Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 3 (2023)

|OT (Internet Of Thinks) Resource

Scheduling Problem Based on Two

Imperialist Competitive and Genetic
Algorithms

Soheil Shakibaee
Department of Mechanics, University of Aveiro, Aveiro, Portugal,

Abstract:-The Internet of Things (loT) is an emerging concept in the world of Information Technologies and
Communications. Using the 10T in the cloud computing platform is also feasible. Appropriate use of resources
such as processors is one of the challenges of the 10T in the cloud computing platform. Hence, task scheduling
and 10T resources are key issues. The loT resource scheduling is the same as the selection of an appropriate
resource to equally distribute loads in processors and maximize the efficiency of resources. This study proposes
a method by which the Imperialist Competitive and Genetic algorithms are combined to resolve this problem.
For this, several simulations are performed on the proposed method. Simulation results indicate that the
proposed method can solve this scheduling problem at an appropriate time and computational load, which could
reduce energy consumption and increase the efficiency of 10T resources in a cloud computing platform.
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Introduction

Cloud computing is a computational model founded on computer networks such as the Internet and provides a
new pattern to provide, consume, and deliver computing services via using networks. These services include
infrastructure, software, platform, and other computing resources. Cloud computing is composed of computing
and cloud. By cloud, it is meant a network or a network of broad networks such as the Internet in which the user
is not fully aware of what occurs there.

The working flow of cloud data centers is heterogenous due to customers of various goals and uses; thus, in a
complex system of this kind, complicated scalable scheduling to cover customer needs should be expected
(zZhang et al., 2015). Since the problem under consideration falls under NP-Hard problems, cloud service
providers cannot provide an online decision to solve the task scheduling problem in traditional ways and at an
acceptable decision time. Thus, modern heuristic methods should be utilized. There are various solutions for
solving scheduling problems (Chen et al., 2012 & Zhang et al., 2015). Zhang et al. (2015) presented a scalable
method for problem-solving. Although scalable, this method requires a sorting process to increase the time
complexity of assigning tasks to physical machines.

In a study, Birkhoff (1946) used the heuristic BvN method to assign scheduling policies. To use such methods,
it is required to understand the distribution of input processes. A scheduler should be able to maintain queue
stability by maximizing the waiting time for any scheduling in a BvN decomposition matrix. A problem of this
kind can be highly voluminous and increase time complexity. Also, many scheduling problems have been
provided to increase gains for cloud service providers or to improve social network performance.

Conley et al. (2015) studied the properties of the working flow of public clouds. Walker (2008) compared
Amazons’ EC2 and several high-performance computing (HPC) cluster systems, while Mehrotra et al. (2012)
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did a similar comparison between Amazon’s EC2 and NASA’s high-performance computing clustering system,
and found that public clouds could not yield the necessary efficiency like the HPC.

In an article, Wang et al. (2010) used various benchmarks to conclude that virtual EC2 machines produced less
resource efficiency while making many changes compared to specifically scientific computational clouds.

Schad et al. (2010) concluded that the heterogenous hardware of physical machines was the main factor in
increasing efficiency variability. Meanwhile, Wang et al. (2014) did a study on measuring resource consumption
patterns in EC2 and Azure to provide a daily consumption pattern.

Also, Koomey (2011) demonstrated that a processing time could not be a satisfactory criterion to exactly
evaluate the power consumption of virtual machines and some intra-processor events affected the power
consumption of processors more than others. According to some different tests, a model was proposed to
evaluate the energy consumption that computed the energy consumed by a virtual machine by monitoring
processors’ efficiency counters.

Pietri et al. (2013) found that the Energy-Aware SLA Contract is a protocol between a cloud provider and
service customers that reflects an agreed-upon domain for a cloud provider and data centers to be used in an
energy-aware method and simultaneously guarantee a level of service quality for ICT customers. Today, several
organizations and even people are increasingly using cloud resources.

Lordan et al. (2014) stated that scheduling resources under large-scale clouds and grids is difficult by the peer-
to-peer simulations of cloud resources scheduling given the size, dynamicity, and variations of the resources.
Researchers have proposed a wide range of policies and methods to map the loads presented on proposed
resources. However, the current production grids are largely underperformed and do not show an effective
environmental load. A simulation environment is useful for studying various methods, especially those that are
expected but do not characterize the available clouds and grids. This environment is a simulator that comprises a
kernel model and some mechanisms for the resources scheduling problem of a grid and describes an adaptive
solution model to determine upper-performance bounds. This environment also provides a general perspective
of how to use a simulator to study the performance of a grid’s resource scheduling methods for various
resources and load profiles under large-scale and dynamic environments.

Lucanin et al. (2015) investigated various scheduling algorithms in a cloud computing environment, concluding
that cloud computing served as a provider of mobile services by using large scalable and virtual resources on the
Internet.

A resource scheduling problem falls under a set of NP-Hard problems, which include several thousand various
problems of various applications for which quick and feasible solutions at reasonable times have not been found.
As stated, no quick solution has ever been found for them. However, it is less likely to find such algorithms. By
a quick solution, it is one whose runtime is polynomially related to the input size of a problem.

The Imperialist Competitive Algorithm (ICA) is a method in the evolutionary computation domains that seeks
to find an optimal answer to various optimization problems. The basic components of this algorithm consist of
assimilation policies, imperialist competition, and revolution. This algorithm imitates the evolutionary social,
economic, and political trends in different countries and mathematically models some parts of this process to
provide operators in regular algorithmic forms, which can help solve complicated problems. In essence, this
algorithm looks into answers to optimization problems in the form of countries and tries to gradually improve
these answers in an iterative process and to finally get an optimized answer for the problems.

The Genetic Algorithm is a special kind of evolutionary algorithm that makes use of evolutionary biological
techniques such as inheritance and mutation. The Genetic Algorithm (GA) is a programming technique that
makes use of genetic evolution as a problem-solving pattern; a problem to be solved involves inputs that
transform into solutions through a process model of the genetic evolution; the solutions are then assessed as
candidates by an assessor function, an if the condition for the problem exists is met, the algorithm terminates.
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The genetic algorithm is generally a repetition-based algorithm, most parts of which are selected in random
processes.

The main goal of using cloud computing is to increase the efficiency of computing systems. To improve the
efficiency of using available resources, scheduling algorithms require separating resources. Since the need for
cloud loT resources is not known at first, and also due to the variability of the needs and requirements, the
utilization of those resources decreases sharply. Using meta-heuristic algorithms such as the Genetic and
Imperialist Competitive algorithms causes this scheduling to occur in less time and be assigned to objects at low
delays, which would result in existing machines in the 10T devices consuming less energy. This study proposed
a method combining two genetic and imperialist competitive algorithms in which genetic operators are used in
the repetition steps of the imperialist competitive algorithm. This combination can help perform resource
scheduling with greater accuracy and speed in a cloud computing platform.

The Proposed Method

The proposed method uses a combination of genetic and imperialist competitive algorithms for a resource
scheduling problem on the Internet of Things. To this aim, the proposed method uses the policy of absorption in
the imperialist competition to generate new answers in the genetic algorithm. The algorithm of the proposed
method is as follows:

1. Determining the chromosomal structure and scoring function (fitness)

2. Generating initial solutions and creating an initial-generation population
3. Computing the fitness of each member of a generation population
4

If the termination condition is met, the best individual is selected as the final answer and introduction to
stage 8.

5. Generating new offspring using the policy of absorption of the Imperialist Competitive Algorithm (the
movement of colonies to the empire)

6. Combining offspring generated by the previous population and generating a middle population

7. Selecting the best people based on the size of the population of each generation as the next generation and
introduction to stage 3.

8. End

Figure 1 illustrates the flowchart of the proposed method. At first, answers are generated in the [0,1] interval
using a random distribution of numbers, and then, the fitness function is used to obtain the value of each answer
(individual). Later, the algorithm’s termination condition must be examined to see if the condition is met or not.
If yes, the proposed algorithm stops; otherwise, new offspring, which are the same new answers, should be
generated. For this, the policy of absorption defined in the imperialist competitive algorithm is used. The new
offspring are generated in a way to move toward the best individual in each generation, and to use the best
characteristics of that individual. Then, the new offspring are combined with the previous population and give
rise to the middle generation. The people in the middle generation must be sorted based on their fitness. Since
the number of people in each generation must be fixed in each iteration of the algorithm, out of the people in the
middle generation, selection must be made based on the number of people determined in each generation, with
subsequent transfer to the next generation. This operation iterates until the termination condition is met.
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Figure 1. The flowchart of the proposed method.

In the proposed method, there are n independent tasks as resources and m processors, with each task having a
certain processing time and being allowed to run on each processor for processing. All processors have the same
speed. If C,,,, is assumed to be the completion time of the last task left by a system, this time must be assigned
the least value possible. The fitness function, used in the proposed system, is as the following Equation (1):

Z= aX e_ﬁcmax (1)

Where oandpare random and optional parameters in the [0,1]interval. According to the proposed method, the
scheduling problem is represented as a matrix whose rows are the number of processors in the 10T, and whose
columns represent tasks assigned to processors (in line with the row number). The processing time of task j on
processor | is represented by P(i,j). The matrix elements are 0 or 1, indicating the task being or not being
assigned to the ith processor. If a jth task is fulfilled by an ith processor, the corresponding entry in the matrix
will then become x(i,j)=1; otherwise, the entry will be x(i,j)=0. Equation 2 below shows the time at which tasks
are completed by the processors based on the assigned scheduling.

: @
Cae = maxi () x(0,)) X P(0.))}
j=t

Where C,.x represents the maximum time that takes for the entire m processor to complete a scheduled task. The
goal is to minimize this value to be defined by the fitness function. Since C. is a maximum function, its
reverse in the objective function or its symmetry can be considered to minimize it. Thus, it is better to define it
in a strictly descending (strictly monotonic) function as in the objective function in Equation (1). Each
ascending or descending function is called monotonic, and each strictly ascending or strictly descending
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function is called strictly monotonic. If a function is strictly monotonic, it is certainly one-to-one and thus
invertible, though the opposite does not hold.

Simulations

In this simulation, the runtime of each of the input tasks on each of the processors in the 10T is given in Table 1.
This simulation assumes that there are 7 tasks in the 10T, and there are 3 processors available. Each of these
tasks will have different runtimes if they are assigned to each of the processors and are scheduled. For example,
consistent with the first row of the following table, if Task 1 is run on Processor 1, it requires 12 units of time,
and if run in Processor 2, it requires 11 units of time, while 9 units of time will be required for it to be run in
Processor 3.

Table 1. Runtimes of input tasks to the 10T in Simulation 1.

Task No. Processor 1 Processor 2 Processor 3
1 12 11 9

2 11 5 5

3 5 3 3

4 6 9 8

5 3 7 7

6 7 11 12

7 9 12 11

In this simulation, the number of iterations is 20 times, and the number of people in the population is 5.

This simulation specifies that Processor 1 runs Tasks 2 and 4, and the time to complete these two tasks is 17
units of time. Tasks 3, 5, and 6 have been scheduled on Processor 2 and the completion time equals 21 units;
meanwhile, Tasks 1 and 7 have been scheduled on Processor 3, with the completion time being 20 units of time.
Therefore, the completion time of all tasks based on the proposed method is 21 units. Also, the time to run the
implementation code is 0.78 s. The diagram of the fitness function of the best individual in each iteration of the
proposed algorithm is illustrated in Figure 2.
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Figure 2. Fitness function in Simulation 1.
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In this simulation, the number of iterations is 50 times, and the number of people in the population is 5.

This simulation specifies that Processor 1 runs Tasks 6 and 4, and the time to complete these two tasks is 13
units. Tasks 1 and 5 have been scheduled on Processor 2 and the completion time equals 18 units; meanwhile,
Tasks 2, 3, and 7 have been scheduled on Processor 3, with the completion time being 19 units of time.
Therefore, the completion time of all tasks based on the proposed method is 19 units. Also, the time to run the
implementation code is 0.936 s. The diagram of the fitness function of the best individual in each iteration of the
proposed algorithm is illustrated in Figure 3.
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Figure 3. Fitness function in Simulation 2.

In this simulation, the number of iterations is 20 times, and the number of people in the population is 10 to
examine the effects of increasing the number of people there.

This simulation specifies that Processor 1 runs Tasks 6, 4, and 3 and the time to complete these two tasks is 18
units. Tasks 1 and 5 have been scheduled on Processor 2 and the completion time equals 18 units; meanwhile,
Tasks 2 and 7 have been scheduled on Processor 3, with the completion time being 16 units of time. Therefore,
the completion time of all tasks based on the proposed method is 18 units. Also, the time to run the
implementation code is 0.874 s. The diagram of the fitness function of the best individual in each iteration of the
proposed algorithm is illustrated in Figure 4.
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Figure 4. Fitness function in Simulation 3.
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In this simulation, the number of iterations is 50 times, and the number of people in the population is 10.

This simulation specifies that Processor 1 runs Tasks 1 and 3 and the time to complete these two tasks is 21
units. Tasks 2, 3, and 5 have been scheduled on Processor 2 and the completion time equals 15 units;
meanwhile, Tasks 4 and 6 have been scheduled on Processor 3, with the completion time being 20 units of time.
Therefore, the completion time of all tasks based on the proposed method is 21 units. Also, the time to run the
implementation code is 2.918 s. The diagram of the fitness function of the best individual in each iteration of the
proposed algorithm is illustrated in Figure 5.
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Figure 5. Fitness function in Simulations 4.

In this simulation, the number of iterations is 20 times, and the number of people in the population is 20 to
examine the effects of increasing population.

This simulation specifies that Processor 1 runs Tasks 3, 4, and 6 and the time to complete these two tasks is 18
units. Tasks 2, and 7 have been scheduled on Processor 2 and the completion time equals 17 units; meanwhile,
Tasks 1 and 5 have been scheduled on Processor 3, with the completion time being 16 units of time. Therefore,
the completion time of all tasks based on the proposed method is 18 units. Also, the time to run the
implementation code is 1.841 s. The diagram of the fitness function of the best individual in each iteration of the
proposed algorithm is illustrated in Figure 6.
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Figure 6. Fitness function in Simulation 5.
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In another simulation, the proposed method is compared to the genetic algorithm method (under a standard
state). For this, the number of people in the population in both methods is 10, and the algorithms are iterated 20
times. The result of this simulation is given in Table 2.

Table 2. Comparison of the proposed method with the genetic algorithm (standard state).

Assigned tasks Task completion | Runtime
time
The proposed | Processor 1; Tasks [3, 4 and 6] Processor 2; | 18 0.874
method Tasks [1 and 5]

Processor 3; Tasks [2 and 7]

Genetic algorithm | Processor 1; Tasks [1, 7 & 6] Processor 2; | 36 0.816
Tasks [2 and 4]

Processor 3; Tasks [3 and 5]

In another simulation, the proposed method is compared to the genetic algorithm (under the standard state)
based on different numbers of people in the population, and the completion time of the tasks for different
numbers of the population is computed. For this, the number of iterated runs of the proposed method is 20 times,
and the numbers of populations are 10, 20, 30, 40, and 50 individuals. The result of this simulation is given in
Figure 7.
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Figure 7. Task completion time for the number of different populations in the proposed method and the
genetic method.

In Figure 7, the horizontal axis shows the number of different people in various runs of the proposed methods,
and the vertical axis shows the time at which all tasks in the proposed and genetic methods are completed. With
the rising number of populations, the time to complete the tasks decreases from 20 to 16 units in the proposed
method, while it decreases from 40 to 24 units in the genetic algorithm method. Table 3 below gives a better
investigation of the numbers of this diagram.
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Table 3. Task completion time determined by the proposed method for the number of different
populations in comparison to the genetic method.

Number of populations Proposed method Genetic method
10 20 40
20 17 32
30 18 28
40 16 27
50 16 24

In another simulation, the number of populations was fixed and amounted to 40 people, with the proposed
method run for the number of various iterations to examine the effects of the number of iterated algorithms on
the responsiveness of the proposed method. The proposed method was separately run for 10, 20, 30, 40, and 50
iterations. Also, in this simulation, the genetic algorithm-based method was run and compared to the proposed
method. The result of this simulation is illustrated in Figure 8.
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Figure 8. Task completion time determined by the proposed method for various iterations compared to
the genetic method.

In Figure 8, the horizontal axis illustrates various iterations in the various runs of the proposed and genetic
algorithm methods, with both methods separately running for 10, 20, 30, 40, and 50 iterations. Also, the
completion time of the tasks for each run is specified by the vertical axis. The values of this diagram are given
in Table 4.

Table 4. Task completion time determined by the proposed method for the number of different iterations
in comparison to the genetic method.

Number of iterations Proposed method Genetic method
10 18 33
20 17 27
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30 16 23
40 17 22
50 16 24
Conclusion

Cloud computing is used to increase computer systems’ efficiency. To improve the efficiency of using available
resources, scheduling algorithms require resource separation. Since the need for cloud 10T resources is not
known at first, and also due to the variable of the needs and requirements, the utilization of using those
resources decreases sharply. Using meta-heuristic algorithms such as the Genetic and Imperialist Competitive
algorithms cause this scheduling to occur in less time and be assigned to objects at low delays, which would
result in existing machines in the 10T devices consuming less energy.

This study proposed a method combining two genetic and imperialist competitive algorithms in which genetic
operators are used in the repetition steps of the imperialist competitive algorithm. This combination can help
perform resource scheduling with greater accuracy and speed in a cloud computing platform. The goal behind
scheduling tasks and resources in the 10T in a cloud computing platform are to provide optimal scheduling for
users and simultaneously provide an operational capacity for the cloud system and the QOS. Specific goals of
scheduling include load balance, service quality, economic principles, the best runtime, and the system’s
operational capacity.

To this aim, the proposed method used the policy of absorption in the imperialist competitive algorithm to
generate new answers in the genetic algorithm. Findings suggested that meta-heuristic algorithms could greatly
help solve the scheduling problem of cloud resources. The proposed method can help assign tasks to processors
in the 10T in a way that no processors is left without use. The proposed method helps increase the efficiency of
cloud resources and reduce the answer time to users’ demands.

The results of this proposed model are suggested to be examined on various types of clouds.
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