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Abstract:-This study discusses the fractional order to examine how fear, refuge, and harvesting affect the 

dynamic behavior of the predator-prey interaction. The model has been used as the functional response of 

Crowley Martin in a non-delayed model. The eigenvalues of a model are used to test its stability using critical 

points. Furthermore, the boundlessness, uniqueness, existence, and positivity of the solutions have been studied. 

The locally asymptotically stable model has been analyzed using the critical points and the globally 

asymptotically stable model has been examined using the Lyapunov function. The incidence of Hopf bifurcation 

for fractional order has been examined. Finally, the analytical solutions are confirmed through numerical 

simulations. 
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1. Introduction 

The relationships between predators and prey, diseases within a population, and populations of susceptible and 

diseased prey are all studied using ecoepidemiological models. The study of eco-epidemiology examines how 

diseases spread among interacting organisms that have a major influence on the environment [5, 15]. Given that 

functional response is one of the most crucial elements in the prey-predator population, epidemiological models 

have garnered a lot of attention since Kermack-Mckendrick’s groundbreaking work on SIRS [3].Mathematical 

models are crucial for understanding, studying, and investigating the spread and management of infectious 

diseases [6,26].The predator-prey models in coupled systems of non-linear differential equations, created by 

Lotka [1] and Volterra [2], are regarded as early advances in modern mathematical ecology. We examine 

disease dynamics and predator-prey models in eco-epidemiology. Numerous studies on the dynamic behaviour 

of Crowley-Martin ecoepidemiological models have been carried out.Because of its influence on prey 

abundance, the fear effect is one of the factors that regulates the dynamic behaviours of prey-predator systems 

[7,14]. Fractional calculus is a generalisation of the classical differentiation and integration of arbitrary orders. 

Many researchers are interested in scientific and engineering fields, including biology, fluid dynamics, and 

medicine [8,11].Due to its numerous applications, fractional-order calculus has attracted the interest of 

researchers throughout the last two decades. Fractional-order biological models have recently attracted the 

interest of many authors. The main reason lies in the fact that memory-based systems, which exist in a large 

number of biological systems, are easily relatable to fractional-order models. The fractional-order derivative has 

the benefit that it allows you to remember the concept of numerical derivative calculation as well as important 

information about derivative values. Javidi studied the biological behaviors of a prey-predator model with 

fractional order [12]. This article includes an investigation of the stability of a derivative of a fractional-order 

model of the mutualistic interaction between two species with infection [23, 25]. Alidousti studied how the 

capture of predators and scavengers was affected by a prey-predator model with fractional order [10].Mukherjee 
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et al. [17] studied the existence, uniqueness, and boundedness of solutions to a fractional-order prey-predator 

system in restricted space. Recently, fractional calculations have developed rapidly and displayed a wide range 

of possible applications. However, due to memory effects, fractional-order derivatives in the biological model 

are more sensible than integer-order derivatives [18, 27]. To change ordinary calculus to fractional calculus, it is 

important to use the RiemannLioville and Caputo fractional derivatives. One of the most important processes in 

any natural ecosystem is the predator-prey model [13]. Caputo introduced the Caputo-type derivative at 1967 

[22].An investigation was conducted on a fractional order system that exhibited a Holling-type II functional 

response. The condition for stability of a system in fractional order, which was developed using Routh-Hurwitz 

criteria, is that any function that depends on both the current and previous states is a fractional-order derivative. 

A system with non-linear fractional order stability with the use of the Routh-Jurwitz criterion was investigated 

by Ahmed et al. [16]. Garappa studied how to solve fractional-order nonlinear differential equations [21]. In a 

prey-predator model with fractional order, Javidi and Nyamoradi investigated the effects of harvesting [19,28]. 

There are several mathematical models in fractional order that can be used to solve real-world problems.The 

discussion that follows provides motivation to study the fear effect’s dynamic behaviour on the fractional prey-

predator model. The unique aspect of this work is to examine the prior history of the prey-predator model with 

the fear effect, refuge in prey and harvesting. The novelty of this work is to investigate the stability analysis of 

the prey-predator model through fractional-order derivatives. The analysis demonstrates that fractional calculus 

is well suited to explain the memory and inherited features of several techniques and materials that are not taken 

into consideration by classical integer models. The paper is organized as follows: A mathematical model is 

developed in Section 2. Section 3 has evaluated the uniqueness and boundedness of the suggested model. In 

Section 4, the stability analysis of the proposed model has been examined. In Section 5, the Hopf bifurcation of 

the system is examined. The suggested model’s numerical simulations are examined in Section 6. Section 7 

contains the paper’s conclusion as well as the biological implications of our mathematical findings. 

2. Model Formulation 

      The model has basically two types of  population:(i) Prey population  and (ii) Predator population. 

  Melese [8] studied and discussed refuge and harvesting in the prey-predator model with the Holling type II 

functional response. In the prey-predator model, I have expanded the fear effect, refuge, and harvesting with the 

Crowley-Martin functional response. The model they provide is as follows: 

                                                  
𝑑𝑆

𝑑𝑇
= 𝑅𝑆 (1 −

𝑆+𝐼

𝐾
) − 𝜆𝐼𝑆 −

𝛼1𝑆𝑃

𝑎1+𝑆
 , 

                                                   
𝑑𝐼

𝑑𝑇
= 𝜆𝐼𝑆 − 𝑑1𝐼 −

𝑏1𝐼𝑃

𝑎1+𝐼
,                                  (2.1)                                      

          
𝑑𝑃

𝑑𝑇
= −𝑑2𝑃 +

𝑐𝛼1𝑆𝑃

𝑎1 + 𝑆
+
𝑐𝑏1𝐼𝑃

𝑎1 + 𝑃
 . 

First, the fear effect will be included in the model (2.1). The fear effect, also known as predator avoidance 

behaviour, is incorporated into prey-predator models in order to replicate the behaviour of animals in nature.  

 The condition for the fear effect is 

ℱ1(k, p) =
1

1 + kp
 

This refers to the predator fear level towards susceptible prey. Here, k represents the level of fear. The condition 

is strongly acceptable, given the epidemiological meaning of k: 

𝑘(0, 𝑝) = ℱ(𝑘, 0) = 1. 

lim
𝑘⟶∞

ℱ1(𝑘, 𝑝) = 0 = lim
𝑝⟶∞

ℱ1(𝑘, 𝑝) . 
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𝜕ℱ1(𝑘, 𝑝)

𝜕𝑘
< 0. 

                                      

𝜕ℱ1(𝑘, 𝑝)

𝜕𝑤
< 0. 

To introduce the fear effect, we have to add the term 
1

1+kp
 in the model (2.1) which represents the fear effect 

with parameter k as a level of fear.Thus, by adding the fear effect the model (2.1) becomes, 

Here the conditions are S(0) ≥0, I(0) ≥ 0 and P(0) ≥ 0. 

The following set of equations arises from the model's explanation of the interactions between the diseased prey 

system and fear, refuge, and harvesting. The suggested model (2.1) was used to examine the dynamic prey and 

predator mathematical models, 

                           
𝑑𝑆

𝑑𝑇
=

𝑅𝑆

1+ℱ𝑃
(1 −

𝑆+𝐼

𝐾
) − 𝜆𝐼𝑆 −

𝛼1𝑆𝑃

(1+𝜁𝑆)(1+𝜂𝑃)
−𝐻1𝐸1𝑆 , 

                           
𝑑𝐼

𝑑𝑇
= 𝜆𝐼𝑆 − 𝑑1𝐼 −

𝑏1(1−𝑔)𝐼𝑃

𝑎1+(1−𝑔)𝐼
− 𝐻2𝐸2𝐼,                                  (2.2)                                      

   
𝑑𝑃

𝑑𝑇
= −𝑑2𝑃 +

𝑐𝛼1𝑆𝑃

(1 + 𝜁𝑆)(1 + 𝜂𝑃)
+
𝑐𝑏1(1 − 𝑔)𝐼𝑃

𝑎1 + (1 − 𝑔)𝐼
 . 

Parameters Environmental representation 

U Susceptible prey 

V Infected prey 

W Predator 

R Growth rate of prey 

K Carrying capacity of environment 

𝑎1 Constant of half-saturation 

𝛼1 Predation rate of Susceptible prey 

𝑏1 Predation rate of Infected prey 

C Predator-to-prey conversion rate 

𝐷1 Death rate of Infected prey 

𝐷2 Death rate of Predator 

𝜆 Infection rate 

ℱ Fear effect 

G Refuge 

           Table 1: Biological representation of system (2.2) parameters 

To decrease the number of parameters of the system (2.2), it is appropriate to modify the variables to  

 𝑠 =
𝑆

𝐾
, 𝑖 =

𝐼

𝐾
 and 𝑝 =

𝑃

𝐾
 and to account for the dimension time 𝑡 = 𝜆𝐾𝑇. We now make the following 

adjustments:  

𝑟 =
𝑅

𝐾
, 𝛼 =

𝛼1
𝐾
, 𝑎 =

𝑎1
𝜆𝐾
, 𝑑1 =

𝐷1
𝜆𝐾
, 𝑑2 =

𝐷2
𝜆𝐾
, 𝑏 =

𝜃

𝜆𝐾
, 𝜃1 =

𝐻1𝐸1
𝐾

, 𝜃2 =
𝐻2𝐸2
𝐾
. 

With the aforementioned transformations, the equation (2.2) can be rewritten in the following non-dimensional 

form: 

                           
𝑑𝑠

𝑑𝑡
=

𝑟𝑠

1+𝑘𝑝
(1 − 𝑠 − 𝑖) − 𝑖𝑠 −

𝛼𝑠𝑝

(1+𝜁𝑠)(1+𝜂𝑝)
− 𝜃1𝑠 , 
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𝑑𝑖

𝑑𝑡
= 𝑖𝑠 − 𝑑1𝑖 −

𝜃(1−𝑔)𝑖𝑝

𝑎+(1−𝑔)𝑖
− 𝜃2𝑖,                                        (2.3)                                                            

                          
𝑑𝑝

𝑑𝑡
= −𝑑2𝑝 +

𝑐𝛼𝑠𝑝

(1+𝜁𝑠)(1+𝜂𝑝)
+
𝜃(1−𝑔)𝑖𝑝

𝑎+(1−𝑔)𝑖
 

The model (2.3) in the system is obtained by calculating the Caputo fractional-order derivative 𝛽. The model is 

then taken in the following form: 

                           
𝑑𝛽𝑠

𝑑𝑡𝛽
=

𝑟𝑠

1+𝑘𝑝
(1 − 𝑠 − 𝑖) − 𝑖𝑠 −

𝛼𝑠𝑝

(1+𝜁𝑠)(1+𝜂𝑝)
− 𝜃1𝑠 , 

                           
𝑑𝛽𝑖

𝑑𝑡𝛽
= 𝑖𝑠 − 𝑑1𝑖 −

𝜃(1−𝑔)𝑖𝑝

𝑎+(1−𝑔)𝑖
− 𝜃2𝑖,                                        (2.4)                                                            

                          
𝑑𝛽𝑝

𝑑𝑡𝛽
= −𝑑2𝑝 +

𝑐𝛼𝑠𝑝

(1+𝜁𝑠)(1+𝜂𝑝)
+
𝜃(1−𝑔)𝑖𝑝

𝑎+(1−𝑔)𝑖
 

subject to the initial conditions 𝑠(0) ≥ 0, 𝑖(0) ≥ 0 and 𝑝(0) ≥ 0. 

Existence and Uniqueness of solutions: 

Theorem :1 

 For the non-negative initial conditions, there is only one solution to the fractional-order system (2.4). 

Proof: 

The existence and uniqueness of system (2.4) will be above in the area,  

Where 𝜒 = {(𝑠, 𝑖, 𝑝) ∈ 𝑅3: max(|𝑠|, |𝑖|, |𝑝| ≤ 𝛿}. 

Now, let us define a mapping 𝑉(𝑋) = (𝑉1(𝑋), 𝑉2(𝑋), 𝑉3(𝑋)) 

Where , 

                        𝑉1(𝑋) =
𝑟𝑠

1 + 𝑘𝑝
(1 − 𝑠 − 𝑖) − 𝑖𝑠 −

𝛼𝑠𝑝

(1 + 𝜁𝑠)(1 + 𝜂𝑝)
− 𝜃1𝑠, 

                                     𝑉2(𝑋) = 𝑖𝑠 − 𝑑1𝑖 −
𝜃(1−𝑔)𝑖𝑝

𝑎+(1−𝑔)𝑖
− 𝜃2𝑖, 

                                     𝑉3(𝑋) = −𝑑2𝑝 +
𝑐𝜃(1−𝑔)𝑖𝑝

𝑎+(1−𝑔)𝑖
+

𝑐𝛼𝑠𝑝

(1+𝜁𝑠)(1+𝜂𝑝)
. 

∥ 𝑉(𝑋) − 𝑉(𝑋̅) ∥= |𝑉1(𝑋) − 𝑉1(𝑋̅)| + |𝑉2(𝑋) − 𝑉2(𝑋̅)| + |𝑉3(𝑋) − 𝑉3(𝑋̅)| 

= |
𝑟𝑠

1 + 𝑘𝑝
(1 − 𝑠 − 𝑖) − 𝑖𝑠 −

𝛼𝑠𝑝

(1 + 𝜁𝑠)(1 + 𝜂𝑝)
− 𝜃1𝑠 −

𝑟𝑠̅

1 + 𝑘𝑝̅
(1 − 𝑠̅ − 𝑖)̅ + 𝑠̅𝑖̅ +

𝛼𝑠̅𝑝̅

(1 + 𝜁𝑠̅)(1 + 𝜂𝑝̅)
+ 𝜃1 𝑢̅|

+ |𝑠𝑖 − 𝑑1𝑖 −
𝜃(1 − 𝑔)𝑖𝑝

𝑎 + (1 − 𝑔)𝑖
− 𝜃2𝑣̅ − 𝑖𝑠̅̅ + 𝑑1𝑖̅ +

𝜃(1 − 𝑔)𝑖𝑝̅̅

𝑎 + (1 − 𝑔)𝑖̅
+ 𝜃2𝑖|̅

+ |−𝑑2𝑝 +
𝑐𝜃(1 − 𝑔)𝑖𝑝

𝑎 + (1 − 𝑔)𝑖
+

𝑐𝛼𝑠𝑝

(1 + 𝜁𝑠)(1 + 𝜂𝑝)
+ 𝑑2𝑝̅ −

𝑐𝜃(1 − 𝑔)𝑖𝑝̅̅

𝑎 + (1 − 𝑔)𝑖̅
−

𝑐𝛼𝑠̅𝑝̅

(1 + 𝜁𝑠̅)(1 + 𝜂𝑝̅)
| 

≤ |𝑠 − 𝑠̅|{3𝑟ψ + 3𝑟𝑘𝜓 + 2𝜓 + 𝛼𝑎𝜓 + 𝑐𝛼𝑎𝜓} + |𝑖 − 𝑖|̅{𝑟𝜓 + 𝑟𝑘𝜓 + 2𝜓 + 𝑑1𝜓 + 𝑏𝑎𝜓 + 𝑐𝑏𝑎𝜓}

+ |𝑝 − 𝑝̅|{3𝑟𝑘𝜓 + 𝛼𝑎𝜓 + 𝛼𝜓 + 𝑏𝑎𝜓 + 𝑏𝜓 + 𝑐𝑏𝑎𝜓 + 𝑐𝑏𝜓 + 𝑐𝛼𝑎𝜓 + 𝑐𝛼𝜓} 

    ≤ ℳ|𝑋 − 𝑋̅| 

Where  

ℳ = max {3𝑟ψ + 3𝑟𝑘𝜓 + 2𝜓 + 𝛼𝑎𝜓 + 𝑐𝛼𝑎𝜓, 𝑟𝜓 + 𝑟𝑘𝜓 + 2𝜓 + 𝑑1𝜓 + 𝑏𝑎𝜓 + 𝑐𝑏𝑎𝜓, 3𝑟𝑘𝜓 + 𝛼𝑎𝜓 + 𝛼𝜓

+ 𝑏𝑎𝜓 + 𝑏𝜓 + 𝑐𝑏𝑎𝜓 + 𝑐𝑏𝜓 + 𝑐𝛼𝑎𝜓 + 𝑐𝛼𝜓} 
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Hence, the solution of the system (2.4) exists and unique. 

Boundedness of the solutions: 

Theorem:2 

The system's (2.4) solutions are uniformly bounded and non-negative. 

Proof: 

Define a function 

𝑉(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑃(𝑡) 

Then for any positive number 𝜆, we obtain 

𝐶𝐷
𝛽(𝑡) + 𝜆𝑉(𝑡) = (

𝑟𝑠

1 + 𝑘𝑝
(1 − 𝑠 − 𝑖) − 𝑖𝑠 −

𝛼𝑠𝑝

(1 + 𝜁𝑠)(1 + 𝜂𝑝)
− 𝜃1𝑠) + (𝑖𝑠 − 𝑑1𝑖 −

𝑏(1 − 𝑔)𝑖𝑝

𝑎 + (1 − 𝑔)𝑖
− 𝜃2𝑖)

+ (−𝑑2𝑝 +
𝑐𝑏(1 − 𝑔)𝑖𝑝

𝑎 + (1 − 𝑔)𝑖
+

𝑐𝛼𝑠𝑝

(1 + 𝜁𝑠 )(1 + 𝜂𝑃)
) + 𝜆(𝑆 + 𝐼 + 𝑃) 

=
𝑟𝑠

1 + 𝑘𝑝
−

𝑟𝑠2

1 + 𝑘𝑝
−

𝑟𝑠𝑖

1 + 𝑘𝑝
−

𝛼𝑠𝑝

(1 + 𝜁𝑠 )(1 + 𝜂𝑝)
+

𝑐𝛼𝑠𝑝

(1 + 𝜁𝑠 )(1 + 𝜂𝑝)
+ 𝜆𝑠 − 𝑑1𝑖 −

𝑏(1 − 𝑔)𝑖

𝑎 + (1 − 𝑔)𝑖

+
𝑐𝑏(1 − 𝑔)𝑖

𝑎 + (1 − 𝑔)𝑖
− 𝑑2𝑝 + 𝜆𝑆 + 𝜆𝐼 + 𝜆𝑃 

=
𝑟𝑠(1 − 𝑠 − 𝑖)

1 + 𝑘𝑝
−

𝛼𝑠𝑝(1 − 𝑐)

(1 + 𝜁𝑠)(1 + 𝜂𝑝)
− 𝑑1𝑖 −

𝑏(1 − 𝑔)𝑖𝑝𝑐

𝑎 + (1 − 𝑔)𝑖
+ 𝜆𝐼 − 𝑑2𝑝 + 𝜆𝑃 

               ≤
𝑟𝑠

1 + 𝑘𝑝
− 𝑑2𝑝 − 𝑑1𝑖 

                 ≤
𝜖

4
 

Where 𝜆 = min (𝑑1, 𝑑2) 

Applying the standard comparison theorem for fractional order, we get 

𝑉(𝑡) ≤ 𝑉(0)𝐺𝛽(−𝜆(𝑡)
𝛽) + (

𝜖

4
) 𝑡𝛽𝐺{𝛽,𝛽+1}(−𝜆(𝑡)

𝛽) 

Where 𝐺𝛽 is the Mittag-Leffler function. 

𝑉(𝑡) ≤
𝜖

4𝜆
, 𝑡 → ∞ 

Therefore, all solutions of fractional-order system (2.4) which are initiating in 𝑅3
+ , will enter the region 

Δ = {𝑆, 𝐼, 𝑃 ∈ 𝑅3
+: 𝑉 ≤

𝜖

4𝜆
+ 𝜖, 𝜖 > 0} 

Critical Points and Stability Analysis: 

The critical point of the model (2.4) are given by  the following possible critical points arise from solving the 

above equations: 

(i) The trivial critical point is 𝐸0(0,0,0). 

(ii) The axial critical point is 𝐸1 (
𝑟−𝜃1

𝑟
, 0,0). 
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(iii) The predator free critical point is 𝐸2(𝑠̂, 𝑖̂, 0),  

where 𝑠̂ = 𝑑1 and 𝑖̂ =
𝑟(1−𝑑1)

𝑟+1
. 

(iv) The interior critical point 𝐸∗(𝑠∗, 𝑖∗, 𝑝∗) 

Where, 

𝑖∗ =
𝑎(𝑎𝑑2 + (𝑑2 − 𝑐𝛼)𝑠

∗)

(𝑐𝛼𝑠∗ + (𝑐𝑏 − 𝑑2)(𝑎 + 𝑠
∗))

 

 

 𝑝∗ =
𝑎𝑐(𝑠∗−𝑑1)(𝑎+𝑠

∗)

(𝑐𝛼𝑠∗+(𝑐𝑏−𝑑1)(𝑎+𝑠
∗)

 

and 𝑠∗ is the only positive root of the equation for a quadratic function.  

 𝐴𝑠2 + 𝐵𝑠 + 𝐶 = 0, 

Where 

 𝐴 = 𝑟(𝑐𝛼 + 𝑐𝑏 − 𝑑2), 

𝐵 = (𝑐𝑏 − 𝑑2)(𝑎𝑟 − 𝑟) + 𝛼𝑐((1 + 𝑘𝑝 − 𝑟)) + 𝑎(𝑑2(1 + 𝑘𝑝) + (𝑑2 − 𝑐𝛼)𝑟), 

𝐶 = −𝑎(𝑟(1 + 𝑘𝑝))(𝑐𝑏 − 𝑑2) + (𝑐𝛼(1 + 𝑘𝑝)𝑑1) − 𝑎𝑑2((1 + 𝑘𝑝)𝑟))). 

Stability Analysis: 

For local stability analysis, we wish to compute the variational matrix around several critical points. Given an 

arbitrary point (𝑠, 𝑖, 𝑝), the variational matrix is given by 

𝐽(𝑢, 𝑣, 𝑤) = (

𝑛11 𝑛12 𝑛13
𝑛21 𝑛22 𝑛23
𝑛31 𝑛32 𝑛33

) 

Where, 

𝑛11 =
𝑟

1 + 𝑘𝑝
(1 − 2𝑠 − 𝑖) − 𝑖 − 𝜃1 −

𝛼𝑝

(1 + 𝜁𝑠)(1 + 𝜂𝑝)
+

𝛼𝜁𝑠𝑝

(1 + 𝜁𝑠)2(1 + 𝜂𝑝)
, 

                  𝑛12 = −𝑠 (
𝑟

1 + 𝑘𝑝
+ 1),  

𝑛13 = (1 − 𝑢 − 𝑣) −
𝛼𝑠

(1 + 𝜁𝑠)(1 + 𝜂𝑝)
+

𝛼𝜂𝑠𝑝

(1 + 𝜁𝑠)(1 + 𝜂𝑝)2
 

  𝑛21 = 𝑖, 𝑛22 = 𝑠 − 𝑑1 −
𝑎𝑏(1 − 𝑔)𝑝

(𝑎 + (1 − 𝑔)𝑖)2
, 𝑛23 = −

𝑏(1 − 𝑔)𝑖

(𝑎 + (1 − 𝑔)𝑖)2
, 

𝑛31 =
𝑎𝑐𝛼𝑝

(𝑎 + 𝑖)2
, 𝑛32 =

𝑎𝑐𝑏(1 − 𝑔)𝑝

(𝑎 + (1 − 𝑔)𝑖)2
, 𝑛33 = −𝑑2 +

𝑐𝑏(1 − 𝑔)𝑖

(𝑎 + (1 − 𝑔)𝑖)
. 

Theorem:3 

The trivial equilibrium point 𝐸0(0,0,0) which is saddle. 

Proof:  At an critical point 𝐸0, the variational matrix is given by 
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𝐽(𝐸0) = (

𝑟 0 0
0 −𝑑1 0
0 0 −𝑑2

) 

The eigenvalues at 𝐸0 are 𝜆1 = 𝑟, 𝜆2 = −𝑑1, 𝜆3 = −𝑑2. 

Thus, |arg (𝜆1)| = 0 <
𝛽𝜋

2
, |arg (𝜆2)| = 𝜋 >

𝛽𝜋

2
, |arg (𝜆3)| = 𝜋 >

𝛽𝜋

2
. 

Therefore, 𝐸0 is saddle. 

Theorem:4 

The axial critical point 𝐸1(1,0,0) is unstable.  

Proof: At an critical point 𝐸1, the variational matrix is given by 

𝐽(𝐸1) =

(

 
 
−𝑟 −(𝑟 + 1)

−𝛼

𝑎 + 𝑠
0 1 − 𝑑1 0

0 0 −𝑑2 +
𝑐𝛼  

𝑎 + 𝑠)

 
 

 

The eigenvalues at 𝐸1 are 𝜆1 = −𝑟, 𝜆2 = 1 − 𝑑1, 𝜆3 = −𝑑2 −
𝑐𝛼  

𝑎+𝑠
. 

Thus, |arg (𝜆1)| = 0 <
𝛽𝜋

2
, |arg (𝜆2)| = 𝜋 >

𝛽𝜋

2
, |arg (𝜆3)| = 𝜋 >

𝛽𝜋

2
. 

Due to numerical simulation table values, 1 − 𝑑1 is positive.  

The critical point 𝐸1(1,0,0) is unstable. 

Theorem:5 

The predator-free critical point 𝐸2(𝑠̂, 𝑖̂, 0) is locally asymptotically stable if 𝑑2 > 𝑐(𝛼 + 𝑏).  

Proof: At an critical point 𝐸2, the variational matrix is given by 

𝐽(𝐸1) = (

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

) 

Where, 

𝑎11 = 𝑟(1 − 2𝑠̂) + 𝑖(𝑟 + 1),  𝑎12 = (−1 − 𝑟)𝑠̂, 𝑎13 =
−𝛼𝑠̂

𝑎+𝑠
,𝑎21 = 𝑖̂, 𝑎22 = 0, 

𝑎23 =
𝑏𝑖̂

𝑎+𝑖
, 𝑎31 = 0, 𝑎32 = 0, 𝑎33 =

𝑐𝛼𝑠̂

𝑎+𝑠̂
− 𝑑2 +

𝑐𝑏𝑖̂

𝑎+𝑖̂
. 

Here, the characteristic equation of the above variational matrix is provided by 

𝜆3 + 𝑋𝜆2 + 𝑌𝜆 + 𝑍 = 0. 

Where, 

𝑋 = 𝑎11 − 𝑎33, 

                                                    𝑌 = 𝑎21𝑎12 + 𝑎33𝑎11, 

𝑍 = 𝑎12𝑎21𝑎33. 

 According to Routh-Hurwitz Criteria,  
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Hence,𝐸2 is locally asymptotically stable. 

Theorem:6 

The endemic critical point 𝐸∗(𝑠∗, 𝑖∗, 𝑝∗) is locally asymptotically stable. 

Proof: At an critical point 𝐸∗, the variational matrix is given by 

𝐽(𝐸1) = (

𝑔11 𝑔12 𝑔13
𝑔21 𝑔22 𝑔23
𝑔31 𝑔32 𝑔33

) 

Where, 

𝑔11 =
𝑟

1 + 𝑘𝑝∗
(1 − 2𝑠∗ − 𝑖∗) − 𝑖∗ − 𝜃1 −

𝛼𝑝∗

(1 + 𝜁𝑠∗)(1 + 𝜂𝑝∗)
+

𝛼𝜁𝑠∗𝑝∗

(1 + 𝜁𝑠∗)2(1 + 𝜂𝑝∗)
, 

                  𝑔12 = −𝑠
∗ (

𝑟

1 + 𝑘𝑝∗
+ 1),  

𝑔13 = (1 − 𝑠
∗ − 𝑖∗) −

𝛼𝑠∗

(1 + 𝜁𝑠∗)(1 + 𝜂𝑝∗)
+

𝛼𝜂𝑠∗𝑝∗

(1 + 𝜁𝑠∗)(1 + 𝜂𝑝∗)2
 

  𝑔21 = 𝑖
∗, 𝑔22 = 𝑠

∗ − 𝑑1 −
𝑎𝑏(1 − 𝑔)𝑝∗

(𝑎 + (1 − 𝑔)𝑖∗)2
, 𝑔23 = −

𝑏(1 − 𝑔)𝑖∗

(𝑎 + (1 − 𝑔)𝑖∗)2
, 

𝑔31 =
𝑎𝑐𝛼𝑝∗

(𝑎 + 𝑖∗)2
, 𝑔32 =

𝑎𝑐𝑏(1 − 𝑔)𝑝∗

(𝑎 + (1 − 𝑔)𝑖∗)2
, 𝑔33 = −𝑑2 +

𝑐𝑏(1 − 𝑔)𝑖∗

(𝑎 + (1 − 𝑔)𝑖∗)
. 

Here, the characteristic equation of the above variational matrix is provided by 

𝜆3 + 𝐸𝜆2 + 𝐹𝜆 + 𝐺 = 0. 

Where, 

𝐸 = −𝑔11 − 𝑔33, 

𝐹 = 𝑔21𝑔12 + 𝑔22𝑔11 − 𝑔13𝑔31 + 𝑔23𝑔32, 

𝐺 = 𝑔13(−𝑔22𝑔31 + 𝑔21𝑔32) + 𝑔23(𝑔12𝑔31 − 𝑔11𝑔32). 

 According to Routh-Hurwitz Criteria,  

Hence,𝐸∗ is locally asymptotically stable. 

Global  Stability Analysis: 

Theorem:7 

The endemic critical point 𝐸∗  is globally asymptotically stable. 

Proof: 

 Consider a  Lyapunov function 

𝑉(𝑆, 𝐼, 𝑃) = [𝑠 − 𝑠∗ − 𝑠∗ ln
𝑠

𝑠∗
] + 𝑞1[𝑖 − 𝑖

∗ − 𝑖∗ ln
𝑖

𝑖∗
] + 𝑞2[𝑝 − 𝑝

∗ − 𝑝∗ ln
𝑝

𝑝∗
]    

Applying the caputo fractional derivative, we obtain 

≤ (
𝑠 − 𝑠∗

𝑠
)𝐶𝐷

𝛽
𝑠(𝑡) + 𝑞1 (

𝑖 − 𝑖∗

𝑖
) 𝐶𝐷

𝛽
𝑖(𝑡) + 𝑞2 (

𝑝 − 𝑝∗

𝑝
) 𝐶𝐷

𝛽
𝑝(𝑡) 
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≤ (
𝑠 − 𝑠∗

𝑠
) (

𝑟𝑠

1 + 𝑘𝑝
(1 − 𝑠 − 𝑖) − 𝑖𝑠 −

𝛼𝑠𝑝

(1 + 𝜁𝑠)(1 + 𝜂𝑝)
− 𝜃1𝑠)

+ 𝑞1 (
𝑖 − 𝑖∗

𝑖
) (𝑖𝑠 − 𝑑1𝑖 −

𝑏(1 − 𝑔)𝑖𝑝

𝑎 + (1 − 𝑔)𝑖
− 𝜃2𝑖)

+ 𝑞2 (
𝑝 − 𝑝∗

𝑝
) (−𝑑2𝑝 +

𝑐𝑏(1 − 𝑔)𝑖𝑝

𝑎 + (1 − 𝑔)𝑖
+

𝑐𝛼𝑠𝑝

(1 + 𝜁𝑠)(1 + 𝜂𝑝)
) 

≤ −(𝑠 − 𝑠∗) [𝑟 {
(𝑠 + 𝑖) − (𝑠∗ + 𝑖∗)

(1 + 𝑘𝑝)(1 + 𝑘𝑝∗)
}] + 𝛼 [

𝑝

(1 + 𝜁𝑠)(1 + 𝜂𝑝)
−

𝑠∗

(1 + 𝜁𝑠∗)(1 + 𝜂𝑝∗)
]

− 𝑞1(𝑖 − 𝑖
∗) [(𝑠 − 𝑠∗) −

𝑝

𝑎 + 𝑖
−

𝑝∗

𝑎 + 𝑖∗
] − 𝑞2(𝑝 − 𝑝

∗) [𝑐𝑏 (
𝑖(𝑎 + 𝑖∗) − 𝑖∗(𝑎 + 𝑖)

(𝑎 + 𝑖)(𝑎 + 𝑖∗)
)]

+ 𝑐𝛼 [
(1 + 𝜁𝑠∗)(1 + 𝜂𝑝∗)𝑠 − (1 + 𝜁𝑠)(1 + 𝜂𝑝)𝑠∗

(1 + 𝜁𝑠)(1 + 𝜂𝑝)(1 + 𝜁𝑠∗)(1 + 𝜂𝑝∗)
] 

Obviously, 𝐶𝐷
𝛽
𝑉(𝑠, 𝑖, 𝑝) ≤ 0. 

We conclude that 𝐸∗ is globally asymptotically stable. 

Hopf-Bifurcation Analysis: 

In this section, we discuss about the Hopf-bifurcation analysis of system (2.4). Define a function, with respect to 

𝛽 by 

𝑚(𝛽) =
𝛽𝜋

2
− min
1≤i≤3

|arg(𝜆𝑖)| 

Theorem:8 

The fractional-order system (2.4) experiences a Hopf bifurcation at the endemic equilibrium point 𝐸∗when 

bifurcation parameter 𝜃1 passes through the critical value 𝜃1
∗ ∈ (0,1), provided that the following conditions are 

satisfied: 

(i) the corresponding characteristic equation (5.3) of system (2.4) has a pair of complex conjugates 

𝜆1,2 = 𝛿 + 𝑖𝜔 (𝑤ℎ𝑒𝑟𝑒 𝛿 > 0) and one negative real root 𝜆3. 

(ii) 𝑚(𝜃1
∗) =

𝛽∗𝜋

2
− min
1≤i≤3

|arg (𝜆𝑖)| = 0. 

(iii) |
𝑑𝑚(𝛽)

𝑑𝛽
|
𝛽=𝛽∗

≠ 0. 

Here, we give the conditions under which a Hopf bifurcation would exist as the derivative's order approaches a 

critical value at the interior equilibrium point 𝐸∗. 

Numerical Analysis : 

In this section, we demonstrate a numerical simulation to examine the fractional-order system's dynamics. While 

there are other numerical methods available for solving nonlinear fractional differential equations, the Adams-

type predictor corrector method [20] is a more suitable and practical approach for solving the dynamic 

behaviour of fractional differential equation solutions. 

This study examines a set of parametric values: 

𝑟 = 1.05, 𝛼 = 0.25, 𝑎 = 0.3, 𝑑1 = 0.1, 𝑏 = 0.5, 𝑑2 = 0.1, 𝑐 = 0.5, 𝑔 = 0.2, 𝑘 = 0.4, 

𝜃1 = 0.1, 𝜃2 = 0.3, 𝜁 = 0.4, 𝜂 = 0.2. 
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In this case, we have investigated  the use of fear factor in the integer order system. When the model system 

(2.4) approaches its interior equilibrium point, the dynamic behaviour of its solutions is seen to change from an 

unstable steady state to a stable steady state. 

The time series and phase portrait of the system (2.4) solutions for k = 0.7 are shown in Figs. 1, respectively. 

These figures clearly show the unstable steady state of the interior equilibrium point 

𝐸∗(0.859953,0.0114115,0.591645) for 𝛽 = 1. The time series and phase portrait of the system (2.4) solutions 

around the interior equilibrium point 𝐸∗(0.859953,0.0114115,0.591645) for 𝛽 = 0.92 are shown in Figs. 2, 

respectively. Next, we plot the solution of system (2.4) by choosing the same set of parameters. Figures 3 

illustrate the impact of 𝛽 on each population, highlighting its crucial role in the system's dynamics due to its 

fractional order derivative. We can see from this diagram that 𝛽 significantly affects each population. 

 

Figure 1: Time series and Phase portrait solution of system (2.4) for the interior equilibrium point      

when β = 1 

 

Figure 2: Time series and Phase portrait solution of system (2.4) for the interior equilibrium point      

when β = 0.95 
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Figure:3 Effectiveness of fractional order on each population of system (2.4)                                           

when β = 0.92, 0.84, 0.72, 0.64 

Effect of varying Fear Effect: 

Figure 4  shows that the density of the susceptible prey falls as the fear effect increases. As the fear impact k 

increases from 0.3 to 0.9, the number of infected prey increases (Figure 4)).As the impact of fear increases, 

Figure 4  illustrates that the density of predators decreases. Figure 4  shows that the fractional-order derivative 

has a major impact on the stability of our suggested system. 
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Figure:4 Time series solutions on each population of system (2.4) for k = 0.2, 0.4, 0.6, 0.8 

Effect of varying Refuge: 

Figure 5  shows that the density of the susceptible prey falls as the refuge value increases. As Figure 5 

illustrates, the quantity of infected prey grows when the refuge g rises from 0.3 to 0.9. As the effect of refuge 

increases, Figure 5  illustrates that the density of predators decreases. Figure 5  shows that the fractional-order 

derivative has a major impact on the stability of our suggested system. 

 

 

Figure 5: Different values of refuge on each population of system (2.4) for g = 02, 0.4, 0.6, 0.8 
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Effect of varying Harvesting: 

Figure 6 shows that the density of the susceptible prey falls as the harvesting rate increases.As 𝜃1 increases from 

0.3 to 0.9, the number of infected prey also increases (Figure 6).As the affect of harvesting increases, Figure 6 

illustrates how the density of predators decreases.Figure 4 shows that the fractional-order derivative has a major 

impact on the stability of our suggested system. 

 

 

Figure 6: Harvesting effect of population for interior equilibrium point  for the fractional order β = 0.92 

Bifurcation of harvesting: 

We now need to examine the impact of the harvesting rate on our system. A bifurcation diagram of system (2.4) 

is shown in Fig. 5 at the level of harvesting 𝜃1  when 𝛽 = 0.92.For 𝛽 ∈ (0,1), system (2.4) exhibits an interior 

equilibrium, as we have demonstrated.The system becomes unstable nevertheless when 𝛽  approaches the 

critical value 𝛽∗. Therefore, compared to the fractional-order model, the integer-order model is less stable.When 

𝛽 = 0.92 and the harvesting rate 𝜃1 is greater than the threshold value of 𝜃1 = 0.41. Hopf-bifurcation is used to 

change the dynamics from an unstable to a stable steady state. 
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Figure 7: Bifurcation diagram for harvesting 𝒉𝟏 each population for the fractional order derivative β = 

0.92 

Conclusion: 

In a fractional-order ecosystem under investigation, predator attacks on susceptible and infected prey cause fear 

and infection in the respective populations of susceptible and infected prey. It may also be shown that system 

(2.4) represents all potential biological states of equilibrium. The existence, uniqueness, boundedness, and local 

stability of the suggested model (2.4) were also investigated, and Hopf-bifurcation was observed. Our 

conclusion was based on these results, which showed that the stability (2.4) of the model is immediately affected 

by changing the cost of fear k in fractional order. We have investigated the equilibrium points of the fractional-

order system with respect to their global asymptotic stability. These results imply that the fractional-order 

mathematical model can be helpful in explaining the dynamics of systems with practical memory.  
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