cumuliform) from only spectral observations. Deep neural 

network-based improvements in computer vision have opened up new possibilities for maximizing the coherent 

spatial information found in multispectral pictures. We exhibit advances in the ability to distinguish between 

cloud and severe aerosols, as well as an increased capacity to categorize different kinds of clouds, using a mix of 

machine learning approaches and a novel methodology to generate the required training data. An optimized 

version of the NASA Worldview platform, which offers a user-friendly interface for compiling a human-labeled 

database of cloud and aerosol types, was used to construct the labeled training dataset. Using MODIS cloud and 

aerosol data and independent Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), the convolutional 

neural network's (CNN) accuracy in classifying aerosols and cloud types was measured. 

Arthur Grundner, Tom Beucler, Pierre Gentine, Fernando Iglesias-Suarez  [4] Using deep learning with training 

data from storm-resolving model (SRM) simulations is a potential way to enhance cloud parameterizations 

inside climate models and therefore climate forecasts. The ICOsahedral Non-hydrostatic (ICON) modeling 

framework is a perfect target to create neural network (NN) based parameterizations for sub-grid scale 

processes, since it allows simulations ranging from numerical weather prediction to climate forecasts. We use 

coarse-grained data from realistic regional and global ICON SRM simulations to train neural network (NN) 

based cloud cover parameterizations inside the ICON framework. We configure three kinds of NNs for 

diagnosing cloud cover using coarse-grained atmospheric state data, which vary in the degree of vertical locality 

they assume. Using coarse-grained data with comparable geographical properties to their training data, the NNs 

correctly predict sub-grid size cloud cover. Furthermore, the sub-grid scale cloud cover of the regional SRM 

simulation may be replicated by globally trained NNs. We identify the cause for our column-based NN's 

inability to completely generalize from the global to the regional coarse-grained SRM data as an overemphasis 

on particular humidity and cloud ice, using the game-theory based interpretability library SHapley Additive 

exPlanations. Additionally, the interpretability tool shows a local correlation between the thermodynamic 

environment and cloud cover forecasts made by locally and globally trained column-based NNs, as well as 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 3 (2024) 

_________________________________________________________________________________ 

 

35 

 

similarities and variations in feature relevance between them. Our findings demonstrate the capability of deep 

learning to extract interpretable and accurate cloud cover parameterizations from global SRMs, and they imply 

that neighborhood-based models could provide a reasonable intermediate ground between generalizability and 

accuracy. 

3. Existing System 

One of the main sources of uncertainty in future climate estimates is cloud feedback uncertainty in climate 

models. Thus, in order to guarantee the correctness of climate models, cloud simulation assessment and 

development are crucial. With regard to global mean near-surface temperature (GMST), we examine cloud 

biases and cloud change in climate models in relation to satellite data. We next connect these findings to 

equilibrium climate sensitivity, transient climate response, and cloud feedback. In order to achieve this, we 

create a supervised deep convolutional artificial neural network that can identify different types of clouds based 

on low-resolution (2.5∞×2.5∘) daily mean top-of-atmosphere radiation fields for shortwave and longwave 

wavelengths. These radiation fields correspond to the cloud genera recorded by human observers in the Global 

Telecommunication System (GTS) and are recognized by the World Meteorological Organization (WMO). We 

apply this network to the output of the Coupled Model Intercomparison Project Phases 5 and 6 (CMIP5 and 

CMIP6), the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5), 

and the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalyses. 

We train the network using top-of-atmosphere radiation retrieved by the Clouds and the Earth's Radiant Energy 

System (CERES) and GTS. We examine the differences in cloud types between satellite observations and 

simulations. We connect biases to climate sensitivity and find a negative linear association between model 

equilibrium climate sensitivity (ECS), transient climate response (TCR), and cloud feedback, and the root mean 

square error of cloud type occurrence obtained from the neural network. The model ensemble's statistical 

connection favors models with stronger cloud feedback, TCR, and ECS. This association, however, may be the 

result of the ensemble's very modest size or the decoupling of predicted cloud change in the future from current 

biases. With the use of the abrupt-4×CO2 CMIP5 and CMIP6 experiments, we demonstrate that models that 

simulate stratiform clouds that are decreasing and those that are increasing typically have higher ECS than 

models that simulate stratiform clouds that are increasing and that could also partially explain the relationship 

between the model ECS and the model cloud type occurrence error. 

3.2 Proposed System 

We provide a novel method for evaluating ESMs that aims to alleviate some of the perceived drawbacks of 

using traditional observational data while also making process-oriented cloud assessment in climate models 

easier. We make advantage of preexisting information about the features of various cloud classes, which are 

derived from the World Meteorological Organization's (WMO) taxonomy of cloud types. Utilizing this earlier 

information, cloud operations may be emphasized for further analysis. Our strategy applies machine learning-

based cloud categorization techniques recently developed for satellite data to climate models. Although machine 

learning-based cloud categorization is not a novel concept [e.g. 16], it has only recently been practical for large-

scale applications because of the rise in processing power that is now accessible and the fact that the various 

approaches have varied characteristics. The supervised vs unsupervised nature of categorization techniques is a 

key differentiator. Whereas the latter seeks to automatically discover unique new classes, the former depends on 

already given classes. While unsupervised approaches provide the user more flexibility over the composition of 

the classes, supervised classification makes the assumption that the classes allocated to them are appropriate for 

the task at hand. As a consequence, supervised approaches need a set of labeled data yet enable interpretation of 

the final findings without the need for extra analytic stages. Unsupervised approaches are better if finding as 

different classes as feasible is the aim, or if there are no accessible previously tagged data. 

4. List Of Modules 

• Service Provider 

• View and Authorize Users 
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• Remote User 

4.1 MODULE DESCRIPTION  

4.1.1 Service Provider 

The Service Provider must provide a valid user name and password to log in to this module. He can do some 

tasks after logging in successfully, such Train & Test Data Sets, View Accuracy of Datasets in Bar Chart, View 

Accuracy of Datasets in Results View the Climate Class Type Prediction, View the Climate Ratio Prediction, 

Download the Predicted Data Sets, View All Remote Users and View Cloud Class for climate Type Ratio 

Results. 

4.1.2 View and Authorize Users 

The administrator may see a list of all enrolled users in this module. In this, the administrator may see user 

information such name, email address, and address, and they can also approve people. 

4.1.3 Remote User 

There are n numbers of users present in this module. Prior to beginning any actions, the user must register. The 

user's information is saved in the database when they register. Upon successful registration, he must use his 

permitted user name and password to log in. After logging in successfully, the user may do several tasks such as 

creating an account, predicting a cloud class based on climate type, and seeing their profile. 

5. Architecture Diagram 

 

Fig. 5.1 Architecture Diagram 
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6. Output Results 

 

Fig.6.1 User Registration page 

 

Fig.6.2 User Login page 

 

Fig.6.3 this is the user page to predict the data. These are the parameters it will take from dataset. 

 

Fig.6.4. And it will predicted the results 
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Fig.6.5. this is the Admin login page 

 

Fig.6.6.This is the admin page. These are the algorithms we have used in this project 

 

 

Fig.6.7. the algorithms are represented in bar chat 
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Fig.6.8. the algorithms are represented in pie chat 

 

 

Fig.6.9. In the dataset we have two output lables that is partly cloud and light rain that is represented in 

percentage 

 

 

Fig. 6.10.The data represented in pie chart 
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7. Conclusion and Discussion 

Testing the regression model on data that hasn't been observed yet reveals temporal and physical consistency in 

the findings across all studies. This is the method's main objective, which is to assess physical processes. 

Therefore, even if the classification results do not precisely replicate the label distribution in the original data, 

we may be certain that the findings are meaningful. The classifier's predictions about the quantity of St may be 

partially accounted for by the short number of training samples and the physical similarities between Sc and St. 

We find that for datasets with a horizontal resolution common for climate model sizes, pixel-wise labeled data 

are thus viable as a foundation for training a regression model that learns cloud class distributions. Our findings 

generally imply that the approach is appropriate for a process-oriented evaluation of clouds that climate models 

generate. This may be done inside the cloud classes using the expected distributions, which has several benefits. 

First, the findings may be analyzed in terms of cloud classes that are precisely specified by the underlying 

classification system, eliminating a layer of subjective interpretation (Cloud Sat, [28]). The essential processes 

driving formation and development vary between the cloud classes, thus as we are utilizing the widely 

recognized WMO classes, the resultant cloud class distributions may then be examined and understood in a 

process-based way. This significantly streamlines the examination and assessment of certain physical attributes 

associated with cloud dynamics inside climate models. Second, the climate models are implicitly super-resolved 

horizontally while the deep learning algorithm learns from high-resolution 3-dimensional data. This analysis 

considers information about the vertical structure of clouds, meaning that learning from a combination of 2- and 

3-dimensional data may benefit from vertical information not included in the cloud top view. The ability of the 

approach to resolve phenomena on seasonal and regional sizes makes it possible to pinpoint spatiotemporal 

regions where clouds are inaccurately represented. This might be carried out, for instance, to study the 

horizontal extent, dependency on feature values, and temporal development of the low level clouds present in 

the subtropics west of the continents. However, because of the multi-stage process's design, there are some 

restrictions. For example, it is challenging to produce accurate predictions on particular grid cells since the 

regression was built using 2-dimensional, spatially averaged source data. As a consequence, the expected cloud 

percentage varies by a factor of two or more for a number of samples. Furthermore, this approach may yet be 

improved, as seen by the underrepresentation of the Cu class and the restricted precision of the St class. Given 

that the Cloud Sat algorithm struggles to discern between St and Sc, this most likely results from the Cloud Sat 

ground truth itself, at least in part. Therefore, when using these or related methods, we advise combining these 

classes. Noisy satellite retrievals may magnify or obscure certain elements of the expected cloud distribution, 

such as the large proportions of Ns around the Antarctic shore. Clouds may be difficult to define using passive 

sensors such as MODIS, especially at high latitudes. Since our ML models are trained on immediate 

observations, they do not perform well when applied to temporally averaged data. For the pixel-wise 

categorization, using geostationary data (available, for example, every 30 minutes; GOES satellite, [37]) rather 

than MODIS data (available, for example, just twice a day) may provide better results. Other atmospheric 

factors including convection and rainfall have also been studied using this methodology [38], [39]. Because of 

the high and constant temporal resolution of the data, the physical features of the anticipated clouds could then 

be safely averaged across time, enabling the regression model to train on data that was more like to the output of 

conventional ESMs. Nevertheless, our method cannot resolve the processes at large temporal scales that need to 

be assessed. When the RF is trained on temporally averaged data, this will continue to be a problem and 

contribute to the poor regression performance for monthly mean data. This in turn suggests that, as opposed to 

utilizing climatologically means from long-term simulations, this technique is ideal to uncover problems in the 

model rather rapidly. This is because, with model output available for less than a year, we would anticipate an 

erroneous depiction of the global and regional cloud distributions to be visible now.  
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