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Abstract:-This study investigates the efficacy of vaccination in controlling Nipah virus (NiV) outbreaks using 

SEIR modeling in India and Nepal. Leveraging mathematical modeling, it assesses vaccination strategies' 

impact on NiV transmission dynamics. The SEIR model, applied to infectious diseases, facilitates understanding 

disease spread and intervention effects. Extending this approach to NiV outbreaks aims to inform effective 

public health measures. Integration of empirical data enhances model validity. Findings offer insights into 

vaccine effectiveness, aiding evidence-based decision-making. This research contributes to combating NiV, a 

lethal zoonotic pathogen. 
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1. Introduction 

The emergence and spread of infectious diseases pose significant threats to global public health, necessitating 

rigorous research and analysis to develop effective preventive measures. Among the various infectious agents, 

Nipah virus (NiV) stands out as a particularly lethal zoonotic pathogen, capable of causing severe respiratory 

and neurological symptoms in humans [1]. Originating from fruit bats of the genus Pteropus, NiV outbreaks 

have been documented primarily in South and Southeast Asia, with sporadic cases reported in other regions as 

well [2, 3]. The gravity of the Nipah virus stems not only from its high fatality rate but also from its potential to 

trigger large-scale outbreaks with devastating consequences [4]. 

  In light of the pressing need to mitigate the impact of NiV outbreaks, understanding the dynamics of virus 

transmission and assessing the efficacy of potential interventions are paramount. Vaccination represents one of 

the most effective strategies for controlling infectious diseases by conferring immunity and preventing 

transmission [5, 6]. However, the development and deployment of vaccines necessitate a comprehensive 

understanding of vaccine efficacy and its implications for population-level disease dynamics. 

  This research paper aims to analyze the efficacy of vaccination in controlling NiV outbreaks through the 

stability assessment of a compartmental model, specifically the Susceptible-Exposed-Infectious-Recovered 

(SEIR) model. By leveraging mathematical modeling techniques, we seek to investigate the impact of 

vaccination campaigns on the transmission dynamics of NiV in two highly vulnerable regions: India and Nepal. 

Our study builds upon previous research on SEIR modeling of infectious diseases and extends its application to 

the context of NiV outbreaks, providing insights into the potential effectiveness of vaccination strategies [7, 8]. 

  The SEIR model, a cornerstone of epidemiological modeling, divides the population into distinct 

compartments based on their disease status: susceptible (S), exposed (E), infectious (I), and recovered (R) [9]. 

This compartmental framework allows for the simulation of disease transmission dynamics by tracking the flow 

of individuals between different states over time. By incorporating parameters such as transmission rates, latent 

periods, and recovery rates, the SEIR model provides a quantitative framework for assessing the impact of 

interventions, including vaccination, on disease spread [10]. 

  Previous studies have demonstrated the utility of SEIR modeling in understanding the dynamics of various 

infectious diseases, including but not limited to influenza, measles, and Ebola [11, 12, 13]. By extending this 
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approach to the study of NiV outbreaks in India and Nepal, we aim to elucidate the potential effectiveness of 

vaccination in mitigating the spread of the virus and reducing the burden of disease in these regions [14]. 

  Moreover, our analysis will be informed by relevant empirical data on NiV transmission, epidemiological 

parameters, and vaccination coverage in India and Nepal. By integrating real-world data with mathematical 

modeling techniques, we can enhance the validity and applicability of our findings, thereby informing evidence-

based decision-making and public health interventions [15, 16, 17]. 

  Vaccine administration is a highly effective method of preventing and reducing viral infections [18]. Even 

though there is no vaccine or a specific antiviral for the treatment of patients infected with Nipah virus available, 

the development of ChAdOx1 NipahB vaccine offers promising prospects [19, 20]. Vaccination and optimal 

control are key points to manage an epidemic situation, as discussed in [21, 22, 23, 24, 25, 26]. In this study, we 

utilize an SEIR model equipped with the effectiveness of vaccination to forecast the Nipah virus situation upon 

vaccine availability. Within our model, we classify vaccines into two main types: prophylactic vaccines aimed at 

prevention and therapeutic vaccines administered post-infection [27].  

  In summary, this research paper seeks to contribute to our understanding of vaccine efficacy in controlling NiV 

outbreaks by employing SEIR modeling techniques. By conducting a stability assessment of the SEIR model in 

the context of India and Nepal, we aim to provide insights into the potential impact of vaccination campaigns on 

the dynamics of NiV transmission, ultimately guiding efforts to combat this deadly zoonotic pathogen. 

 

2. Mathematical Model 

We are examining the SEIR model, representing the fractions of susceptible (S), exposed (E), infectious (I), and 

recovered (R) populations at a given time (t). We disregard the trivial solution where all compartments are 

empty. The differential equations describing the system, depicted in a schematic diagram given in Fig.[1] are as 

follows: 

 

Figure 1: Flow diagram for a model system (2.1) to (2.4). 
𝑑𝑆

𝑑𝑡
= 𝐴 − (𝑣 𝑣𝑠  + 𝜇 ) 𝑆 − 𝛽 (1 −  𝑣 𝑣𝑠)𝑆𝐼,        …(2.1) 

𝑑𝐸

𝑑𝑡
= 𝛽 (1 −  𝑣 𝑣𝑠)𝑆𝐼 −  {𝑘1  + 𝛿1  +  (1 − 𝛿1)𝑣 𝑣𝑒}𝐸,       …(2.2) 

𝑑𝐼

𝑑𝑡
= 𝛿1 𝐸 −  {𝑘2  + 𝛿2  +  (1 − 𝛿2) 𝑣 𝑣𝑖  } ,    …(2.3)       

𝑑𝑅

𝑑𝑡
= 𝑣 𝑣𝑠 𝑆 +  𝑣 𝑣𝑒  (1 − 𝛿1) 𝐸 +  { 𝛿2  +  (1 − 𝛿2) 𝑣 𝑣𝑖  } 𝐼 − 𝜇 𝑅 ,               …(2.4) 

with the condition that  

0 ≤  𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0) ≤  1                                    …(2.5) 

The density  S (t)   at time 𝑡   represents the fraction of susceptible individuals, while 𝐸(𝑡), 𝐼(𝑡)and  

𝑅(𝑡)signify similar proportions for exposed, infectious, and recovered individuals, respectively.  

Table 1 provides a detailed explanation of the variables and parameters in Equation (2.1) − (2.4). 
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Table 1: Table of Description 

Variable and Parameter 

 

𝑆 

𝐸 

𝐼 

𝑅 

𝛽 

𝛿1 

𝛿2 

𝑣 

𝑣𝑠 

𝑣𝑒 

𝑣𝑖 

𝐴 

𝜇 

𝑘1 

𝑘2 

Description 

 

               Fraction of susceptible case 

               Fraction of exposed case 

               Fraction of infected case 

               Fraction of recovered case 

 Rate of effective transmission of Nipah Virus 

 Rate of change from exposed to infected 

 Rate of change from infected to recovered 

           Population's vaccination rate 

           Vaccination effectiveness in S 

           Vaccination effectiveness in E 

           Vaccination effectiveness in I 

            Birth rate of population 

  Death rate of non-Nipah virus population 

  Death rate plus  μ of the exposed population 

  Death rate plus  μ of the infected population 

 

The model is motivated by the understanding that the vaccination rate per day $(v)$ cannot instantaneously halt 

the system's dynamics, given that the entire population cannot be vaccinated simultaneously. Individuals 

become eligible for vaccination once they are susceptible, exposed, or infectious. In the first equation of System 

(2.1) - (2.4), the change in susceptible individuals depends on both the number of vaccinated individuals,  v vs S,  

and the number of non-vaccinated individuals,  (1 − v vs )S.  Notably, according to the fundamental existence-

uniqueness theorem for nonlinear systems, System (2.1) - (2.4) possesses a unique solution set  (S(t), E(t),

I(t), R(t)).  Furthermore, to ensure that the densities S(t), E(t), I(t) and  R(t)  remain non-negative at any 

given time 𝑡 > 0 we establish the following lemma. 

 

Lemma 2.1If (S(t), E(t), I(t), R(t))represents the continuous solution of equations (2.1) through (2.4) with 

the initial condition specified in (2.5), then for any positive time 𝑡 > 0, the values of (S(t), E(t), I(t), R(t)) 

remain within the range of non-negative real numbers. 

 

Proof:- To establish this lemma, we utilize the property that a function fwith f(0)   f(0) ≥  0    is non-negative if 

its derivative [
𝑑𝑓

𝑑𝑡
]

𝑡=𝑢
≥ 0when f(u)  =  0; in other words, the function fis non-decreasing at 𝑢. According to 

condition (2.5), there exists a time 𝑡𝑠such that S(t) ≥  0     for0 ≤  t < ts and 𝑆(𝑡𝑠) = 0. Referring to the initial 

equation from (2.1) to (2.4), we find that 

[
𝑑𝑆

𝑑𝑡
]

𝑡=𝑠
= 𝐴 ≥ 0                                       …(2.6) 

This implies that S(t) ≥  0   for any 𝑡 ≥  0   . Next, let 𝑡𝑖 be the time such that 𝐼(𝑡) ≥  0   for 0 ≤  t <

ti and I(ti)  =  0.  According to the equation (2.3), we find that 

[
𝑑𝐼

𝑑𝑡
]

𝑡=𝑖
= 𝛿1𝐸(𝑡𝑖) ≥  0                                     …(2.7) 

As both S and 𝐼remain non-negative on the interval [0, 𝑡𝑖].it can be deduced from the equation (2.2)  

that 
𝑑𝐸

𝑑𝑡
 +  {𝑘1  + 𝛿1  +  (1 − 𝛿1)𝑣 𝑣𝑒}𝐸 ≥  0                                          …(2.8) 

𝑜𝑛 [0, 𝑡𝑖]. 

Hence,  
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𝐸(𝑡𝑖) ≥  𝐸(0)𝑒{− {𝑘1+ 𝛿1+ (1−𝛿1)𝑣 𝑣𝑒}𝑡𝑖} 

As,   𝐸(0) ≥  0 and exponential function is always positive then 

𝐸(𝑡𝑖) ≥  𝐸(0)𝑒{− {𝑘1+ 𝛿1+ (1−𝛿1)𝑣 𝑣𝑒}𝑡𝑖} ≥  0                                      …(2.9) 

Equations (2.8) and (2.9) indicate that  [
𝑑𝐼

𝑑𝑡
]

𝑡=𝑖
≥  0, thus ensuring I(t) ≥  0    for any 𝑡 ≥  0. Additionally, it can 

be readily verified that 𝐸(𝑡) ≥  0when 𝐼(𝑡) ≥  0. Given that S, I, and E are non-negative for t > 0, it is evident 

that 𝑅(𝑡) ≥  0for𝑡 ≥  0. 

This lemma allows us to conclude that the set [0, ∞)4 is positively invariant concerning the equation from (2.1) 

to (2.4) and it acts as an attractor for all solutions of the model. 

 

3. Stability  of equilibrium points 

  An equilibrium point in a dynamical system is where there is no change over time in the system's state. 

Therefore, if a system initiates from an equilibrium point, its state will remain unchanged and persist in 

equilibrium indefinitely. 

  To determine the equilibrium points of the system, we solve for the values of 𝑆, E, I and  R where the rates of 

change
𝑑𝑆

𝑑𝑡
, 

𝑑𝐸

𝑑𝑡
,

𝑑𝐼

𝑑𝑡
and 

𝑑𝑅

𝑑𝑡
are all equal to zero in equation's (2.1) to (2.4). This involves solving the following 

system of equations: 

0 = 𝐴 − (𝑣 𝑣𝑠  + 𝜇 ) 𝑆 − 𝛽 (1 −  𝑣 𝑣𝑠)𝑆𝐼, 

0 = 𝛽 (1 −  𝑣 𝑣𝑠)𝑆𝐼 − {𝑘1  + 𝛿1  +  (1 − 𝛿1)𝑣 𝑣𝑒}𝐸,  

                0 = 𝛿1 𝐸 −  {𝑘2  + 𝛿2  +  (1 − 𝛿2) 𝑣 𝑣𝑖  } ,  

 0 = 𝑣 𝑣𝑠 𝑆 +  𝑣 𝑣𝑒  (1 − 𝛿1) 𝐸 +  { 𝛿2  +  (1 − 𝛿2) 𝑣 𝑣𝑖  } 𝐼 − 𝜇 𝑅 ,…(3.1) 

A disease-free equilibrium represents a state where the disease does not propagate, with both the exposed and 

infected populations effectively reduced to zero, denoted as E ≡  0  and I ≡  0  By solving equation (3.1), the 

unique form of the disease-free equilibrium is derived as 

(𝑆𝑓 , 𝐸𝑓 , 𝐼𝑓 , 𝑅𝑓) = (
𝐴

𝑣𝑣𝑠+𝜇
, 0, 0,

𝐴

𝜇
)                                          …(3.2) 

For constant parameters A, v, vs and  μ. 

Beyond the disease-free equilibrium, additional equilibrium points, known as the endemic equilibrium, can be 

determined by solving equation (3.1) while adhering to the constraints that  S ≠  0, E ≠  0, I ≠  0, and R ≠  0. 

This is applicable because the state variables (S(t), E(t), I(t), R(t)) are within the interval [0, ∞]4, as proven 

in Lemma 2.1. This endemic equilibrium is unique under the constraints of the equation (2.1) to (2.4) under 

fixed parameters and is represented in the following form  

(𝑆̃,  𝐸̃ , 𝐼,̃ 𝑅̃ )                                              …(3.3) 

Where,  𝑆̃ =  
𝐴

v vs+μ +β (1− v vs) Ĩ
 ,  

𝐸̃ =  
A−( v vs+μ ) S̃

k1 +δ1+ (1−δ1) v ve 
, 

𝐼 =  
δ1Ẽ

k2 +δ2 + (1−δ2) v vi  
, 

𝑅̃ =  
A −μS̃  − k1 E −k2 Ĩ

μ  
. 

Now let                                                           (𝑆𝑚, 𝐸𝑚 ,  𝐼𝑚,  𝑅𝑚)                                          … (3.4) 
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Commonly represent an equilibrium point expressed in the form of equations (3.2) or (3.3). The subsequent 

theorem elucidates the stability of the equilibrium point denoted as (3.4).  

Theorem 2.2. With the parameters of the equation (2.1) to (2.4) held constant along with the initial condition 

(2.5), the equilibrium point of the model exhibits local asymptotic stability. 

Proof.  Examine the Jacobian matrix of system (2.1) to (2.4) concerning equilibrium point (3.4),  presented as 

follows: 

𝐽𝐸 =  [

−𝑣 𝑣𝑠 0

𝐿1𝐼𝑚 −(𝑘1 + 𝐿2)
−𝐿1𝑆𝑚 0
−𝐿1𝑆𝑚 0

0 𝛿1

𝑣 𝑣𝑠 8 𝐿2  − 𝛿1

−(𝑘2 + 𝐿3) 0
𝐿3 −𝜇

] 

In the given context, we define 𝐿1 = β (1 −  v vs), 𝐿2 = δ1  +  (1 − δ1) v ve , 𝐿3 = δ2  +  (1 − δ2)v vi. The 

eigenvalues, denoted as $ \lambda $, of the matrix $J_E $  are obtained by solving the characteristic polynomial 

equation| 𝜆 𝐼 − 𝐽𝐸| = 0; i.e.the eigenvalues represent the solutions that satisfy this polynomial equation. 

(𝜇 + 𝜆 )(𝑀1  +  𝑀2 𝜆 + 𝑀3𝜆2  + 𝜆3) = 0  

Where,  

M1   =  L1
3 ImSm  +  vvs(L2L3  +  L3k1  +  L2k2  +   L1

2 Sm),    

M2  =  L2L3  +  L3k1  +  L2k2  +  k1k2 +   L1
2 Sm  +  vvs(L2 +  L3  +  k1  +  k2),  

          M3  =   L2 + L3  +  k1  +  k2  + vvs. 

It is evident that M1 >  0, M2 >  0  and  M3 >  0  . Given that M1,   M2 and M_3   are positive real numbers, it 

logically follows that all solutions of equation (3.5) possess negative real parts. Consequently, the equilibrium 

point of system from (2.1) to (2.4) exhibits local asymptotic stability. 

4.  Basic reproduction number and global stability 

Utilizing the matrix generation technique {\color{red} [27], the fundamental reproductive number, denoted as  

𝑅0 corresponds to the principal eigenvalue, known as the spectral radius, of the matrix 𝐹𝑉−1 , where,  

𝐹 = [
0 𝛽 (1 −  𝑣𝑣𝑠)𝑆

𝛿1 0
]                                                                                  …(4.1) 

and 

𝑉 = [
𝑘1  + 𝛿1  +  (1 − 𝛿1 ) 𝑣 𝑣𝑒 0

0 𝑘2  + 𝛿2   +  (1 − 𝛿2 ) 𝑣 𝑣𝑖
]                          …(4.2) 

Thus, the basic reproductive number, denoted as 𝑅0, associated with the disease-free equilibrium (3.2), takes the 

following form  

                         𝑅0 = √
δ1 β ( 1−v vs) A

( k1 +δ1  + (1−δ1 ) v ve)( k2 +δ2  + (1−δ2 ) v vi) (vvs +A)}
                                     … (4.3) 

Through equations (4.1) and (4.2), we observe that the principal eigenvalues of 𝐹𝑉−1and 𝑉−1 F coincide. On 

the behalf of this basic reproductive number R0, we subsequently establish the following theorem regarding the 

global stability of the disease-free equilibrium (3.2). 

 

Theorem 4.1.  If  𝑅0 <  1,  the disease-free equilibrium (3.2) demonstrates global asymptotic stability. 

Conversely, the equilibrium becomes unstable when  𝑅0 >  1.  

Proof.   Let us suppose the matrix 

𝑢 = [1
𝑅0(𝑘2  + 𝛿2   +  (1 − 𝛿2)𝑣 𝑣𝑖)

𝛿1

] 

here  𝑘2,  𝛿2, 𝑣 𝑎𝑛𝑑  𝑣𝑖represent parameters as defined in Table 1. Notably, u is a 1 ×  2  matrix consisting of 

positive real components. Verifying this entails a straightforward examination, confirming that 

𝑢 (𝑅0 [
1 0
0 1

] − 𝑉−1𝐹) = 0                                                                   …(4.4) 
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Here  𝐹 and 𝑉  are defined in equations (4.1) and (4.2) respectively. Equation (4.4) suggests that 

          𝑢 𝑅0  =  𝑢 𝑉−1 𝐹                                                               …(4.5) 

Now, consider          

𝐻 = [
𝐸
𝐼

] 

We observe that 𝐻 represents a zero matrix solely at the disease-free equilibrium. By employing equation from 

(2.1) to (2.4), we  have 

𝑑𝐻

𝑑𝑡
= [

𝑑𝐸

𝑑𝑡
𝑑𝐼

𝑑𝑡

] = [
−( 𝑘1  + 𝛿1  + (1 − 𝛿1 ) 𝑣 𝑣𝑒 ) 𝛽 (1 −  𝑣𝑣𝑠) 𝑆

𝛿1 − ( 𝑘2  + 𝛿2   +  (1 − 𝛿2 ) 𝑣 𝑣𝑖  )
] 

Thus,    
𝑑𝐻

𝑑𝑡
= [𝐹 − 𝑉]𝐻. 

Now, we construct the Lyapunov function  𝐿  as 

𝐿 = 𝑢 𝑉−1𝐻                                                             …(4.6) 

Considering that 𝑢 𝑉−1  represents a 1 ×  2  matrix comprised of positive real components, and 𝐻 is a 

non-negative matrix, it logically follows that 𝐻 ≥ 0 and furthermore, 𝐻 = 0 if and only if 𝐸 = 0  and 

𝐼 = 0. This suggests that 𝐻 is positive definite.  

 This indicates the positive definiteness of 𝑅. 

𝑑𝐿

𝑑𝑡
= 𝑢 𝑉−1

𝑑𝐻

𝑑𝑡
 

= 𝑢 𝑉−1(F −  V )H 

=  (𝑢𝑉−1𝐹 −  𝑢)𝐻 

=  𝑢(𝑅0  −  1)𝐻                                                    …(4.7) 

If the condition 𝑅0 <  1  holds, the derivative of 𝐻 with respect to time is negative, indicating that the 

disease-free equilibrium (equation 6) is globally asymptotically stable. Conversely, if 𝑅0 <  1  , the 

derivative of  𝐻 with respect to time is positive, suggesting instability of the equilibrium. It is 

noteworthy that when𝑅0 =  1  , we can infer local stability of the equilibrium as the derivative of 𝐻 

with respect to time equals zero. 

5. Numerical simulation 

We conducted simulations of the equation from (2.1) to (2.4) under two scenarios: Case I (India) and Case II 

(Nepal), with initial conditions and parameters specified in Table 2. The simulations were performed using a 

Mathematica program, which approximates the model's solution using the fourth-order Runge-Kutta method 

(RK4). 

Table 2: Table of Description 

           Parameter       Case I/ Reference    Case II/ Reference 

𝑆(0) 0.97286  [28] 0.994 [30]  

𝐸(0) + 𝐼(0) 0.00905 [29] 3.813 [31]  

𝑅(0)     0.00665 [32]          0.00554 [34] 

𝛽 0.53 [32] 0.40 [33] 
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𝛿1 1/11.5 per day [33] 1/11.5 per day [33] 

𝛿2 0.0125 per day [34] 0.0125 per day [34] 

𝐴   4.895 ×  10−5per day [29]   4.589 ×  10−5per day [28] 

𝜇 1.708 × 10−5 per day [30] 2.04739 ×  10−5 per day [31] 

𝑘1 1.735 × 10−5 per day [32] 2.04794 ×  10−5 per day [33] 

𝑘2 1.735 × 10−5 per day [32] 2.04794 ×  10−5 per day [33] 

 

The maximum reproductive number, 𝑅0, concerning the disease-free equilibrium (3.2), is observed when there 

is no vaccination  𝑣 = 0. 

Thus,                                        𝑅0 = √
𝛿1𝛽 𝐴

𝜇 (𝑘1 +𝛿1)(𝑘2 +𝛿2) 
                                              … (5.1) 

In Nepal, according to Table 2, the highest 𝑅0 value for Case I is 1.035, and for Case II, it is 2.81. As the 

vaccination rate 𝑣 increases, the 𝑅0 values decrease, reflecting the effectiveness of prophylactic 𝑣𝑠 and 

therapeutic (𝑣𝑒 , 𝑣𝑖) vaccines, as depicted in Fig. 2. For instance, if we consider 𝑣𝑠 = 0.4 it indicates 40% 

effectiveness of prophylactic vaccination when administered to susceptible individuals 𝑆. This implies that out 

of 100 people in the susceptible group who receive the prophylactic vaccine, 40 individuals are expected to 

recover. 

Refer to Figure 2, as vaccination rates increase in both countries, the Nipah virus infection rate decreases. This 

underscores the crucial role of vaccination in controlling the Nipah virus outbreak. While vaccine efficacy is 

vital, it can significantly influence the risk of illness. Nipah virus is a zoonotic disease, transferring from 

animals to humans. During outbreaks, human infections with the Nipah virus have been more prevalent than 

animal infections. The virus might utilize both animals and humans as reservoirs for resurgence, akin to 

previous findings with other coronaviruses [35, 36]. Therefore, Nipah virus disease could be considered a re-

emerging viral illness, meaning a disease previously observed within populations. To effectively manage and 

prevent Nipah virus infections, it's essential to explore strategies that boost vaccination rates. Achieving a high 

vaccination rate, aligned with vaccine potency, may require multiple vaccine doses. Furthermore, with the 

vaccine's efficacy rates of  70 % for prevention and  60 %  for treatment, Nepal would require a higher 

vaccination rate than India to flatten the curve, as illustrated in Fig.2. 
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Figure 2: Over time, we examined the proportion of infectious cases in Nepal and India under the 

assumption of 𝟕𝟎% effectiveness for prophylactic vaccines and 𝟔𝟎% for therapeutic vaccines. This 

was done across various vaccination rates, ranging from 𝟎%(no vaccination), 𝟎. 𝟏% per day etc for 

each population. 

 

The equilibrium points for Nepal's situation can be determined using Equation (3.4). Assuming a vaccination 

rate of  0.1%.  

 per day for the Nepal's population (v=0.001)  and a vaccine efficiency of 90  %  for both prophylactic and 

therapeutic vaccines, the equilibrium point corresponding to the fixed parameters in Table 2 of the Nepal case is 

(𝑆𝑚, 𝐸𝑚, 𝐼𝑚, 𝑅𝑚  )  = (0.000623, 0, 0, 2.865925) .  Without any vaccine, the equilibrium point for Nepal's case 

is (𝑆𝑚, 𝐸𝑚 , 𝐼𝑚, 𝑅𝑚 )  = (0.000606, 0.006126, 0.038360, 2.910508), indicating that the disease will not 

eventually die out. In the long term, approximately  0.425 %  of Nepal's population remains infectious. 

 For India's situation, with a vaccination rate of   0.1%  With a vaccination rate of 0.1% per day and 

90%  vaccine efficiency, the equilibrium point is (𝑆𝑚, 𝐸𝑚, 𝐼𝑚, 𝑅𝑚)  =  (0.000014, 0, 0, 2.241390). Without 

vaccines, the equilibrium point is (𝑆𝑚, 𝐸𝑚 , 𝐼𝑚, 𝑅𝑚) =  (0.000014, 0.000672, 0.004133,

2.236598). Similarly to Nepal, a few percentages 0.62%of India’s population remain infectious in the long 

term if no vaccine is available. 

The difference in efficacy between prophylactic and therapeutic vaccines for Nipah virus treatment in humans is 

illustrated in Figure 3. Both vaccines were assumed to have the same effectiveness. The findings indicated that 

the prophylactic vaccine exhibits higher efficacy than the therapeutic vaccine in both Nepal and India. The 

prophylactic vaccine stimulates the immune system, generating long-lasting memory lymphocytes [37, 38]. As a 

result, the immune system can respond quickly to Nipah virus infection, leading to a decrease in the number of 

infected cases. 
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Figure 3: Nepal and India: Cases where either prophylactic or therapeutic vaccines show equal 

efficiency. 

6. Conclusion 

In conclusion, the SEIR model developed in this study provides significant contributions to 

understanding the future trajectory of Nipah virus control, especially in light of the emergence of the 

ChAdOx1 NipahB vaccine. Our simulations highlight the critical role of effective vaccination in 

mitigating the peak of the infectious population. However, it is essential to note that the introduction 

of a vaccine does not immediately halt the pandemic; rather, its effectiveness depends on various 

factors, including vaccine efficacy and the rate of vaccination roll out. Notably, our analysis indicates 

that Nepal would necessitate a higher daily vaccination rate compared to India, assuming equivalent 

vaccine efficacy, to achieve similar outcomes. By examining the model's formula presented in Section 

2, we underscore the intricate interplay between vaccination rates and vaccine effectiveness in 

reducing the reproductive number  𝑅0  , Theoretical insights confirm that when 𝑅0 less than 1, control 

over the Nipah virus outbreak is attained, ensuring model stability. The equilibrium point of our 
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model, guided by specific parameters, anticipates a sustained decrease in Nipah virus prevalence over 

time, with only a marginal portion of the population remaining infectious in the absence of 

vaccination. 
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