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Abstract:- In this study, two wheel inverted pendulum robot is equipped with a scissor pair control moment gyro 

(CMG) for controlling its tilt angle. The objective is utilizing the produced torque from CMG to swing up the 

robot from ground to the upright position. The physical system is designed and its mathematical model is derived 

using Lagrange method, capturing the complex dynamics and constraints, including locked drive wheels. To 

achieve the challenging task of swinging up the robot from extreme initial conditions (90-degree body tilt angles 

on either side) to a stable zero-state upright position, a full-state feedback Linear Quadratic Regulator (LQR) 

controller is employed. The nonlinear equations of the system and the controller are solved numerically by 

MATLAB software. Furthermore, to validate the derived model and controller, the system is implemented on 

computer-aided engineering software (Simulink Multibody), and the results are meticulously compared with 

mathematical outcomes. 
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1. Introduction 

The landscape of mobile robotics is experiencing significant advancements due to development of electronics, 

sensors and actuators, with these versatile machines finding application across a multitude of environments[1], 

[2]. These encompass air-based, water-based, and land-based settings, where they play pivotal roles in diverse 

sectors, including households, agriculture[3], industry[4], military operations[5], and even the frontier of space 

exploration[6].  

One standout among these mobile robots is the Two-Wheel Inverted Pendulum Robot, affectionately known as 

"TWIP." Within the commercial sector[7], TWIP has emerged as a subject of intense investigation due to its 

inherent attributes, notably its simplicity, remarkable maneuverability, and capacity to operate effectively in 

confined spaces.  

In the academic sphere, TWIP presents a captivating challenge to researchers[8],[9], given its intrinsic instability 

as an underactuated system[10]. The cart pole, regarded as a simplified counterpart to the two-wheel robot, has 

been a focal point for extensive research efforts[10]. This includes endeavors related to both swinging it up[11] 

from challenging initial conditions and maintaining a balanced equilibrium upright state [12]. 

Recent developments have introduced mechanical devices capable of generating torque to control the body tilt 

angle within the inverted pendulum structure. Among these devices are Reaction Wheels (RWs) [13] and Control 

Moment Gyros (CMGs)[14],[15]. While reaction wheels have their merits, they are hampered by their dependence 

only on mass moment of inertia, resulting in limited torque capacity that varies with the specific flywheel and 

motor used. In contrast, CMGs offer distinctive advantages. They derive their torque not only from the flywheel's 

mass moment of inertia but also from its fixed angular velocity. 

CMGs introduce a unique torque generation mechanism. The direction of torque produced by CMGs is orthogonal 

to both the flywheel's angular momentum and the gimbal rotation. This results in a torque component that varies 

according to the cosine of the gimbal angle. Although CMGs inherently produce torque in multiple directions as 

the gimbal angle changes, the scissor pair control moment gyro (SPCMG) configuration has been devised to 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

__________________________________________________________________________________ 

6687 

address this complexity. SPCMG enable the duplication of desired torque components while effectively nullifying 

undesired ones. 

In this paper, the primary objective is to explore the efficacy of employing the SPCMG to accomplish the 

formidable task of swinging up the robot body from a 90-degree tilt angle. This endeavor is undertaken while 

treating the relative motion between the drive wheels and the robot body as a unified entity. In this configuration, 

the SPCMG assumes sole responsibility for manipulating the swing-up and balancing of the system. The 

derivation of the mathematical model for this inherently nonlinear system begins by utilizing Lagrange's equations 

to elegantly capture its dynamic intricacies. Subsequently, linearization around the zero states position is 

undertaken to facilitate the exploration of control strategy. 

A closed-loop system is formed by applying full-state feedback control to the system. Optimal gains are acquired 

by applying the linear quadratic regulator (LQR) to the linearized system. The nonlinear system is subsequently 

regulated using the optimal gains obtained, and the closed-loop nonlinear system is solved using MATLAB 

software, resulting in the acquisition of response data and control signals, enabling us to visualize and analyze 

them. 

To bolster the credibility of mathematical model and controller, a robust MATLAB/Simulink Multibody model 

is constructed, enabling a meticulous comparison of simulation results with theoretical outcomes. 

In summation, this paper constitutes a comprehensive exploration of the complexities and challenges inherent to 

TWIP. It delves deep into the intricacies of control, leveraging the SPCMG to achieve the task of swinging up the 

robot body from extreme initial conditions. This work seamlessly integrates mathematical modeling, control 

strategy, and simulation tools to shed light on this intricate facet of mobile robotics. 

2. System Modeling And Control 

A. System Setup 

Illustrated in Fig. 1, the conceptual robot design comprises a body configured as an inverted pendulum, actuated 

by a pair of wheels. During the swinging-up phase, the drive wheels are intentionally immobilized, resulting in 

zero relative motion between the body and the wheels. Upon achieving an upright position, the balance phase 

starts as discussed in [14]. In this phase the braked drive wheels are released allowing the robot's base, centrally 

situated between the drive wheels, commences a translation along the z-axis, represented by the displacement z(t). 

The pivotal component of this setup is the SPCMG, strategically integrated within the robot's base. This 

integration ensures that the torque generated by the SPCMG is perpetually aligned with the direction of the body's 

tilting, denoted as φ(t), as the precision angle of the gimbal, θ(t), attains a certain velocity.  

The flywheels exhibit counter-rotating behavior, spinning in opposing directions at an identical fixed angular 

velocity denoted as Ω. Simultaneously, the gimbal angle, θ(t), is rigorously constrained to follow corresponding 

motions in opposite directions, as visually depicted in Fig. 2.  

The resulting unidirectional torque is generated as a cosine function of the instantaneous value of the gimbal angle. 

This torque will have the dual role of swinging up the robot in swing-up phase and subsequently stabilizing it in 

the upright position in balance phase. 

In swing-up phase, the control block diagram illustrated in Fig. 3 shows that gimbal speed is utilized as control 

signal obtained from full-state feedback controller. Controller gains are calculated by linearizing the system and 

applying LQR to obtain optimal gains. 

B. Mathematical Modeling 

In this section, the mathematical model that describes the dynamics of the robot during swinging-up phase is 

derived. The system under investigation possesses two degrees of freedom: the body tilt angle, denoted as φ, and 

the gimbal precision angle, represented as θ. 

The analysis begins by determining the kinetic and potential energy associated with each constituent part of the 

system with robot base level as zero energy level. This step allows to encapsulate the system's energy state and 
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serves as a foundational element for the subsequent mathematical lagrangian derivations for robot of parameters 

presented in Table I. The kinetic energies of flywheel fT
, gimbal gT

, wheel wT
 and body bT

 can be defined as 

follows, respectively 

 

Fig. 1. Two wheel robot equipped with scissor pair control moment gyro 

 

Fig. 2. Gyro-stabilized two wheel robot degrees of freedom 

 

Fig. 3. Control Block Diagram of Two Wheel Robot Swing-Up 
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So the total kinetic energy is 

2 2 2b f g wT T T T T= + + +
 (5) 

During operation, only the center of mass of body changes with time and other parts remains at zero level so 

( )cosbV m gL =
 (6) 

Since only two degrees of freedom existed, Lagrange’s equations of the system can be written as  

0
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Where c  is the control torque applied to each gimbal. So, the nonlinear equations are obtained and rearranged 

in terms of 
, 

 as follow 

Table I. Robot Parameters 

Parameter Symbol Value 

Length between base and body center of gravity 𝐿 0.137545 m 

Radius of each wheel 𝑟 0.127 m 

Gravitational constant 𝑔 9.80665 m/s2 

Mass of each flywheel 𝑚𝑓 2.46278 kg 

Mass of each gimbal 𝑚𝑔 0.978686 kg 

Mass of each wheel 𝑚𝑤 2.34 kg 

Mass of Body 𝑚𝑏 2.29855 kg 

Flywheel mass moment inertia in x. z directions 𝐼𝑓𝑥 , 𝐼𝑓𝑧 0.00356039 kg/m2 

Flywheel mass moment of inertia in y direction 𝐼𝑓𝑦  0.0069566 kg/m2 

Gimbal mass moment of inertia in x direction 𝐼𝑔𝑥  0.00410189 kg/m2 

Gimbal mass moment of inertia in y direction 𝐼𝑔𝑦  0.00396961 kg/m2 

Gimbal mass moment of inertia in z direction 𝐼𝑔𝑧 0.00068736 kg/m2 
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Parameter Symbol Value 

Wheel mass moment of inertia in x direction 𝐼𝑤𝑥
 0.0208127 kg/m2 

Mass moment of inertia of body in x direction 𝐼𝑏𝑥  0.0795059 kg/m2 

Flywheel speed 𝛺 1000 rad/s 

( ) ( ) ( )( ) ( )
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C. State Space Model and Control 

The robot is considered to be controlled by signal that determine gimbal speed control directly rather than gimbal 

torque. This choice simplifies the problem making system to be reduced to only three states and allows to represent 

the phase portraits of system in 3D graph.    

Define 
 1 2 3, ,

T
x x x x=

 and u = , where 1x =
, 2x =

 and 3x =
 

Then the system dynamics can be rewritten as 
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Since 
( ),f x u =

 mentioned in 13 

Linearization is performed to system 11 for equilibrium states 
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to represent the system in form of  
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function of linear quadratic regulator of state space model is:  
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Weighting matrices Q and R are chosen as : 
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1000 0 0

0 10000 0

0 0 2500

Q

 
 

=
 
    and 2500R =  

And control input that achieve desired states while minimizing cost function is  

( )desiredu k x x= − −
 (15) 

In swing-up phase, the target is to put the robot in upright position while resetting gimbals to its zero position. 

Substituting  
 0,0,0

T

desired eqx x= =
, so 

u kx= −  (16) 

The solution of gain K is standard and it is given as: 

1 TK R B P−=  (17) 

The gain matrix K is used to control the gimbals angular velocity of non-linear system, where P  is determined by 

solving the following Algebraic Riccati Equation (ARE): 

1 0T TPA A P PBR B P Q−+ − + =
 (18) 

Optimum gains (17) , deduced from robot parameters of Error! Reference source not found.Table I and system 

(13) can be calculated as follow K= [-1.0879,-1.0594,-0.6325]. 

3. Analysis 

A. Experiment Criteria 

The supposed experiment is initiated from distinct initial conditions deemed critical for investigation. These 

conditions entail the robot being positioned at either a positive or negative 90-degree tilt angle, representing a 

prone orientation on the ground. Additionally, the system commences with a state characterized by zero tilt 

angular velocity and zero gimbal angle, hence,  
0 ,0,0

2

T

x
 

=  
  . 

The core objective of the controller is to achieve the precise swing-up of the robot's body from these initial 

conditions to attain a perfectly upright position, defined as a zero-degree tilt angle. To accomplish this, the gimbal 

angular velocity is strategically modulated, while resetting the gimbal angle to zero 
 0,0,0

T

desiredx =
. 

B. Results 

The nonlinear system of equations is solved numerically using MATLAB software and response was simulated 

with 0.001 second time step over 20 second time span. 

Fig. 4 displays the response of three key states within the nonlinear system: the body tilt angle, body angular 

velocity, and gimbal precision angle. The body tilt angle undergoes a notable ascent, transitioning from a starting 

point of -π/2 radians to a stabilized zero position in an upright configuration. Concurrently, the gimbal precision 

angle exhibits dynamic changes until all states ultimately converge to a state of equilibrium at zero radians. 

Furthermore, in     Fig. 5 we observe the temporal profile of the control signal governing the gimbal angular 

velocity. The signal initiates with a pronounced peak value and subsequently undergoes a gradual decay, reaching 

a final steady-state value of zero. This control signal is instrumental in manipulating the system's response, 

facilitating the transition to a stable equilibrium state observed in Fig. 5. 
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Also in Fig. 4 and Fig. 5, we engage in a comparative analysis between the theoretical outcomes derived from 

solving the nonlinear system equations and the simulated results obtained through the utilization of Simulink 

Multibody software. It is evident that the three fundamental states as well as the control signal exhibit a remarkable 

degree of concurrence between the two sets of data. This pronounced alignment serves as compelling empirical 

evidence, attesting to the accuracy and reliability of our derived mathematical model for the robot. Moreover, it 

unequivocally underscores the efficacy of the applied controller, affirming its capacity to drive the robot's behavior 

in accordance with mathematical results. 

4. Conclusion 

The two-wheel robot can achieve a swing-up motion, transitioning from a grounded position to an upright stance, 

through the application of torque generated by a control moment gyro. During the swing-up phase, a crucial feature 

involves synchronizing the movement of the drive wheels and the robot body, effectively treating them as a unified 

entity. This synchronization eliminates concerns of instability or potential falls, as the robot can autonomously 

regain its upright position. 

Upon attaining the upright stance, a seamless shift to the balance phase controller occurs, and the locking 

mechanism between the drive wheels and the robot body is released. This transition empowers the robot with the 

capability to move freely and maintain its equilibrium during subsequent motion. 

 

Fig. 4. Response of two wheel robot equipped with scissor pair control moment gyro in swing-up phase 

 

Fig. 5. Control signal for gimbal speed of scissor pair control moment gyro in swing-up phase 
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