The Connected Detour Edge Semi Toll Number of a Graph

S. Rekha, M. Antony

1 Register Number 19133232092004, Research Scholar, Department of Mathematics, St.Jude’s College, Thoothoor - 629 176, India, email: rekhajegan83@gmail.com
2 Associate Professor, Department of Mathematics, St.Jude’s College, Thoothoor - 629 176, India, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India

Abstract

A detour edge semi toll set of a connected graph G is called a connected detour edge semi toll set of G if the induced subgraph $G[S]$ is connected. The minimum cardinality of a connected detour semi toll set of G is the connected detour semi toll number and is denoted by $cdn_{est}(G)$. Any connected detour semi Euler set of cardinality $cdn_{est}(G)$ is called a cdn_{est}-set of G. Some general properties satisfied by this concept are studied. Some standard graphs are determined. It is shown that for every pair of a and b of integers with $2 \leq a < b$, there exists a connected graph G such that $dn_{est}(G) = a$ and $cdn_{est}(G) = b$.

Keywords: connected detour edge semi toll number, detour edge semi toll number, detour number.

Subject Classification: AMS Subject Classification. 05C12.

1. Introduction

By a graph $G = (V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to [2]. Two vertices u and v are said to be adjacent if uv is an edge of G. Two edges of G are said to be adjacent if they have a common vertex. A walk is defined as a finite length alternating sequence of vertices and edges. The total number of edges covered in a walk is called as length of the walk. It is a trail in which neither vertices nor edges are repeated i.e. if we traverse a graph such that we do not repeat a vertex and nor we repeat an edge. Any connected graph is called as an Euler Graph if and only if all its vertices are of even degree. If there exists a walk in the connected graph that starts and ends at the same vertex and visits every edge of the graph exactly once with or without repeating the vertices, then such a walk is called as an Euler circuit.

The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest u-v path in G. An u-v path of length $d(u, v)$ is called an u-v geodesic. The detour distance $D(u, v)$ between two vertices u and v in a connected graph G from u to v is defined as the length of a longest u-v path in G. An u-v path of length $D(u, v)$ is called an u-v detour. A vertex x is said to lie on an u-v detour P if x is a vertex of P including the vertices u and v. A detour set of G is a set $S \subseteq$
\textit{V} (G) such that every vertex of \(G \) is contained in a detour joining some pair of vertices in \(S \). The \textit{detour number} \(dn(G) \) of \(G \) is the minimum order of a detour set and any detour set of order \(dn(G) \) is called \textit{minimum detour set} of \(G \) or a \textit{dn-set} of \(G \). These concepts were studied in [3-7,9].

A tolled walk \(T \) between \(u \) and \(v \) in \(G \) in a sequence at vertices of the form \(T : u, v_1, v_2, \ldots, v \) where \(k \geq 1 \) which enjoys the following three conditions.

- \(w_iw_{i+1} \in E(G), \forall i \)
- \(uw_i \in E(G), \text{ iff } i = 1 \).
- \(vw_i \in E(G), \text{ iff } i = k \).

\(T[u,v] \) = set of vertices lying in the \(uv \) tolled walk including \(u \) and \(v \).

For \(S \subseteq V(G) \), the tolled closure of \(G \) is \(T[S] = \bigcup_{u,v \in S} T[u,v] \). A set \(S \subseteq V(G) \) is called a tolled set if \(T[S] = V[G] \). The minimum cardinality of a tolled set is called the \textit{tolled number} of \(G \) and is denoted by \(T(G) \). This concept was studied in [1,8]. The following theorem are used in sequel.

In this paper, we define a new parameter.

\textbf{Theorem 1.1[3]} Each end vertex of a connected graph \(G \) belongs to every detour set of \(G \) is called the detour semi toll number of a graph.

\textbf{Theorem 1.2[3]} For the star \(G = K_{1,n-1} (n \geq 2), d_n(G) = n - 1 \).

2. The \textbf{Connected detour edge semi toll number of a graph}

\textbf{Definition 2.1.} A detour edge semi toll set of a connected graph \(G \) is called a connected detour edge semi toll set of \(G \) if the induced subgraph \(G[S] \) is connected. The minimum cardinality of a connected detour edge semi toll set of \(G \) is the connected detour edge semi toll number and is denoted by \(cdn_{est}(G) \). Any connected detour edge semi toll set of cardinality \(cdn_{est}(G) \) is called a \(cdn_{est} \)-set of \(G \).

\textbf{Example 2.2}. For the graph \(G \) given in Figure 2.1, \(S_1 = \{v_3,v_4,v_5,v_6\}, S_2 = \{v_2,v_3,v_5, v_7\}, S_3 = \{v_3,v_4,v_6,v_7\} \) and \(S_4 = \{v_2,v_3,v_5,v_6\} \) are four connected detour edge semi toll sets of \(G \) so that \(cdn_{est}(G) = 4 \).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.1.png}
\caption{Figure 2.1}
\end{figure}

\textbf{Observation 2.3} (i) Each end vertex of \(G \) belongs to every connected detour edge semi toll set of \(G \).

(ii) Each cut vertex of \(G \) belongs to every connected detour edge semi toll set of \(G \).

(iii) \(2 \leq cdn_{est}(G) \leq cdn_{est}(G) \leq n \), where \(n \geq 2 \).

\textbf{Theorem 2.4}. For the path \(G = P_n \) \((n \geq 3) \), \(cdn_{est}(G) = n \).

\textbf{Proof}. From Observation 2.3 (i) and (ii) each end vertices and cut vertices are belongs to every connected detour edge semi toll set of \(G \) so that \(cdn_{est}(G) = n \).

\textbf{Theorem 2.5}. For the complete graph \(G = K_n \) \((n \geq 3) \), \(cdn_{est}(G) = 2 \).
Proof. Let u and v be any two adjacent vertices of G. Then $S = \{u, v\}$ is a connected detour edge semi toll set of G so that $cdn_{est}(G) = 2$. ■

Theorem 2.6. For the cycle $G = C_n (n \geq 3)$, $cdn_{est}(G) = 2$.

Proof. Let u, v be any two adjacent vertices of G. Then $S = \{u, v\}$ is a connected detour edge semi toll set of G so that $cdn_{est}(G) = 2$. ■

Theorem 2.7. For the fan graph $G = K_1 + P_{n-1} (n \geq 4)$, $cdn_{est}(G) = 2$.

Proof. Let $V(K_1) = \{x\}$ and $V(P_{n-1}) = \{v_1, v_2, ..., v_{n-1}\}$. Then $S = \{x, v_1\}$ is a connected detour edge semi toll set of G so that $cdn_{est}(G) = 2$. ■

Theorem 2.8. For the wheel graph $G = K_1 + C_{n-1} (n \geq 4)$, $cdn_{est}(G) = 2$.

Proof. Let $V(K_1) = \{x\}$ and $V(C_{n-1}) = \{v_1, v_2, ..., v_{n-1}\}$. Then $S = \{x, v_1\}$ is a connected detour edge semi toll set of G so that $cdn_{est}(G) = 2$. ■

Theorem 2.9. For the star graph $G = K_{1, n-1} (n \geq 3)$, $cdn_{est}(G) = n$.

Proof. Let S be the end vertices and cut vertex of G. Then by Observation 2.3 (i) and (ii), S is a subset of every connected detour edge semi toll set of G and that $cdn_{est}(G) \geq |S|$. Since S is a connected detour edge semi toll set of G so that $cdn_{est}(G) = n$. ■

Theorem 2.10. For the Helm graph $G = H_n, cdn_{est}(G) = 2n$, where n is the number of end vertices.

Proof. Let S be the set of end vertices and cut vertices of G. Then by Observation 2.3 (i) and (ii), $cdn_{est}(G) = 2n$.

Theorem 2.11. For the complete bipartite graph $G = K_{m,n}, m \geq 2, n \geq 2$, $cdn_{est}(G) = 2$.

Proof. Let u, v be any two vertices of G. Then $S = \{u, v\}$ is a connected detour edge semi toll set of G so that $cdn_{est}(G) = 2$. ■

Definition 2.12. A vertex v is said to be detour edge toll vertex if v is not an internal vertex of any x-y detour edge semi toll path of G.

Example 2.13. For the graph G given in Figure 2.2, v_9 is not an internal edge of any x-y detour edge semi toll path of G, so that v_9 is the detour edge semi toll vertex of G.

![Figure 2.2](image-url)

Remark 2.14. Every end vertex of G is the detour edge semi toll vertex of G but the converse need not be true.
Observation 2.15. Every detour edge semi toll vertex set belong to any connected detour edge semi toll set of G.

Theorem 2.16. Let G be the connected graph of order $n \geq 2$. If $cdn_{est}(G) = 2$, then every vertex of G lies on a u-v detour edge semi toll diametral walk of G.

Proof. Let $cdn_{est}(G) = 2$. Let $S = \{u, v\}$ be a cdn_{est}-set of G. Then every vertex of G lies on u-v detour edge semi toll diametral walk of G. On the contrary, suppose that P is not a u-v detour edge semi toll diametral walk of G. Then there exists at least one vertex, say $x \in V(G) - V(P)$ such that x is not an internal vertex of u-v detour edge semi toll walk of G, which is a contradiction. Therefore every vertex of G lies on a u-v detour edge semi toll diametral walk of G.

Remark 2.17. The converse of Theorem 2.16 need not be true. For $G = P_n (n \geq 3)$ with $V(G) = \{v_1, v_2, ..., v_n\}$, every vertex of G lies on the v_1-v_n detour edge semi toll walk of G. However by Theorem 2.3, $cdn_{est}(G) = n (n \geq 3)$.

Theorem 2.18. Let G be the connected graph of order $n \geq 3$. Then $cdn_{est}(G) = n$ if and only if every vertex of G is either a cut vertex or a detour edge semi toll vertex of G.

Proof. If every vertex of G is either a cut vertex or a detour edge semi toll vertex of G, then the result follows from Observation 2.3 (ii) and 2.15.

Conversely, let $cdn_{est}(G) = n$. We prove that every vertex of G is either a cut vertex or a detour edge semi toll vertex of G. On the contrary, suppose that there exists a vertex x such that x is neither a cut vertex nor an detour edge semi toll vertex of G. Let $S = V(G) - \{x\}$. Since x is not a pendant vertex of G, $x \in dn_{est}(G)$. Since x is not a cut vertex of G, $G[S]$ is connected. Then S is a connected detour edge semi toll set of G and so $cdn_{est}(G) \leq n - 1$, which is a contradiction. Therefore every vertex of G is either a cut vertex of G or a detour edge semi toll vertex of G.

Theorem 2.19. For every pair of a and b of integers with $2 \leq a < b$, there exists a connected graph G such that $dn_{est}(G) = a$ and $cdn_{est}(G) = b$.

Proof. For $a = b$ let $G = K_{1,a}$. Then by Theorems 1.2 and 2.9, $dn_{est}(G) = cdn_{est}(G) = a$. So let $a < b$. Let $P_{b-a+1} : u_0, u_1, u_2, ..., u_{b-a}$ be a path of order $b - a + 1$. Let $P_i : x_i, y_i (1 \leq i \leq b - a)$ be a copy of pathon two vertices. Let G be the graph obtained from P_{b-a+1} and $P_i (1 \leq i \leq b - a - 1)$ by joining x_i and $y_i (1 \leq i \leq b - a - 1)$ with $u_i (1 \leq i \leq b - a - 1)$. The graph G is shown in Figure 2.3.

First we prove that $dn_{est}(G) = a$. Let $Z = \{u_0, z_1, z_2, ..., z_{a-1}\}$ be the set of all end vertices of G. Then by Observation 2.3(ii), Z is a subset of every detour edge semi toll set of G and so $dn_{est}(G) \geq a$. Since Z is a detour edge semi toll set of G, we have $dn_{est}(G) = a$.

Next we prove that $cdn_{est}(G) = b$. Let $Z_1 = Z \cup \{u_1, u_2, ..., u_{b-a}\}$ be the set of all end vertices and cut vertices of G. By Observation 2.3 (i) and (ii), Z_1 is a subset of every connected detour edge semi toll set of G and so $cdn_{est}(G) \geq b$. Since Z_1 is a connected detour edge semi toll set of G, $cdn_{est}(G) = b$.
References