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Abstract: - The work in this study focuses upon the qualitative analysis of the nonlinear boundary value problem 

(BVP) via Hilfer fractional derivative. This study demonstrates the qualitative results for the uniqueness and existence 

of a solution utilizing the concepts of fixed point theory comprising Banach, Schaefer, and Krasnoselskii’s fixed point 

theorem. Subsequently, the stability of the solution of the amused differential equations is proposed via the theory of 

Ulam Hyers (UH) stability which adds significance to the quality of the findings. In order to demonstrate the 

application and validation of the derived results some numerical examples are also provided. 
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1  Introduction 

Fractional order differential equations have emerged as a more useful tool in the past few decades than integer order 

differential equations in the model formulation of many problems occurring in numerous fields of engineering and 

science. Differentials of fractional order are a crucial tool for describing the memory and inherited characteristics of 

distinct materials and processes (see [13, 17, 24]). 

Also, the applications of functional analysis in interpretation of differential equations of fractional order has 

become very significant during the past few years. The monographs by Deimling [2], Diethlem [3], Kilbas et al. [12] 

have emphasized the uses of functional analysis for differetial systems of fractional order. For further evolution of 

fixed point theory in order to study the differential equations involving derivative of fractional order can be seen in 

[14, 15, 19, 22]. Also, one essential element of the qualitative theory of dynamical systems is the notion of stability. 

As an outcome of applications, the theory of stability has received considerable interest in a number of different 

research domains. Particularly, the Ulam-Hyers stability analysis and its relevancy to many kinds of differential 

equations have drawn the attention of numerous researchers. The Hilfer fractional derivative, which is a 

generalization of the Riemann-Liouville fractional derivative as well as an interpolation between R-L and Caputo 

fractional derivative, was introduced by Hilfer [8]. Theoretical simulations of dielectric relaxation in glass-forming 

materials [9], a thermally sensitive resistor problem [20], etc. are all modelled using Hilfer fractional derivative. The 

first publication has been offered by Furati et al. [6] involving Hilfer derivative in which the authors proposed the 

qualitative study about the uniqueness and existence of the solution for the initial value problem in 2012. Following 

the works of Furati et al. [6] the researchers have been continuously devoting their efforts to study the different 

phenomenon involving Hilfer derivative. Dhawan et al. [5] proposed anallytical study on the well-posedeness for the 

implicit fractional BVP, where the existence and uniqueness of the solution is derived using fixed point theorems and 

the stability is investigated using the approach of UH. For further information on the theoretical advancement of the 

differential equations involving Hilfer, one can go through [1, 4, 7, 10, 18, 21, 23].  

To the authors best knowledge, less research has been done on BVP with the Hilfer fractional derivative. In this 

study, which is driven by the literature, we will develop existence and uniqueness results for the solution to the 
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nonlocal Hilfer fractional BVP provided below as well as examine its UH stability: 

{
𝐻𝐷𝜁,𝛼𝜒(𝔷) +∧ (𝔷, 𝜒) = 0, 𝔷 ∈ [𝔭, 𝔮], 𝔭 ≥ 0,

𝜒(𝔭) = 𝜒′(𝔭) = 0, 𝜒(𝔮) = 𝑘𝜒(𝜏),
 

(1) 

where 𝜒 ∈ 𝒞3([𝔭, 𝔮], ℝ), 2 < 𝜁 ≤ 3, 0 ≤ 𝛼 ≤ 1, 𝜏 ∈ (𝔭, 𝔮), 𝑘 ∈ ℝ, ∧: [𝔭, 𝔮] × ℝ → ℝ is a function such that   
∧ (𝔷, 0) ≠ 0 and fractional derivative by Hilfer is denoted by  𝐻𝐷𝜁,𝛼 where 𝜁 is the order and 𝛼 is parameter. 

The rest of the article is structured as follows: In section 2, Some basic preliminary facts related to the 

definitions of fractional calculus and stability of differential equations are explained which would be used in the later 

sections. In section 3, we derive existence and uniqueness results of solution of nonlocal fractional Hilfer BVP 

problem (1). In section 4, we establish UH and gUH type stability results. To support our findings, Section 5 provides 

some examples which is followed by the conclusion of the work done in the manuscript. 

2  Preliminaries 

The authors have put together a complete set of requirements for the existence of the solutions to the nonlocal 

Hilfer BVP (1). We give some fundamental ideas in fractional calculus and some of its associated features with 

suitable justifications in order to move forward analysis.  

Definition 1. [12] “The Riemann-Liouville fractional integral of order 𝜁 > 0 for 𝜒: (𝔭,∞) → ℝ is  

defined as  

 𝐼𝜁𝜒(𝔷) =
1

Γ(𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝜁−1𝜒(𝑠)𝑑𝑠, (2) 

provided the integral converges at the right sides over (𝔭,∞), 𝔭 ≥ 0.” 

Definition 2. [12] “The Riemann-Louville fractional derivative of order 𝜁 > 0, for a function  

𝜒 ∈ 𝒞𝑛((𝔭,∞), ℝ), 𝔭 ≥ 0 is defined as  

  𝑅𝐿𝐷𝜁𝜒(𝔷) =
1

Γ(𝑛−𝜁)

𝑑𝑛

𝑑𝔷𝑛
∫
𝔷

𝔭
(𝔷 − 𝑠)𝑛−𝜁−1𝜒(𝑠)𝑑𝑠, (3) 

 𝑛 − 1 < 𝜁 ≤ 𝑛, where 𝑛 = [𝜁] + 1, provided that the right hand side is point wise defined on (𝔭,∞).”  

Definition 3. [12] “The Caputo fractional derivative of order 𝜁 > 0, for a function 𝜒 ∈ 𝒞𝑛((𝔭,∞), ℝ),  
𝔭 ≥ 0 is defined as  

  𝐶𝐷𝜁𝜒(𝔷) =
1

Γ(𝑛−𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝑛−𝜁−1

𝑑𝑛

𝑑𝑠𝑛
𝜒(𝑠)𝑑𝑠, (4) 

 𝑛 − 1 < 𝜁 ≤ 𝑛, where 𝑛 = [𝜁] + 1, provided that the right hand side is point wise defined on (𝔭,∞).” 

Definition 4. [8] “The generalized Riemann-Liouville fractional derivative or Hilfer fractional  

derivative of order 𝜁 > 0 and parameter 𝛼 of a function 𝜒 ∈ 𝒞𝑛((𝔭,∞), ℝ), 𝔭 ≥ 0 is defined by  

  𝐻𝐷𝜁,𝛼𝜒(𝔷) = 𝐼𝛼(𝑛−𝜁)𝐷𝑛𝐼(1−𝛼)(𝑛−𝜁)𝜒(𝔷), (5) 

 where 𝑛 − 1 < 𝜁 ≤ 𝑛, 0 ≤ 𝛼 ≤ 1, 𝐷 =
𝑑

𝑑𝔷
.” 

Remark 1. If 𝛼 = 0, then Hilfer fractional derivative given by definition 4 is brought down as Riemann- 

Louville fractional derivative presented by definition 2, also if 𝛼 = 1, then Hilfer fractional derivative is reduced to 

Caputo derivative given by definition 3. 

Lemma 1. [12] Let 2 < 𝜁 ≤ 3, 𝔷 > 𝔭, then  

 𝐼𝜁(𝑅𝐿𝐷𝜁𝜒(𝔷)) = 𝜒(𝔷) − 𝑐1(𝔷 − 𝔭)
𝜁−1 − 𝑐2(𝔷 − 𝔭)

𝜁−2 − 𝑐3(𝔷 − 𝔭)
𝜁−3. (6) 

Next we give the definitions of UH Stability and gUH stability for the fractional differential equation (1). 

Definition 5. [16] “For every 𝜖 > 0, the function 𝑧 ∈ 𝒞3([𝔭, 𝔮], ℝ) satisfies  

 |𝐻𝐷𝜁,𝛼𝑧(𝔷) +∧ (𝔷, 𝑧(𝔷))| ≤ 𝜖, 𝔷 ∈ [𝔭, 𝔮], (7) 

where the function ∧ is defined in (1). Let 𝑥 ∈ 𝒞3([𝔭, 𝔮], ℝ) be a solution of the problem (1). If there is a positive 
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constant 𝐾 such that  

 |𝑧(𝔷) − 𝑥(𝔷)| ≤ 𝐾𝜖, 𝔷 ∈ [𝔭, 𝔮]. (8) 

Then the problem (1) is said to be UH stable.” 

Definition 6. [16] “Assume that 𝑧 ∈ 𝒞3([𝔭, 𝔮], ℝ) satisfies the inequality (7) and 𝑥 ∈ 𝒞3([𝔭, 𝔮], ℝ) is a  

solution of the problem (1). If there is a function 𝜙∧(𝜖) ∈ 𝒞(ℝ
+, ℝ+) with 𝜙∧(0) = 0 satisfying  

 |𝑧(𝔷) − 𝑥(𝔷)| ≤ 𝜙∧(𝜖), 𝔷 ∈ [𝔭, 𝔮]. (9) 

Then the problem (1) is said to be gUH stable.”  

Remark 2. If there is a function 𝜓 ∈ 𝒞([𝔭, 𝔮], ℝ)(independent of 𝑧),such that   

• |𝜓(𝔷)| ≤ 𝜖, for all 𝔷 ∈ [𝔭, 𝔮],  
•  𝐻𝐷𝜁,𝛼𝑧(𝔷) +∧ (𝔷, 𝑧(𝔷)) = 𝜓(𝔷), 𝔷 ∈ [𝔭, 𝔮].  

Then a function 𝑧 ∈ 𝒞3([𝔭, 𝔮], ℝ) is a solution of inequality (7).  

3  Qualitative Results 

In this section, the authors have derived a set of sufficient conditions such that the nonlocal Hilfer BVP possesses a 

solution. In order to achieve the desired goals we have used the theory of fixed point theorems as a consequence of 

integral equations. Applications of certain fixed point theorems, like Banach, Schaefer and Krasnoselskii’s fixed point 

theorems (see [12]) are also demonstrated.  

To get going the analysis further, let us define the Banach space of the continuous functions, 𝜒 from [𝔭, 𝔮] → ℝ 

denoted by 𝒞 = 𝒞3([𝔭, 𝔮]) equipped with  

 ∥ 𝜒 ∥= sup
𝐭∈[𝔭,𝔮]

|𝜒(𝔷)|. 

Lemma 2. Let  

 Δ = (𝔮 − 𝔭)𝛾−1 − 𝑘(𝜏 − 𝔭)𝛾−1 ≠ 0, (10) 

then the solution 𝜒 of nonlocal fractional Hilfer BVP  

{
𝐻𝐷𝜁,𝛼𝜒(𝔷) + ℎ(𝔷) = 0, 𝔷 ∈ [𝔭, 𝔮], 𝔭 ≥ 0,

𝜒(𝔭) = 𝜒′(𝔭) = 0, 𝜒(𝔮) = 𝑘𝜒(𝜏),
 

 

(11) 

is presented by  

𝜒(𝔷) =
1

ΔΓ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1ℎ(𝑠)𝑑𝑠 − 𝑘∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1ℎ(𝑠)𝑑𝑠) (𝔷 − 𝔭)𝛾−1 −
1

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1ℎ(𝑠)𝑑𝑠 
(12) 

where 𝜒 ∈ 𝒞3([𝔭, 𝔮], ℝ), 2 < 𝜁 ≤ 3, 0 ≤ 𝛼 ≤ 1 ,𝜏 ∈ (𝔭, 𝔮) , 𝑘 ∈ ℝ, ℎ: [𝔭, 𝔮] → ℝ  is a continuous function, 𝛾 = 𝜁 +
3𝛼 − 𝜁𝛼.  

  

Proof. The fractional differential equation in (11) can be written as  

 𝐼𝛼(3−𝜁)𝐷3𝐼(1−𝛼)(3−𝜁)𝜒(𝔷) + ℎ(𝔷) = 0. 
Imposing the fractional integral of 𝜁 order on both sides to obtain  

 𝐼𝜁𝐼𝛼(3−𝜁)𝐷3𝐼(1−𝛼)(3−𝜁)𝜒(𝔷) + 𝐼𝜁ℎ(𝔷) = 0. 
Indeed  

 𝐼𝜁𝐼𝛼(3−𝜁)𝐷3𝐼(1−𝛼)(3−𝜁)𝜒(𝔷) = 𝐼𝛾𝐷3𝐼(3−𝛾)𝜒(𝔷) = 𝐼𝛾(𝑅𝐿𝐷𝛾𝜒(𝔷)), 
and therefore, we have  

 𝐼𝛾(𝑅𝐿𝐷𝛾𝜒(𝔷)) + 𝐼𝜁ℎ(𝔷) = 0. 
By using Lemma 1, we obtain  

 𝜒(𝔷) = 𝑐1(𝔷 − 𝔭)
𝛾−1 + 𝑐2(𝔷 − 𝔭)

𝛾−2 + 𝑐3(𝔷 − 𝔭)
𝛾−3 − 𝐼𝜁ℎ(𝔷). 

The condition 𝜒(𝔭) = 0 implies 𝑐3 = 0, thus  

 𝜒(𝔷) = 𝑐1(𝔷 − 𝔭)
𝛾−1 + 𝑐2(𝔷 − 𝔭)

𝛾−2 − 𝐼𝜁ℎ(𝔷). (13) 
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 Now differentiating the equation (13) in order to obtain  

 𝜒′(𝔷) = (𝛾 − 1)𝑐1(𝔷 − 𝔭)
𝛾−2 + (𝛾 − 2)𝑐2(𝔷 − 𝔭)

𝛾−3 − 𝐼𝜁−1ℎ(𝔷). 
Again following the same procedure as above the boundary condition 𝜒′(𝔭) = 0 gives the value of 𝑐2 = 0. Now 

using the values of constants the solution 𝜒(𝔷) becomes  

 𝜒(𝔷) = 𝑐1(𝔷 − 𝔭)
𝛾−1 − 𝐼𝜁ℎ(𝔷). (14) 

Now the last boundary condition 𝜒(𝔮) = 𝑘𝜒(𝜏) presents the value of the remaining constant,  

 𝑐1(𝔮 − 𝔭)
𝛾−1 − 𝐼𝜁ℎ(𝔮) = 𝑘𝑐1(𝜏 − 𝔭)

𝛾−1 − 𝑘𝐼𝜁ℎ(𝜏), 
from which we get  

 𝑐1 =
1

ΔΓ(𝜁)
(∫

𝔮

𝔭
(𝔮 − 𝑠)𝜁−1ℎ(𝑠)𝑑𝑠 − 𝑘 ∫

𝜏

𝔭
(𝜏 − 𝑠)𝜁−1ℎ(𝑠)𝑑𝑠). 

Substituting the value of 𝑐1 in (14), the required result is obtained.  

In order to do the necessary analysis of the nonlocal Hilfer BVP (1) using the fixed point theory, construct an operator 

𝐴: 𝒞 → 𝒞 with aiding the help of Lemma 2 as follows: 

(𝐴𝜒)(𝔷) =
(𝔷 − 𝔭)𝛾−1

ΔΓ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠 − 𝑘∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠)    

 −
1

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠. 

(15) 

Note. As we can see that the fixed points of the operator 𝐴 are nothing but the solutions of the nonlocal Hilfer BVP 

(1). Thus it is sufficient to analyze the operator 𝐴 in order to obtain required results. In contemplation of further 

analysis we assume the following assumptions: 

(H1) Assume that there is positive number 𝐿 which follows  

| ∧ (𝔷, 𝜒1) −∧ (𝔷, 𝜒2)| ≤ 𝐿|𝜒1 − 𝜒2|, 
for every 𝔷 ∈ [𝔭, 𝔮], 𝜒1, 𝜒2 ∈ ℝ.  

(H2) ∧: [𝔭, 𝔮] × ℝ → ℝ is continuous.  

(H3) There is positive number 𝑀 which follows | ∧ (𝔷, 𝜒)| ≤ 𝑀 for each 𝔷 ∈ [𝔭, 𝔮] and 𝜒 ∈ ℝ.  
Theorem 1. Let 𝛥 ≠ 0 and assume that (H1) holds. If 𝐿𝛺 < 1 where 𝛺 is defined as  

 Ω =
1

Γ(𝜁+1)
(
(𝔮−𝔭)𝜁+𝛾−1

|Δ|
+

|𝑘|(𝜏−𝔭)𝜁(𝔮−𝔭)𝛾−1

|Δ|
+ (𝔮 − 𝔭)𝜁).        (16) 

Then the nonlocal Hilfer BVP (1) possesses unique solution on [𝔭, 𝔮].  
Proof. Let 𝜒1, 𝜒2 ∈ 𝒞, then for all 𝔷 ∈ [𝔭, 𝔮], we have  

|𝐴(𝜒1(𝔷)) − 𝐴(𝜒2(𝔷))| ≤
1

|Δ|Γ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒1(𝑠)) −∧ (𝑠, 𝜒2(𝑠))|𝑑𝑠 

                                                  +|𝑘|∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒1(𝑠)) −∧ (𝑠, 𝜒2(𝑠))|𝑑𝑠)(𝔷 − 𝔭)
𝛾−1 

                                                   +
1

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒1(𝑠)) −∧ (𝑠, 𝜒2(𝑠))|𝑑𝑠 

                           ≤
𝐿 ∥ 𝜒1 − 𝜒2 ∥

|Δ|Γ(𝜁)
(∫

𝔮

𝔭

(𝔮 − 𝑠)𝜁−1𝑑𝑠 + |𝑘|∫
𝜏

𝔭

(𝜏 − 𝑠)𝜁−1𝑑𝑠)(𝔷 − 𝔭)𝛾−1 +
𝐿 ∥ 𝜒1 − 𝜒2 ∥

Γ(𝜁)
∫
𝔷

𝔭

(𝔷 − 𝑠)𝜁−1𝑑𝑠 

                          ≤
𝐿 ∥ 𝜒1 − 𝜒2 ∥

|Δ|Γ(𝜁 + 1)
((𝔮 − 𝔭)𝜁 + |𝑘|(𝜏 − 𝔭)𝜁)(𝔷 − 𝔭)𝛾−1 +

𝐿 ∥ 𝜒1 − 𝜒2 ∥

Γ(𝜁 + 1)
(𝔷 − 𝔭)𝜁  

                           ≤
𝐿 ∥ 𝜒1 − 𝜒2 ∥

|Δ|Γ(𝜁 + 1)
((𝔮 − 𝔭)𝜁 + |𝑘|(𝜏 − 𝔭)𝜁)(𝔮 − 𝔭)𝛾−1 +

𝐿 ∥ 𝜒1 − 𝜒2 ∥

Γ(𝜁 + 1)
(𝔮 − 𝔭)𝜁  

                         =
𝐿 ∥ 𝜒1 − 𝜒2 ∥

|Δ|Γ(𝜁 + 1)
((𝔮 − 𝔭)𝜁+𝛾−1 + |𝑘|(𝜏 − 𝔭)𝜁(𝔮 − 𝔭)𝛾−1) +

𝐿 ∥ 𝜒1 − 𝜒2 ∥

Γ(𝜁 + 1)
(𝔮 − 𝔭)𝜁  

                          =
𝐿 ∥ 𝜒1 − 𝜒2 ∥

Γ(𝜁 + 1)
(
(𝔮 − 𝔭)𝜁+𝛾−1

|Δ|
+ |𝑘|

(𝜏 − 𝔭)𝜁(𝔮 − 𝔭)𝛾−1

|Δ|
+ (𝔮 − 𝔭)𝜁) 

                         = 𝐿Ω ∥ 𝜒1 − 𝜒2 ∥. 

Which implies that ||𝐴(𝜒1) − 𝐴(𝜒2)|| ≤ 𝐿Ω||𝜒1 − 𝜒2|| . Since 𝐿Ω < 1  from which we can assert that 𝐴  follows 
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contraction. Thus, 𝐴 has an unique fixed point by Banach Contraction principle and from this we conclude that the 

nonlocal hilfer fractional BVP (1) possesses a unique solution on [𝔭, 𝔮].  

Theorem 2. Let (H2), (H3) hold, then the nonlocal Hilfer BVP (1) has atleast one solution on [𝔭, 𝔮].  

Proof. This result is derived as the direct consequence of Schaefer’s theorem in which we establish a set of sufficient 

conditions to prove that operator 𝐴 defined by (15) has a fixed point. This theorem’s proof has been split down into 

multiple steps.  

Step 1. 𝐴 is continuous: 

Consider a sequence 𝜒𝑛 → 𝜒 in 𝒞3([𝔭, 𝔮], ℝ), then for each 𝔷 ∈ [𝔭, 𝔮],  
 |𝐴(𝜒𝑛(𝔷)) − 𝐴(𝜒(𝔷))| 

 ≤
1

|Δ|Γ(𝜁)
(∫

𝔮

𝔭
(𝔮 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒𝑛(𝑠)) −∧ (𝑠, 𝜒(𝑠))|𝑑𝑠 

     +|𝑘| ∫
𝜏

𝔭
(𝜏 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒𝑛(𝑠)) −∧ (𝑠, 𝜒(𝑠))|𝑑𝑠)(𝔷 − 𝔭)

𝛾−1 

     +
1

Γ(𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒𝑛(𝑠)) −∧ (𝑠, 𝜒(𝑠))|𝑑𝑠 

 ≤
∥∧(.,𝜒𝑛(.))−∧(.,𝜒(.))∥

|Δ|Γ(𝜁)
(∫

𝔮

𝔭
(𝔮 − 𝑠)𝜁−1𝑑𝑠 + |𝑘| ∫

𝜏

𝔭
(𝜏 − 𝑠)𝜁−1𝑑𝑠)(𝔷 − 𝔭)𝛾−1 

     +
∥∧(.,𝜒𝑛(.))−∧(.,𝜒(.))∥

Γ(𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝜁−1𝑑𝑠 

 ≤
∥∧(.,𝜒𝑛(.))−∧(.,𝜒(.))∥

|Δ|Γ(𝜁+1)
((𝔮 − 𝔭)𝜁 + |𝑘|(𝜏 − 𝔭)𝜁)(𝔷 − 𝔭)𝛾−1 

     +
∥∧(.,𝜒𝑛(.))−∧(.,𝜒(.))∥

Γ(𝜁+1)
(𝔷 − 𝔭)𝜁  

 ≤
∥∧(.,𝜒𝑛(.))−∧(.,𝜒(.))∥

|Δ|Γ(𝜁+1)
((𝔮 − 𝔭)𝜁 + |𝑘|(𝜏 − 𝔭)𝜁)(𝔮 − 𝔭)𝛾−1 

     +
∥∧(.,𝜒𝑛(.))−∧(.,𝜒(.))∥

Γ(𝜁+1)
(𝔮 − 𝔭)𝜁  

 =
∥∧(.,𝜒𝑛(.))−∧(.,𝜒(.))∥

|Δ|Γ(𝜁+1)
((𝔮 − 𝔭)𝜁+𝛾−1 + |𝑘|(𝜏 − 𝔭)𝜁(𝔮 − 𝔭)𝛾−1) 

     +
∥∧(.,𝜒𝑛(.))−∧(.,𝜒(.))∥

Γ(𝜁+1)
(𝔮 − 𝔭)𝜁  

 =
∥∧(.,𝜒𝑛(.))−∧(.,𝜒(.))∥

Γ(𝜁+1)
(
(𝔮−𝔭)𝜁+𝛾−1

|Δ|
+ |𝑘|

(𝜏−𝔭)𝜁(𝔮−𝔭)𝛾−1

Δ
+ (𝔮 − 𝔭)𝜁) 

 = Ω ∥∧ (. , 𝜒𝑛(. )) −∧ (. , 𝜒(. )) ∥. 

Which implies that ∥ 𝐴(𝜒𝑛) − 𝐴(𝜒) ∥≤ Ω ∥∧ (. , 𝜒𝑛(. )) −∧ (. , 𝜒(. )) ∥. Now the continuity of ∧ implies that 

 ∥ 𝐴(𝜒𝑛) − 𝐴(𝜒) ∥→ 0 as 𝑛 → ∞. 

Step 2. 𝐴 maps bounded sets into bounded sets. 

For any arbitrary 𝑟 > 0, we define 𝐵𝑟 = {𝜒 ∈ 𝒞: ∥ 𝜒 ∥≤ 𝑟}, for each 𝜒 ∈ 𝐵𝑟, by (H3) we have for each 𝔷 ∈ [𝔭, 𝔮]  

 |(𝐴𝜒)(𝔷)| ≤
(𝔷−𝔭)𝛾−1

|Δ|Γ(𝜁)
(∫

𝔮

𝔭
(𝔮 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠 

     +|𝑘| ∫
𝜏

𝔭
(𝜏 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠) +

1

Γ(𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠 

 ≤
𝑀(𝔷−𝔭)𝛾−1

|Δ|Γ(𝜁)
(∫

𝔮

𝔭
(𝔮 − 𝑠)𝜁−1𝑑𝑠 + |𝑘| ∫

𝜏

𝔭
(𝜏 − 𝑠)𝜁−1𝑑𝑠) +

𝑀

Γ(𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝜁−1𝑑𝑠 

 ≤
𝑀

|Δ|Γ(𝜁+1)
((𝔮 − 𝔭)𝜁+𝛾−1 + |𝑘|(𝜏 − 𝔭)𝜁(𝔮 − 𝔭)𝛾−1) +

𝑀

Γ(𝜁+1)
(𝔮 − 𝔭)𝜁  

 = 𝑀Ω 

 = 𝑙. 
Therefore, 𝐴𝐵𝑟 ⊆ 𝐵𝑙  from which we can infer that bounded sets are mapped into bounded sets by 𝐴. 

Step 3. 𝐴 maps bounded sets into equicontinuous sets of 𝒞. 

Let t1, t2 ∈ [𝔭, 𝔮], t1 < t2 and 𝐵𝑟  be a bounded set of 𝒞 as assumed in Step 2, and consider 𝜒 ∈ 𝐵𝑟, then  

 |(𝐴𝜒)(t2) − (𝐴𝜒)(t1)| 
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 ≤
((t2−𝔭)

𝛾−1−(t1−𝔭)
𝛾−1)

|Δ|Γ(𝜁)
(∫

𝔮

𝔭
(𝔮 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠 

     +|𝑘| ∫
𝜏

𝔭
(𝜏 − 𝑠)𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠) 

 +
1

Γ(𝜁)
(∫

t2
𝔭
(t2 − 𝑠)

𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠 − ∫
t1
𝔭
(t1 − 𝑠)

𝜁−1| ∧ (𝑠, 𝜒(𝑠))|𝑑𝑠) 

 ≤
𝑀((t2−𝔭)

𝛾−1−(t1−𝔭)
𝛾−1)

|Δ|Γ(𝜁)
(∫

𝔮

𝔭
(𝔮 − 𝑠)𝜁−1𝑑𝑠 + |𝑘| ∫

𝜏

𝔭
(𝜏 − 𝑠)𝜁−1𝑑𝑠) 

     +
𝑀

Γ(𝜁)
(∫

t2
𝔭
(t2 − 𝑠)

𝜁−1𝑑𝑠 − ∫
t1
𝑐
(t1 − 𝑠)

𝜁−1𝑑𝑠) 

 =
𝑀

|Δ|Γ(𝜁+1)
((𝔮 − 𝔭)𝜁 + |𝑘|(𝜏 − 𝔭)𝜁)((t2 − 𝔭)

𝛾−1 − (t1 − 𝔭)
𝛾−1) 

 +
𝑀

Γ(𝜁)
(∫

t1
𝔭
(𝑡2 − 𝑠)

𝜁−1𝑑𝑠 + ∫
t2
t1
(t2 − 𝑠)

𝜁−1𝑑𝑠 − ∫
t1
𝔭
(t2 − 𝑠)

𝜁−1𝑑𝑠) 

 =
𝑀

Γ(𝜁+1)
([
(𝔮−𝔭)𝜁

|Δ|
+ |𝑘|

(𝜏−𝔭)𝜁

|Δ|
] ((t2 − 𝔭)

𝛾−1 − (t1 − 𝔭)
𝛾−1) 

 −(t2 − t1)
𝜁 + (t2 − 𝔭)

𝜁 − (t1 − 𝔭)
𝜁 + (t2 − t1)

𝜁). 
Now, as t1 → t2, then |(𝐴𝜒)(t2) − (𝐴𝜒)(t1)| → 0. Therefore combining the steps 1,2 and 3 with the aid of Arzela-

Ascoli theorem, 𝐴 is compact operator. 

Step 4. A priori bounds: 

Let 𝜖 = {𝜒 ∈ 𝒞3([𝔭, 𝔮], ℝ): 𝜒 = 𝜆𝐴(𝜒) for some 0 < 𝜆 < 1} and we show that 𝜖 is bounded. To prove our claim let 

us consider 𝜒 ∈ 𝜖, then 𝜒 = 𝜆𝐴(𝜒) for some 0 < 𝜆 < 1. Therefore for each 𝔷 ∈ [𝔭, 𝔮], we have  

 𝜒(𝔷) =
𝜆

ΔΓ(𝜁)
(∫

𝔮

𝔭
(𝔮 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠 − 𝑘 ∫

𝜏

𝔭
(𝜏 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠)(𝔷 − 𝔭)𝛾−1 

     −
𝜆

Γ(𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠. 

 Now using step 2, we have |𝐴𝜒(𝔷)| ≤ 𝑙 which implies |𝜒(𝔷)| = |𝐴𝜒(𝔷)| ≤ 𝜆𝑙 and so 𝜖 is bounded. Thus, according to 

Schaefer’s Fixed Point Theorem, 𝐴 has a fixed point which provides the solution to the nonlocal Hilfer BVP equation 

(1).  

Theorem 3. (Krasnoselskii’s fixed point theorem [11]) “Let 𝑀 be a closed,convex and non  

empty subset of a Banach space 𝑋 and let 𝐴, 𝐵 be the operators such that   

• 𝐴𝑥 + 𝐵𝑦 ∈ 𝑀 whenever 𝑥, 𝑦 ∈ 𝑀.  

• 𝐴 is compact and continuous.  

• 𝐵 is contraction.  

Then there exists 𝑧 ∈ 𝑀 such that 𝑧 = 𝐴𝑧 + 𝐵𝑧."  

Theorem 4. Consider ∧: [𝔭, 𝔮] × ℝ → ℝ satisfies (H1) and (H2) along with  

 | ∧ (𝔷, 𝜒)| ≤ 𝜙(𝔷)   𝑓𝑜𝑟  𝑎𝑙𝑙   (𝔷, 𝜒) ∈ [𝔭, 𝔮] × ℝ   𝑎𝑛𝑑   𝜙 ∈ 𝒞([𝔭, 𝔮], ℝ+). 
Then, the nonlocal Hilfer BVP (1) has at least one solution on [𝔭, 𝔮], provided  

 𝐿𝜇 < 1, (17) 

 where 𝜇 =
(𝔮−𝔭)𝜁+𝛾−1+|𝑘|(𝜏−𝔭)𝜁(𝔮−𝔭)𝛾−1

|Δ|Γ(𝜁+1)
.  

  

Proof. The proof of this theorem includes the application of both compact and contraction operators on separating the 

operator 𝐴  into two parts say 𝐴1  and 𝐴2 . Setting sup𝔷∈[𝔭,𝔮]𝜙(𝔷) =∥ 𝜙 ∥  and choosing 𝜌  such that 𝜌 ≥∥ 𝜙 ∥ Ω  and 

consider 𝐵𝜌 = {𝜒 ∈ 𝒞: ∥ 𝜒 ∥≤ 𝜌}. Now, we define two operators 𝐴1 and 𝐴2 on 𝐵𝜌 as follows: 

 (𝐴1𝜒)(𝔷) =   −
1

Γ(𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠, 

 (𝐴2𝜒)(𝔷) =   
(𝔷−𝔭)𝛾−1

ΔΓ(𝜁)
(∫

𝔮

𝔭
(𝔮 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠 − 𝑘 ∫

𝜏

𝔭
(𝜏 − 𝑠)𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠). 

Now for any 𝜒1, 𝜒2 ∈ 𝐵𝜌 and for all 𝔷 ∈ [𝔭, 𝔮], we have  

 |(𝐴1𝜒1)(𝔷) + (𝐴2𝜒2)(𝔷)| ≤
∥𝜙∥

|Δ|Γ(𝜁)
(∫

𝔮

𝔭
(𝔮 − 𝑠)𝜁−1𝑑𝑠 + |𝑘| ∫

𝜏

𝔭
(𝜏 − 𝑠)𝜁−1𝑑𝑠)(𝔷 − 𝔭)𝛾−1 

 +
∥𝜙∥

Γ(𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝜁−1𝑑𝑠 

 ≤
∥𝜙∥((𝔮−𝔭)𝜁+𝛾−1+|𝑘|(𝜏−𝔭)𝜁(𝔮−𝔭)𝛾−1)

|Δ|Γ(𝜁+1)
+

∥𝜙∥(𝔮−𝔭)𝜁

Γ(𝜁+1)
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 =∥ 𝜙 ∥ Ω 

 ≤ 𝜌. 
This shows that 𝐴1𝜒1 + 𝐴2𝜒2 ∈ 𝐵𝜌. Also, the continuity of the nonlinear function ∧ can be followed from (H2) and 

from this we can ascertain that that 𝐴1 is continuous. Now we claim that 𝐴1 is uniformly bounded. For this purpose, 

consider 𝑚 =
∥𝜙∥(𝔮−𝔭)𝜁

Γ(𝜁+1)
 and let 𝜒1 ∈ 𝐵𝜌, then  

 |(𝐴1𝜒1)(𝔷)| ≤   
∥𝜙∥

Γ(𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝜁−1𝑑𝑠 

 =  
∥𝜙∥(𝔷−𝔭)𝜁

Γ(𝜁+1)
 

 ≤  
∥𝜙∥(𝔮−𝔭)𝜁

Γ(𝜁+1)
  =   𝑚. 

 Therefore 𝐴1 is uniformly bonded on 𝐵𝜌. For compactness of 𝐴1, let t1, t2 ∈ [𝔭, 𝔮], t1 < t2  

|(𝐴1𝜒)(t2) − (𝐴1𝜒)(t1)| 

= |
1

Γ(𝜁)
(−∫

t2

𝔭

(t2 − 𝑠)
𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠 + ∫

t1

𝔭

(t1 − 𝑠)
𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠)| 

= |
1

Γ(𝜁)
(∫

t2

𝔭

(t2 − 𝑠)
𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠 − ∫

t1

𝔭

(t1 − 𝑠)
𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠)| 

= |
1

Γ(𝜁)
(∫

t2

𝔭

((t2 − 𝑠)
𝜁−1 − (t1 − 𝑠)

𝜁−1) ∧ (𝑠, 𝜒(𝑠))𝑑𝑠 + ∫
t2

t1

(t2 − 𝑠)
𝜁−1 ∧ (𝑠, 𝜒(𝑠))𝑑𝑠)| 

≤
∥ 𝜙 ∥

Γ(𝜁 + 1)
(−(t2 − t1)

𝜁 + (t2 − 𝔭)
𝜁 − (t1 − 𝔭)

𝜁 +∫
t2

t1

(t2 − 𝑠)
𝜁−1𝑑𝑠), 

 as if t2 → t1  , then |(𝐴1𝜒)(t2) − (𝐴1𝜒)(t1)| → 0. Thus 𝐴1 is equicontinuous. So 𝐴1  is relatively compact on 𝐵𝜌 . 

Hence by Arzela-Ascoli theorem, 𝐴1 is compact on 𝐵𝜌. 

Now using (H1) and (17), we prove that 𝐴2 is a contraction.  

 |(𝐴2𝜒1)(𝔷) − (𝐴2𝜒2)(𝔷)| ≤
𝐿∥𝜒1−𝜒2∥

|Δ|Γ(𝜁)
(∫

𝔮

𝔭
(𝔮 − 𝑠)𝜁−1𝑑𝑠 + |𝑘| ∫

𝜏

𝔭
(𝜏 − 𝑠)𝜁−1𝑑𝑠)(𝔷 − 𝔭)𝛾−1 

 ≤
𝐿∥𝜒1−𝜒2∥

|Δ|Γ(𝜁+1)
((𝔮 − 𝔭)𝜁+𝛾−1 + |𝑘|(𝜏 − 𝑐)𝜁(𝔮 − 𝔭)𝛾−1) 

 = 𝐿𝜇 ∥ 𝜒1 − 𝜒2 ∥. 
 So 𝐴2 is a contraction, and hence concluding by Krasnoselskii’s fixed theorem, the nonlocal Hilfer BVP (1) has 

atleast one solution on [𝔭, 𝔮].  

4  Stability results 

Theorem 5. If 𝑧 ∈ 𝒞3([𝔭, 𝔮], ℝ) satisfies the inequality (7), then for arbitrary 𝜖 ∈ (0,1], 𝑧 is a solution of the 

inequality  

 |𝑧(𝔷) − 𝐴(𝑧(𝔷))| ≤ Ω𝜖. 
 

Proof. From Lemma 2 and Remark 2, we can write  

 𝑧(𝔷) =
(𝔷−𝔭)𝛾−1

ΔΓ(𝜁)
(∫

𝔮

𝔭
(𝔮 − 𝑠)𝜁−1(∧ (𝑠, 𝑧(𝑠)) + 𝜓(𝑠))𝑑𝑠 − 𝑘 ∫

𝜏

𝔭
(𝜏 − 𝑠)𝜁−1(∧ (𝑠, 𝑧(𝑠)) + 𝜓(𝑠))𝑑𝑠) 

     −
1

Γ(𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝜁−1(∧ (𝑠, 𝑧(𝑠)) + 𝜓(𝑠))𝑑𝑠, 

 𝐴(𝑧(𝔷)) =
(𝔷−𝔭)𝛾−1

ΔΓ(𝜁)
(∫

𝔮

𝔭
(𝔭 − 𝑠)𝜁−1 ∧ (𝑠, 𝑧(𝑠))𝑑𝑠 − 𝑘 ∫

𝜏

𝔭
(𝜏 − 𝑠)𝜁−1 ∧ (𝑠, 𝑧(𝑠))𝑑𝑠) 

     −
1

Γ(𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝜁−1 ∧ (𝑠, 𝑧(𝑠))𝑑𝑠. 

Further  

 |𝑧(𝔷) − 𝐴(𝑧(𝔷))| = |
1

ΔΓ(𝜁)
(∫

𝔮

𝔭
(𝔮 − 𝑠)𝜁−1𝜓(𝑠)𝑑𝑠 − 𝑘 ∫

𝜏

𝔭
(𝜏 − 𝑠)𝜁−1𝜓(𝑠)𝑑𝑠)(𝔷 − 𝔭)𝛾−1 

     −
1

Γ(𝜁)
∫
𝔷

𝔭
(𝔷 − 𝑠)𝜁−1𝜓(𝑠)𝑑𝑠| 

 ≤
∥𝜓∥

|Δ|Γ(𝜁+1)
((𝔮 − 𝔭)𝜁+𝛾−1 + |𝑘|(𝜏 − 𝔭)𝜁(𝔮 − 𝔭)𝛾−1) +

∥𝜓∥(𝔮−𝔭)𝜁

Γ(𝜁+1)
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 ≤ 𝜖Ω. 
  

Theorem 6. If (H1) and (H2) are fulfilled and 1 − 𝐿𝛺 ≠ 0 holds, then the nonlocal fractional Hilfer problem (1) is 

UH stable.  

  

Proof. Suppose 𝑧 ∈ 𝒞3([𝔭, 𝔮], ℝ) is solution of inequality (7) and due to Therorem 3, let 𝑥 be the unique solution of 

nonlocal fractional Hilfer BVP (1). Let 𝔷 ∈ [𝔭, 𝔮], then  

 |𝑧(𝔷) − 𝑥(𝔷)| = |𝑧(𝔷) − 𝐴(𝑧(𝔷)) + 𝐴(𝑧(𝔷)) − 𝑥(𝔷)| 
 ≤ |𝑧(𝔷) − 𝐴(𝑧(𝔷))| + |𝐴(𝑧(𝔷)) − 𝑥(𝔷)| 
 ≤ Ω𝜖 + Ω𝐿|𝑧(𝔷) − 𝑥(𝔷)| 

 As (1 − 𝐿Ω)|𝑧(𝔷) − 𝑥(𝔷)| ≤ Ω𝜖, i.e., ∥ 𝑧 − 𝑥 ∥≤
Ω𝜖

1−𝐿Ω
. Now, by setting 𝐾 =

Ω

1−𝐿Ω
, we obtain ∥ 𝑧 − 𝑥 ∥≤ 𝐾𝜖, 𝐾 > 0. 

Therefore, the nonlocal fractional Hilfer BVP (1) is UH stable.  

  

Remark 3. Further, if we take 𝜙∧(𝜖) = 𝐾𝜖 , 𝜙∧(0) = 0, which implies the nonlocal fractional Hilfer  

BVP (1) is generalized UH stable.  

5  Illustrative example 

Example 5.1. Consider the nonlocal fractional Hilfer BVP  

{
 
 

 
 𝐻𝐷

27
10
,
1
3𝜒(𝔷) =

1

2(3 + 2𝔷)2
(
𝜒2(𝔷) + 2|𝜒(𝔷)|

1 + |𝜒(𝔷)|
) +

3

2
, 𝔷 ∈ [0,1],

𝜒(0) = 𝜒′(0) = 0, 𝜒(1) =
3

4
𝜒 (
1

2
) ,

 (18) 

 

On comparing the Hilfer fractional BVP (18) with (1), we can obtain the values of various parameters gievn as, 𝜁 =
27

10
, 𝛼 =

1

3
, 𝛾 =

84

30
, 𝔭 = 0, 𝔮 = 1, 𝜏 =

1

2
, 𝑘 =

3

4
 and Ω = 1.8011007261 

The assumption (H1) is satisfied for 𝐿 =
1

9
, as  

 | ∧ (𝔷, 𝜒1) −∧ (𝔷, 𝜒2)| ≤
1

9
|𝜒1 − 𝜒2|, 

for all 𝔷 ∈ [0,1] and 𝜒1, 𝜒2 ∈ ℝ. Thus 𝐿Ω ≈ 0.2001223029 < 1. Here all the postulates of Therorem 1 are satisfied, 

which gives us the conclusion that nonlocal Hilfer BVP (18) has unique solution on [0,1]. 
Moreover, all the conditions of Therorem 6 are satisfied, thus from Therorem 6 we can also conclude that the 

nonlocal Hilfer BVP (18) is also UH stable.  

Example 5.2. If the non linear function ∧ (𝔷, 𝜒) in (18) is considered as  

 ∧ (𝔷, 𝜒) =
21

2(3+2𝔷)2
sin (

|𝜒(𝔷)|

1+|𝜒(𝔷)|
) +

3

2
. (19) 

 For ∧ in (19) the assumption (H1) is satisfied with 𝐿 =
7

6
 as  

 | ∧ (𝔷, 𝜒1) −∧ (𝔷, 𝜒2)| ≤
7

6
|𝜒1 − 𝜒2|, 

for all 𝔷 ∈ [0,1] and 𝜒1, 𝜒2 ∈ ℝ. Since, 𝐿Ω ≈ 2.1012841805 > 1, therefore Therorem 1 can is not applicable. On the 

other hand | ∧ (𝔷, 𝜒)| ≤
8

3
 where 𝑀 =

8

3
> 0, thus all the postulates for Therorem 2 which asserts us that nonlocal 

Hilfer BVP (18) with ∧ given by (19) has atleast one solution on [0,1].  

Example 5.3. If the non linear function ∧ (𝔷, 𝜒) in (18) is considered as  

 ∧ (𝔷, 𝜒) =
5

(3+2𝔷)2
(
|𝜒(𝔷)|

1+|𝜒(𝔷)|
) +

3

2
. (20) 

For ∧ in (20) the assumption (H1) is satisfied with 𝐿 =
5

9
 Since  

 | ∧ (𝔷, 𝜒1) −∧ (𝔷, 𝜒2)| ≤
5

9
|𝜒1 − 𝜒2|, 

for all 𝔷 ∈ [0,1] and 𝜒1, 𝜒2 ∈ ℝ. Since, 𝐿Ω ≈ 1.0006115145 > 1 which contradicts to the conditions of Theorem 1 

and hence Theorem 1 is not applicable. 

The non linear function ∧ is bounded by a function of 𝔷 as  
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 | ∧ (𝔷, 𝜒)| ≤
5

(3+2𝔷)2
+

3

2
= 𝜙(𝔷), 

and 𝜇 = 1.5613297687 and 𝐿𝜇 ≈ 0.867405427 < 1. Hence, by Therorem 4 nonlocal Hilfer BVP (18) with ∧ given 

by (20) has atleast one solution on [0,1].  

6  Conclusion 

We have demonstrated existence and uniqueness results for the nonlocal fractional Hilfer BVP solution in the present 

investigation. Our findings were established using the fixed point theorems of Banach, Schafer, and Krasnoselskii. 

The stability of UH and Generalised UH has been established. We have also provided examples to support the 

validity of our findings. Keeping in the view of the present analysis, it can be said that fixed point theory have played 

a key instrument in this study for establishing a variety of fractional BVP conclusions. 
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