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Abstract:-The Internet of Things (IoT) is an emerging concept in the world of Information Technologies and 

Communications. Using the IoT in the cloud computing platform is also feasible. Appropriate use of resources 

such as processors is one of the challenges of the IoT in the cloud computing platform. Hence, task scheduling 

and IoT resources are key issues. The IoT resource scheduling is the same as the selection of an appropriate 

resource to equally distribute loads in processors and maximize the efficiency of resources. This study proposes 

a method by which the Imperialist Competitive and Genetic algorithms are combined to resolve this problem. 

For this, several simulations are performed on the proposed method. Simulation results indicate that the 

proposed method can solve this scheduling problem at an appropriate time and computational load, which could 

reduce energy consumption and increase the efficiency of IoT resources in a cloud computing platform. 
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Introduction 

Cloud computing is a computational model founded on computer networks such as the Internet and provides a 

new pattern to provide, consume, and deliver computing services via using networks. These services include 

infrastructure, software, platform, and other computing resources. Cloud computing is composed of computing 

and cloud. By cloud, it is meant a network or a network of broad networks such as the Internet in which the user 

is not fully aware of what occurs there.  

The working flow of cloud data centers is heterogenous due to customers of various goals and uses; thus, in a 

complex system of this kind, complicated scalable scheduling to cover customer needs should be expected 

(Zhang et al., 2015). Since the problem under consideration falls under NP-Hard problems, cloud service 

providers cannot provide an online decision to solve the task scheduling problem in traditional ways and at an 

acceptable decision time. Thus, modern heuristic methods should be utilized. There are various solutions for 

solving scheduling problems (Chen et al., 2012 & Zhang et al., 2015). Zhang et al. (2015) presented a scalable 

method for problem-solving. Although scalable, this method requires a sorting process to increase the time 

complexity of assigning tasks to physical machines.  

In a study, Birkhoff (1946) used the heuristic BvN method to assign scheduling policies. To use such methods, 

it is required to understand the distribution of input processes. A scheduler should be able to maintain queue 

stability by maximizing the waiting time for any scheduling in a BvN decomposition matrix. A problem of this 

kind can be highly voluminous and increase time complexity. Also, many scheduling problems have been 

provided to increase gains for cloud service providers or to improve social network performance.  

Conley et al. (2015) studied the properties of the working flow of public clouds. Walker (2008) compared 

Amazons’ EC2 and several high-performance computing (HPC) cluster systems, while Mehrotra et al. (2012) 

https://kalamejou.com/words/quhy/understand
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did a similar comparison between Amazon’s EC2 and NASA’s high-performance computing clustering system, 

and found that public clouds could not yield the necessary efficiency like the HPC.  

In an article, Wang et al. (2010) used various benchmarks to conclude that virtual EC2 machines produced less 

resource efficiency while making many changes compared to specifically scientific computational clouds.  

Schad et al. (2010) concluded that the heterogenous hardware of physical machines was the main factor in 

increasing efficiency variability. Meanwhile, Wang et al. (2014) did a study on measuring resource consumption 

patterns in EC2 and Azure to provide a daily consumption pattern. 

Also, Koomey (2011) demonstrated that a processing time could not be a satisfactory criterion to exactly 

evaluate the power consumption of virtual machines and some intra-processor events affected the power 

consumption of processors more than others. According to some different tests, a model was proposed to 

evaluate the energy consumption that computed the energy consumed by a virtual machine by monitoring 

processors’ efficiency counters.  

Pietri et al. (2013) found that the Energy-Aware SLA Contract is a protocol between a cloud provider and 

service customers that reflects an agreed-upon domain for a cloud provider and data centers to be used in an 

energy-aware method and simultaneously guarantee a level of service quality for ICT customers. Today, several 

organizations and even people are increasingly using cloud resources.  

Lordan et al. (2014) stated that scheduling resources under large-scale clouds and grids is difficult by the peer-

to-peer simulations of cloud resources scheduling given the size, dynamicity, and variations of the resources. 

Researchers have proposed a wide range of policies and methods to map the loads presented on proposed 

resources. However, the current production grids are largely underperformed and do not show an effective 

environmental load. A simulation environment is useful for studying various methods, especially those that are 

expected but do not characterize the available clouds and grids. This environment is a simulator that comprises a 

kernel model and some mechanisms for the resources scheduling problem of a grid and describes an adaptive 

solution model to determine upper-performance bounds. This environment also provides a general perspective 

of how to use a simulator to study the performance of a grid’s resource scheduling methods for various 

resources and load profiles under large-scale and dynamic environments.  

Lucanin et al. (2015) investigated various scheduling algorithms in a cloud computing environment, concluding 

that cloud computing served as a provider of mobile services by using large scalable and virtual resources on the 

Internet.  

A resource scheduling problem falls under a set of NP-Hard problems, which include several thousand various 

problems of various applications for which quick and feasible solutions at reasonable times have not been found. 

As stated, no quick solution has ever been found for them. However, it is less likely to find such algorithms. By 

a quick solution, it is one whose runtime is polynomially related to the input size of a problem.  

The Imperialist Competitive Algorithm (ICA) is a method in the evolutionary computation domains that seeks 

to find an optimal answer to various optimization problems. The basic components of this algorithm consist of 

assimilation policies, imperialist competition, and revolution. This algorithm imitates the evolutionary social, 

economic, and political trends in different countries and mathematically models some parts of this process to 

provide operators in regular algorithmic forms, which can help solve complicated problems. In essence, this 

algorithm looks into answers to optimization problems in the form of countries and tries to gradually improve 

these answers in an iterative process and to finally get an optimized answer for the problems.  

The Genetic Algorithm is a special kind of evolutionary algorithm that makes use of evolutionary biological 

techniques such as inheritance and mutation. The Genetic Algorithm (GA) is a programming technique that 

makes use of genetic evolution as a problem-solving pattern; a problem to be solved involves inputs that 

transform into solutions through a process model of the genetic evolution; the solutions are then assessed as 

candidates by an assessor function, an if the condition for the problem exists is met, the algorithm terminates. 

https://eshraghtrans.com/.post/article-translation
https://eshraghtrans.com/.post/translation-of-academic-texts
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The genetic algorithm is generally a repetition-based algorithm, most parts of which are selected in random 

processes.  

The main goal of using cloud computing is to increase the efficiency of computing systems. To improve the 

efficiency of using available resources, scheduling algorithms require separating resources. Since the need for 

cloud IoT resources is not known at first, and also due to the variability of the needs and requirements, the 

utilization of those resources decreases sharply. Using meta-heuristic algorithms such as the Genetic and 

Imperialist Competitive algorithms causes this scheduling to occur in less time and be assigned to objects at low 

delays, which would result in existing machines in the IoT devices consuming less energy. This study proposed 

a method combining two genetic and imperialist competitive algorithms in which genetic operators are used in 

the repetition steps of the imperialist competitive algorithm. This combination can help perform resource 

scheduling with greater accuracy and speed in a cloud computing platform.  

The Proposed Method  

The proposed method uses a combination of genetic and imperialist competitive algorithms for a resource 

scheduling problem on the Internet of Things. To this aim, the proposed method uses the policy of absorption in 

the imperialist competition to generate new answers in the genetic algorithm. The algorithm of the proposed 

method is as follows:  

1. Determining the chromosomal structure and scoring function (fitness) 

2. Generating initial solutions and creating an initial-generation population  

3. Computing the fitness of each member of a generation population  

4. If the termination condition is met, the best individual is selected as the final answer and introduction to 

stage 8. 

5. Generating new offspring using the policy of absorption of the Imperialist Competitive Algorithm (the 

movement of colonies to the empire) 

6. Combining offspring generated by the previous population and generating a middle population  

7. Selecting the best people based on the size of the population of each generation as the next generation and 

introduction to stage 3. 

8. End 

Figure 1 illustrates the flowchart of the proposed method. At first, answers are generated in the [0,1] interval 

using a random distribution of numbers, and then, the fitness function is used to obtain the value of each answer 

(individual). Later, the algorithm’s termination condition must be examined to see if the condition is met or not. 

If yes, the proposed algorithm stops; otherwise, new offspring, which are the same new answers, should be 

generated. For this, the policy of absorption defined in the imperialist competitive algorithm is used. The new 

offspring are generated in a way to move toward the best individual in each generation, and to use the best 

characteristics of that individual. Then, the new offspring are combined with the previous population and give 

rise to the middle generation. The people in the middle generation must be sorted based on their fitness. Since 

the number of people in each generation must be fixed in each iteration of the algorithm, out of the people in the 

middle generation, selection must be made based on the number of people determined in each generation, with 

subsequent transfer to the next generation. This operation iterates until the termination condition is met. 
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Figure 1. The flowchart of the proposed method. 

In the proposed method, there are n independent tasks as resources and m processors, with each task having a 

certain processing time and being allowed to run on each processor for processing. All processors have the same 

speed. If 𝐶𝑚𝑎𝑥  is assumed to be the completion time of the last task left by a system, this time must be assigned 

the least value possible. The fitness function, used in the proposed system, is as the following Equation (1): 

(1) 𝑧 =  𝛼 × 𝑒−𝛽𝐶𝑚𝑎𝑥  

Where αandβare random and optional parameters in the [0,1]interval. According to the proposed method, the 

scheduling problem is represented as a matrix whose rows are the number of processors in the IoT, and whose 

columns represent tasks assigned to processors (in line with the row number). The processing time of task j on 

processor I is represented by P(i,j). The matrix elements are 0 or 1, indicating the task being or not being 

assigned to the ith processor. If a jth task is fulfilled by an ith processor, the corresponding entry in the matrix 

will then become x(i,j)=1; otherwise, the entry will be x(i,j)=0. Equation 2 below shows the time at which tasks 

are completed by the processors based on the assigned scheduling.  

(2) 

 
𝐶𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑖=1

𝑚 { 𝑥(𝑖, 𝑗) × 𝑃(𝑖, 𝑗)

𝑛

𝑗=1

} 

Where Cmax represents the maximum time that takes for the entire m processor to complete a scheduled task. The 

goal is to minimize this value to be defined by the fitness function. Since Cmax is a maximum function, its 

reverse in the objective function or its symmetry can be considered to minimize it. Thus, it is better to define it 

in a strictly descending (strictly monotonic) function as in the objective function in Equation (1). Each 

ascending or descending function is called monotonic, and each strictly ascending or strictly descending 

https://kalamejou.com/words/u2og/dependent
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function is called strictly monotonic. If a function is strictly monotonic, it is certainly one-to-one and thus 

invertible, though the opposite does not hold.  

Simulations  

In this simulation, the runtime of each of the input tasks on each of the processors in the IoT is given in Table 1. 

This simulation assumes that there are 7 tasks in the IoT, and there are 3 processors available. Each of these 

tasks will have different runtimes if they are assigned to each of the processors and are scheduled.  For example, 

consistent with the first row of the following table, if Task 1 is run on Processor 1, it requires 12 units of time, 

and if run in Processor 2, it requires 11 units of time, while 9 units of time will be required for it to be run in 

Processor 3.  

Table 1. Runtimes of input tasks to the IoT in Simulation 1. 

Task No.  Processor 1  Processor 2  Processor 3 

1 12 11 9 

2 11 5 5 

3 5 3 3 

4 6 9 8 

5 3 7 7 

6 7 11 12 

7 9 12 11 

 

 

In this simulation, the number of iterations is 20 times, and the number of people in the population is 5.  

This simulation specifies that Processor 1 runs Tasks 2 and 4, and the time to complete these two tasks is 17 

units of time. Tasks 3, 5, and 6 have been scheduled on Processor 2 and the completion time equals 21 units; 

meanwhile, Tasks 1 and 7 have been scheduled on Processor 3, with the completion time being 20 units of time. 

Therefore, the completion time of all tasks based on the proposed method is 21 units. Also, the time to run the 

implementation code is 0.78 s. The diagram of the fitness function of the best individual in each iteration of the 

proposed algorithm is illustrated in Figure 2.   

Figure 2. Fitness function in Simulation 1. 
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In this simulation, the number of iterations is 50 times, and the number of people in the population is 5.  

This simulation specifies that Processor 1 runs Tasks 6 and 4, and the time to complete these two tasks is 13 

units. Tasks 1 and 5 have been scheduled on Processor 2 and the completion time equals 18 units; meanwhile, 

Tasks 2, 3, and 7 have been scheduled on Processor 3, with the completion time being 19 units of time. 

Therefore, the completion time of all tasks based on the proposed method is 19 units. Also, the time to run the 

implementation code is 0.936 s. The diagram of the fitness function of the best individual in each iteration of the 

proposed algorithm is illustrated in Figure 3.   

Figure 3. Fitness function in Simulation 2. 

 

In this simulation, the number of iterations is 20 times, and the number of people in the population is 10 to 

examine the effects of increasing the number of people there.  

This simulation specifies that Processor 1 runs Tasks 6, 4, and 3 and the time to complete these two tasks is 18 

units. Tasks 1 and 5 have been scheduled on Processor 2 and the completion time equals 18 units; meanwhile, 

Tasks 2 and 7 have been scheduled on Processor 3, with the completion time being 16 units of time. Therefore, 

the completion time of all tasks based on the proposed method is 18 units. Also, the time to run the 

implementation code is 0.874 s. The diagram of the fitness function of the best individual in each iteration of the 

proposed algorithm is illustrated in Figure 4.   

 

Figure 4. Fitness function in Simulation 3. 
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In this simulation, the number of iterations is 50 times, and the number of people in the population is 10.  

This simulation specifies that Processor 1 runs Tasks 1 and 3 and the time to complete these two tasks is 21 

units. Tasks 2, 3, and 5 have been scheduled on Processor 2 and the completion time equals 15 units; 

meanwhile, Tasks 4 and 6 have been scheduled on Processor 3, with the completion time being 20 units of time. 

Therefore, the completion time of all tasks based on the proposed method is 21 units. Also, the time to run the 

implementation code is 2.918 s. The diagram of the fitness function of the best individual in each iteration of the 

proposed algorithm is illustrated in Figure 5.   

 

Figure 5. Fitness function in Simulations 4. 

In this simulation, the number of iterations is 20 times, and the number of people in the population is 20 to 

examine the effects of increasing population.   

This simulation specifies that Processor 1 runs Tasks 3, 4, and 6 and the time to complete these two tasks is 18 

units. Tasks 2, and 7 have been scheduled on Processor 2 and the completion time equals 17 units; meanwhile, 

Tasks 1 and 5 have been scheduled on Processor 3, with the completion time being 16 units of time. Therefore, 

the completion time of all tasks based on the proposed method is 18 units. Also, the time to run the 

implementation code is 1.841 s. The diagram of the fitness function of the best individual in each iteration of the 

proposed algorithm is illustrated in Figure 6.   

Figure 6. Fitness function in Simulation 5. 
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In another simulation, the proposed method is compared to the genetic algorithm method (under a standard 

state). For this, the number of people in the population in both methods is 10, and the algorithms are iterated 20 

times. The result of this simulation is given in Table 2.  

Table 2. Comparison of the proposed method with the genetic algorithm (standard state). 

 Assigned tasks  Task completion 

time  

Runtime  

The proposed 

method  

Processor 1; Tasks [3, 4 and 6] Processor 2; 

Tasks [1 and 5] 

Processor 3; Tasks [2 and 7] 

18 0.874 

Genetic algorithm  Processor 1; Tasks [1, 7 & 6] Processor 2; 

Tasks [2 and 4] 

Processor 3; Tasks [3 and 5] 

36 0.816 

 

In another simulation, the proposed method is compared to the genetic algorithm (under the standard state) 

based on different numbers of people in the population, and the completion time of the tasks for different 

numbers of the population is computed. For this, the number of iterated runs of the proposed method is 20 times, 

and the numbers of populations are 10, 20, 30, 40, and 50 individuals. The result of this simulation is given in 

Figure 7.  

Figure 7. Task completion time for the number of different populations in the proposed method and the 

genetic method. 

In Figure 7, the horizontal axis shows the number of different people in various runs of the proposed methods, 

and the vertical axis shows the time at which all tasks in the proposed and genetic methods are completed. With 

the rising number of populations, the time to complete the tasks decreases from 20 to 16 units in the proposed 

method, while it decreases from 40 to 24 units in the genetic algorithm method. Table 3 below gives a better 

investigation of the numbers of this diagram.   



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 3 (2023) 

__________________________________________________________________________________ 

2157 

Table 3. Task completion time determined by the proposed method for the number of different 

populations in comparison to the genetic method. 

Number of populations  Proposed method  Genetic method 

10 20 40 

20 17 32 

30 18 28 

40 16 27 

50 16 24 

 

In another simulation, the number of populations was fixed and amounted to 40 people, with the proposed 

method run for the number of various iterations to examine the effects of the number of iterated algorithms on 

the responsiveness of the proposed method. The proposed method was separately run for 10, 20, 30, 40, and 50 

iterations. Also, in this simulation, the genetic algorithm-based method was run and compared to the proposed 

method. The result of this simulation is illustrated in Figure 8.  

 

Figure 8. Task completion time determined by the proposed method for various iterations compared to 

the genetic method. 

In Figure 8, the horizontal axis illustrates various iterations in the various runs of the proposed and genetic 

algorithm methods, with both methods separately running for 10, 20, 30, 40, and 50 iterations. Also, the 

completion time of the tasks for each run is specified by the vertical axis. The values of this diagram are given 

in Table 4.  

Table 4. Task completion time determined by the proposed method for the number of different iterations 

in comparison to the genetic method. 

Number of iterations  Proposed method  Genetic method  

10 18 33 

20 17 27 
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30 16 23 

40 17 22 

50 16 24 

 

Conclusion  

Cloud computing is used to increase computer systems’ efficiency. To improve the efficiency of using available 

resources, scheduling algorithms require resource separation. Since the need for cloud IoT resources is not 

known at first, and also due to the variable of the needs and requirements, the utilization of using those 

resources decreases sharply. Using meta-heuristic algorithms such as the Genetic and Imperialist Competitive 

algorithms cause this scheduling to occur in less time and be assigned to objects at low delays, which would 

result in existing machines in the IoT devices consuming less energy. 

This study proposed a method combining two genetic and imperialist competitive algorithms in which genetic 

operators are used in the repetition steps of the imperialist competitive algorithm. This combination can help 

perform resource scheduling with greater accuracy and speed in a cloud computing platform. The goal behind 

scheduling tasks and resources in the IoT in a cloud computing platform are to provide optimal scheduling for 

users and simultaneously provide an operational capacity for the cloud system and the QOS. Specific goals of 

scheduling include load balance, service quality, economic principles, the best runtime, and the system’s 

operational capacity.  

To this aim, the proposed method used the policy of absorption in the imperialist competitive algorithm to 

generate new answers in the genetic algorithm. Findings suggested that meta-heuristic algorithms could greatly 

help solve the scheduling problem of cloud resources. The proposed method can help assign tasks to processors 

in the IoT in a way that no processors is left without use. The proposed method helps increase the efficiency of 

cloud resources and reduce the answer time to users’ demands.  

The results of this proposed model are suggested to be examined on various types of clouds.  
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