Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

Prioritizing Test Cases Using Supervised
Machine Learning Techniques Based on
Requirement Correlation and Fault Severity

Tapas Kumar Choudhury?!, Subhendu Kumar Pani?, Jibitesh Mishra?,

Jyotirmayee Rautaray*
1.2 Bjju Patnaik University of Technology, Rourkela, Odisha, India
3.4 0disha University of Technology and Research, Bhubaneswar, Odisha, India

Abstract:- Test case prioritisation plays a vital role in regression testing as test case prioritisation provides
significant outcomes for producing effective in regression and other testing test cases methodologies. Many
factors can be used to prioritise taste cases. Prior researchers created approaches for prioritising test cases based
on requirements. But they used rigid algorithms for computation, which suggests that the outcomes are imprecise
and rigid. Here, a model is developed for test case prioritisation using requirement correlation and fault severity.
This study was conducted using an experimental research methodology which accepts 1000 test cases that have
been classified as positive and negative by specialists for the experiment. Natural Language Processing (NLP)
principles were employed during the pre-processing of the datasets, which used as input to the proposed model.
Following pre-processing, the Term Frequency-Inverse Document Frequency (TF-IDF) approach is used to
vectorize the textual data format. The machine learning algorithms Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), Naive Bayes (NB), and Decision Tree (DT) were used to generate the model. Each trial's
accuracy results ranged from 74% to 94%, which enabled us to find and select a model that performed well in our
experiment. SVM based on requirement correlation and fault severity did well for prioritizing test cases. KNN is
the sole useful technique for determining how significant a fault is. This outcome is due to the fact that SVM
outperforms KNN for a large number of features while KNN outperforms SVM for a smaller number of features.

Keywords: NLP, software testing, Test Case Prioritization, Machine learning.

1. Introduction

Making the best and most prioritized test cases you can is essential to expediting the software testing process as a
whole [10]. Software businesses created Test Case Prioritization (TCP) strategies in an attempt to lower testing
expenses without sacrificing product quality. Regression testing is an ongoing process that is part of software
maintenance and is done in conjunction with software product review.. The phrase "testing phase™ here refers to
the initial regression testing, subsequent regression testing, and so forth, as well as the modifications that are
concentrated on the regression testing. Instead of using source code information, which can occasionally make it
difficult for testers to uncover flaws in software products, the quality of the requirements can be utilised to find
error-prone test cases for the essential criteria. In the end, software testing determines whether the system complies
with the requirements [4]. Considering this, increasing test efficiency and customer satisfaction may be achieved
by linking test cases to requirement attributes. Test suites are frequently saved by software engineers so they can
utilise them again during regression testing. Due to time and resource constraints, it might not be possible to finish
all of the test cases during each iterative testing cycle [11,12]. Because of this, testers might wish to organize the
test cases in a way that prioritizes particular criteria and runs the higher-priority instances before the lower-priority
ones. Methods for ranking test cases for regression testing have been created as a consequence of this research.
Leveraging requirement qualities is the foundation of these strategies. This study project's performance is
evaluated using f1-score indications, recall, accuracy, and precision. Most of the times, individual requirements
are interdependent rather than independent. One criterion may be dependent on another, such as in the case of the

3638

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

inclusion relation. The functional requirements of the modules typically involve a number of sub-functional
requirements. When all of the minor requirements have been tested and found to pass, a functional requirement is
considered to pass the test [4, 11].

TCP techniques set up and carry out a test suite which contains test cases to achieve their prioritizing goals [4].
To increase software testing's efficiency, TCP is made to adapt test instances according on predetermined criteria.
Different test cases have varying levels of fault detection and requirement coverage. It improves the fault detection
rate or requirement coverage rate by giving test cases with a high capacity to identify faults a higher priority. The
effect that a flaw has on either the creation or operation of any programme determines how serious the flaw is. It
is the extent to which a flaw affects the application. Consequently, determining fault severity is crucial for the
next regression testing. The development of a test case prioritising method that took into consideration
requirement correlations and fault severity was the main objective of this research project.

In order to determine how requirements are interdependent, the main goal of this work is to develop a method that
ranks test cases according to correlations between requirements and fault severity. To prepare raw datasets, train
the model, and assess whether the model's performance is satisfactory. To classify the defect severity by reviewing
various literatures [1]. In this paper the label data is taken to employ supervised machine learning technique. The
attributes for the study are each test case's dependence value, fault severity, number of faults, fault number, and
requirement coverage. The dataset consists of two categories: positive test cases and negative test cases. Positive
test cases indicate the presence of defects and are considered highly significant, while negative test cases are test
cases with fewer faults found and are of lesser value. Experts fill up the label for each test case according to its
significance. By consulting several literatures on fault severity. The dataset is preprocessedusing Natural
Language Toolkit (NLTK) NLP techniques, then, a vectorization method known as TF-IDF is applied for feature
extraction. Four machine learning classification algorithms are then trained, and after classification is completed,
the classification model is ranked to produce an ordered set of test instances.

2. Related Works

In this section, Credit is given to earlier work on machine learning-based prioritization techniques and test case
prioritization. Current methods differ from ours in terms of both the fundamental ideas and the artefacts used (i.e.,
either merely using a portion of our technique or using different data). Unlike our innovative approach, no other
methods can evaluate or leverage requirement correlation in test case prioritization using machine learning. The
relevant work is presented in accordance with the artifacts used in the following.

Xiaofang Zhang et al. [11] proposed prioritizing test cases based on various testing requirements, priorities, and
test case costs. They factored in the requirement's unpredictability, fault-proneness, and customer-assigned
priority, among other considerations. They developed a metric to quantify the proportion of "priority-met units of
testing requirement per unit test case cost.”" Their focus was on different methods for ranking test cases according
to their costs and testing specifications.

R. Krishnamoorthi et al. [13] suggested prioritising new and regression test cases for systems based on demand
analysis. They used six requirements’ factors—implementation difficulty, requirement changes, priority of
customers, application flow, usability, and impact of faults —to prioritise the system test cases. Their prioritisation
method increased the rate of severe fault identification and has been validated with numerous student and
industrial projects. In comparison to [11], it adds more variables to the test case prioritising process.

According to needs and risk criteria, Praveen Ranjan Srivastva and his colleagues [14] suggested prioritising test
cases. They investigated two prioritising criteria as part of their research. The first is the order in which customers,
developers, and managers have ranked their requirements. The degree and importance of risk variables that are
included in the requirements make up the second factor. They determined the total value after determining the
value for each need based on the two considerations. Test cases connected to a need with a higher total factor
value should be prioritised, according to the analysis.

There is still a potential that the priority test case will not be successful even though they were taken into
consideration as a requirement risk element. In [15], Rayapureddy Kalyani recommended ranking test cases

3639

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

according to requirement clustering. Prior to assigning priorities, they combined the requirements for the study
and used clustering as a machine learning technique. Map the requirements to test cases after grouping them. It is
simple to prioritise the test cases because they were mapped to the requirements once the test cases had been
chosen. Prioritizing test cases for object-oriented applications by using a clustering strategy was advised by
Dharmveer Kumar Yadav [16]. By using a k means clustering technique to a test scenario, they conducted
research. A cluster of information about test case coverage may be created. For tests that look for errors, one
cluster can be built. They simply arranged the test cases in a cluster using an intra-cluster prioritization technique
such that the most important test case could be chosen first from the cluster.

Omdev Dahiya [32] introduced the effective Ant Colony and Particle Swarm Optimization Hybrid Technique
(APHT) to rank test cases based on the importance of requirements.The proposed method considered four
variables: the perceived difficulty of the code implementation by the developer, the importance of the
requirements as provided by the customer, the impact of faults, and changes in the requirements. After computing
each value, the required factor value (RFV) was calculated by summing the four factor values and then dividing
the total by four. A requirement with a higher RFV indicates greater complexity and a higher likelihood of
containing errors.

In 2015, Yiting Wang and his colleagues [33] proposed an effective strategy for prioritizing test cases based on
the severity of faults. Their approach involves identifying the root cause of each error and assessing its impact on
software functionality. The flaws are then categorized into four groups: fatal, serious, general, and minor. Test
cases involving fatal flaws are given the highest priority.

In our survey, Khatib Syarbini et al. [34] demonstrate that the number of publications on test case prioritisation
has continued to expand in recent years. However, code analysis for priority computation remains the primary
emphasis of most test case prioritisation techniques. Tonella and his colleagues [35] developed a case-based
ranking mechanism for test case prioritization, utilizing attributes such as statement coverage and code
complexity. However, the code was not accessible. Learning for prioritising was suggested by Busjaeger and Xie
et al. [36], This method also uses test age, test-failure history, code coverage, failure history, and failure history
to train the model. Therefore, whitebox testing could make advantage of this model.

As noted above, numerous academics presented cost-based, requirement-based, and coverage-based test case
prioritization approaches in relation to various artifacts. Most of the offered methods are computed utilising hard
computing algorithms. Consequently, those methods have challenges with precision. White-box testing has
already benefited from the application of machine learning. Catal has surveyed a variety of defect prediction
methods that can be used after code analysis [37]. A white-box technique, on the other hand, necessitates code
access, for example, to examine updated code fragments for their test relevance. Due of the absence of code
access. Numerous studies have also suggested prioritising black-box regression test cases according to various
criteria, including the quantity of requirements, the severity of defects, the length of the execution, etc. Whenever
a study suggested TCP, the traceability between artefacts— employing machine learning approaches, for example,
the relationship between test failures and test cases and the reliance between requirements —was not taken into
consideration. The machine learning-based TCP technique that is being offered is unique in that it considers
correlations between the requirements, the traceability of errors in terms of their severity, and test cases.

3. Proposed Model

A test management system stores data for test case prioritization. Each test case in hypotheses is associated with
at least one requirement, such as the functionality of a specific feature. Failures detected by a test case should be
linked similarly. According to our method, a test expert must select an initial set for the ML computation. The
expert to select several "positive test cases,” or test cases that are highly significant, frequently used, or significant
for another reason for the current iteration being tested. The expert provides a set of unsuccessful test cases as an
add-on to this step (Fig. 1). As the specific utility has not altered for some varieties or is typically safe, for example,
these are of little consequence.

3640

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

The methodologies prioritized test cases based on requirement correlation and fault severity. Features for each
test case are identified using the completed requirement correlation matrix, which serves as input for the learning
algorithms. To do this, several tasks were carried out, including data pre-processing, Feature selection, numerical
vectorization of data and assessing the model utilising various machine learning classification techniques.

Positive Testcases

Stop word removal

Input

Data Preprocessing
Testcases

Negative

Testcases
Feature Selection
Model Building Train-Test Split
Numerical Vectorization data I
Train Dataset Test Dataset

TC Classification
result

Trained Model

A 4

Set of untrained 1...n Trained Set of Ranked
Testcases Testcases Testcases

Figure 1: Proposed framework for Test Case Prioritization

Several preprocessing techniques include converting text to lowercase, breaking it into tokens, removing
punctuation and stop words, applying stemming and lemmatization. In this study, the feature selection technique
employed is Term Frequency-Inverse Document Frequency (TF-IDF). Following preprocessing, the cleaned data
undergoes feature selection, where text representation is transformed into numerical format using TF-IDF. Once
features are selected, creating a model to classify test cases becomes straightforward. Evaluation of the model
aligns with the algorithm utilized for model generation. The primary goal of this study is to prioritize test cases.

4. Methods

To achieve the specific objectives, experimental research is adopted to investigate the causal link between one or
more independent factors and the dependent variables. The requirement correlations and fault severity are the two
independent variables because our research selected the test cases according to these two factors. When
aresearcher wants to identify relationships between variables that indicate cause and effect, they should do
experimental study. Nevertheless, causal inference in experimental studies faces notable constraints, and the
specific experimental design employed greatly influences the interpretations feasible regarding trial results [38].

The objectives were achieved by several continuous tasks. In the context of textual data processing, establishing
the environment and development setup, preparing the dataset, performing dataset preprocessing, and converting
the preprocessed data into a numerical or vector space format are essential steps to ensure the data is interpretable
by the model.To produce ordered test cases, the data is collected using machine learning methods and sent them
to a ranked classification model.

4.1 Data Collection

One of the key duties in a variety of research projects is the collection and preparation of data. The first stage of
doing the experiment is to gather the relevant information from different sources. Supervised machine learning

3641

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

methods is used to prioritise a test case, to arrange and categorise the data since the model chooses test cases
determined by the correlation of requirements and the severity of faults., the number of requirements with exposed
defects is obtained from the organization. To make it straightforward to determine the relationship between
criteria, the research data was gathered from an E-College system, a single subject system
(http://ir.bdu.edu.et/handle/123456789/14444). This system was chosen because it included a variety of different
subsystems, including a student information system, a system for tracking income and expenses, a system for
managing libraries and inventories, a system for managing human resources, a system for managing exams, and
a system for tracking attendance. The E-College system contained fifty-four (54) errors and one hundred seventy-
four (174) prerequisites. The system testers compile the discovered flaws, with 174 requirements and 1000 test
cases.

4.2 Data Analysis

In order to achieve the desired outcome, it's essential to analyze the acquired data. A team of specialists discussed
and completed the interdependencies among the requirements. Utilize a correlation matrix to identify the
connections between these requirements. A training set needs to be chosen by a testing expert for the machine
learning algorithm. These experts will select a set of test cases that are notable, commonly used, or pertinent for
another purpose in the current version under testing [4]. To aid this process, the experts provided a range of
unsuccessful test scenarios. While their relevance may be limited, it's left to the tester to determine the importance
of specific test cases, particularly in cases where a feature hasn't significantly changed across multiple versions or
the risk is low. Test cases are developed to assess each functional requirement.

From the correlation matrix, the features for each test instance are extrapolated, which then fed into the
classification algorithms. The test case description, how many parents have high severe faults (NPWHSF), how
many parents have medium severe faults (NPWMSF), how many parents have less severe faults (NPWLSF), how
many siblings have high severe faults (NSWHSF), how many siblings have medium severe faults (NSWMSF),
how many children have high severe faults (NCWHSF), and how many children have medium severe faults
(NSWLSF) Based on the provided dependence. There could be numerous test cases for a single criterion. The
percentage of requirements that correlate to test cases is known as "requirement coverage" (RC). How many
problems are discovered or not discovered in the test cases is referred to as "fault coverage” (FC). The average
severity rating of the defects identified in the test case is determined by the fault priority (FP) feature. By analysing
several literatures,a consistent numerical value for each fault's severityis determined. Assign six (6) when a high
severity flaw must be rectified in full before publication, four (4) when a medium severity flaw must be of typical
relevance, and two (2) when a less severe flaw must be cosmetic [39, 33]. For instance, a test case might contain
two faults of high severity, one fault of medium severity, and zero faults of lower severity. Fault priority (FP) =
((2*6) + (1*4) + (0*2))/3, which is 5.333.

A labelled dataset is necessary for the supervised machine learning algorithm to train. The experts filled in the
label for each test case as positive or negative depending on their significance. The results of prioritising are
significantly influenced by the quality of the training data. When choosing training data, certain points of view
should be taken into consideration [40]. Each test case should, in theory, be related to at least one need, such as
the operation of a certain feature. A test case should be used to identify any flaws, and those flaws should then be
connected appropriately. Since our research is experimental, the experiment needs reliable data for training and
testing our findings. Nevertheless, the classifier cannot acquire raw data on its own, it needs to be pre-processed.
The pre-processing jobs are ones that get the classifier ready. NLP techniques are used like lower case,
tokenization, stemming, lemmatization, etc. to lessen repetition and ambiguity between words.

Machine learning algorithms are chosen after preprocessed data. Support vector machines, K Nearest- Neighbor
(KNN), Nave Bayes (NB), and decision trees. Since these four machine learning methods are the most widely
used classifiers and perform well with minimal datasets. As a result, the learning outcome is fed into a ranked
classification model to produce test cases that are either ordered or prioritised according to their priority value.
The setting up of sample datasets is shown in the table 1. Where P stands for Positive and N for Negative in the
label.

3642

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

Table 1: Sample datasets

NP
. NPWMS | NPW [NSWHS | NSWM [NSWL[NCWHS[NCWM| NC
TC_ID | TC_Description Vg/ll:—l F LSF F SF SF F SE WL sF RC | FC | FP | Label

TC1 0 0 0 0 0 0 1 2 1 11112

valid username and
password

TC2 0 0 0 0 0 0 1 1 0 1102

invalid username
and password

TC3 0 0 0 0 0 0 0 1 1 110 4

valid username and
invalid password

TC4 0 0 0 0 0 0 0 0 0 11010

Invalid username
and valid password

TC5

Valid username,
new password, old
password and
confirm password

4.3 Model Building
4.3.1 Pre-processing of prepared dataset phase

Pre-processing is the procedure used to transform the unprocessed dataset into one that can be predicted and
analysed. Pre-processing plays a big part in creating better models.To have clean data for creating our model, pre-
processing entails several procedures, including tokenization, lower casing, stop words removal, stemming, and
lemmatization [28]. The procedures are used to reduce dimensionality. These phases are utilised to optimise
vectorization since each word or term in the word representation phase functions as an axis or dimension. For this
work, thousand test cases are created that corresponded to their relevant features. Test case descriptions were then
developed in text from using those features.

4.3.2 Tokenization

Tokenization is the process of breaking up raw data into sentence or word segments, with each segment being
referred to as a token. The NLTK tool words tokenize was utilised in this experiment to do word tokenization
(Figure-2).

TC_ID TC_Description Label
o TCAH ['checlk’, the®, ‘results’, ‘o', 'entering”, ... nagative
1 TC2 ['check’ "the" ‘results’, 'Dy’, 'entering’, ... negative
2 TC32 ['check’, the", ‘results’, 'by’, '"entering”, ... negative
3 TC4 ['checlk’, ‘the”, results’, 'by', 'entering”, ... negative
4 TC5S [check', 'the’, responses’ “when' "‘usemam.. . negative

Figure 2: Sample dataset after word tokenization
4.3.3 Lowercasing

At this step of the pre-processing process, all letters in the data are changed to lowercase letters. Every identical
word will have the same value once the data has been vectorized via lowercasing (Figure 3). For instance, while
having various writing styles, the words "RESULT," "Result," and "result" are the same; nonetheless, all three
words will be presented as "result” when the lowercasing pre-processing technique is used.

3643

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

TC_Description Label
O check the results by entering valid usermame a... negative
1 check the results by entering invalid usernam... negafive
2 check the resulis by entering invalid usermam... negailive
3 check the resulis by entering valid usernams ... negafive
4 check the responses when usemame and password... negafive

Figure 3: Sample dataset after lower case conversion

4.3.4 Stop word removal

Stop words are common phrases representing the most frequently used terms in a language. They are words that
can be removed from a sentence without significantly altering its meaning or comprehension. Removing stop
words can enhance the performance of a model as it allows the focus to be on learning the essential words rather
than these common terms. Additionally, eliminating stop words can expedite the training and testing processes of
the model, especially when dealing with limited datasets.

In [©

stopwords .words{ "english")

ours " ,
oursaelvas "
wou ',

re™
Twe™ ,
i1,
Cyoutd™”,

"wours ",
"wourseldf ",
"wourselwves " ,
"he ",

"him’ .

ma =

Figure 4: English stop word examples

The dataset appears as follows once the stop words have been removed:

TC_1D TC_Description Label
o TC1 check results entering valid username password mnmegative
1 T2 check results entering invalid username password negative
2 T3 check resulis entering invalid usermame valid . _. negative
3 T4 check results entering wvalid usermame invalid . _. negative
4 TS check responses usernams password empty press . negative

T TC_Description Lalkel
o TCc1 check results entering wvalid usermame password negative
1 TZZ check results entering invalid usermamese password megative
bl TC= check resulits entering invalid usemame wvalid . __ mnegative
3 TC4 check results entering valid usermname invalid ... nmegative
4 TCE check responses username password empity press ... nmegative

Figure 5: Sample dataset without stop words

3644

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

4.3.5 Stemming

Stemming is a vital step in transforming a derivative or inflected word into its root or base form. For instance, it
allows matching nouns such as "checking," "checked," and "checks" to their core word, "check." Stemmers are
software tools designed for this purpose. Similar to lowercasing, stemming helps decrease the variation in
vectorization values for identical words.

TC_ID TC_Description Label
0 TCAH check result enter valid usermam password negative
1 TC2 check result enter invalid usernam password negative
2 TC3 check result enter invalid usernam valid password negative
3 TCZ4 check result enter valid usermam invalid password negative
4 TCE check respons usermam password empfi press log... negative

Figure 6: Sample dataset after stemming
4.3.6 Lemmatization

Lemmatization and stemming are related techniques. The process of returning inflected words to their base
structure is alike in both methods. However, the difference lies in ensuring that the root word, or lemma, remains
a valid part of the language. It's worth noting that some stemmed words may not be spelled correctly due to the
removal of prefixes and suffixes from the words.Lemmatization is necessary because when it does, it complies
with a few requirements but does not confirm that the word was correctly stemmed. WordNetLemmatizer is
utilised from the NLTK package, which uses a variety of lemmatizers. A large, publicly accessible lexical database
called Wordnet is utilised to build organised semantic links between words in English. Also, it features the earliest
and most widespread lemmatization for English nouns.

TC_ID TC_Description Label
0 TCA check result entering valid username password negafive
1 TC2 check result entering invalid username password negaflive
2 TC3 check result entering invalid usemame valid p... negative
3 TC4 check result entering valid username invalid p... negafive
4 TCE check response username password empty press 1. negafive

Figure 7: Sample dataset after performing lemmatization
4.4 Model Learning using word representation and Feature selection

After cleaning and lemma word preparation, the further tasks are feature selection, training, validation, and testing.
Word representation and feature selection both employ TF-IDF. The vectorized data is subsequently subjected to
machine learning methods to categorise it into positive or negative classifications.

Word representation, or text vectorization, refers to the conversion of preprocessed textual content into a format
understandable by machines. Many different techniques can be used to vectorize data. By eliminating terms that
are not as important for analysis and so lowering the input dimensions, the model building process can be made
simpler.

Using CountVectorizer involves simply tallying the frequency of each word in the document, whereas Tf-idf
assigns a score, and Word2vec generates a vector for individual words. As a result, the tf-idf method is more
suitable for small datasets. TF-IDF calculates the importance of a word in a document by multiplying the

3645

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

frequency of the word in the document by its average inverse document frequency across the entire document
collection [28]. The following formula is utilized to compute the TF-IDF score for the word t which is inside the
document d from the document collection D:

tf — idf (t, d,D) = tF (&,). i0F (6D ++vvrveereereeereeeeeeeee oo (Eq)

Many machine learning classification algorithms are fed the vectorized data after each vectorization on our pre-
processed dataset. Following the completion of the two-class classification, the classification model underwent
evaluation to prioritize test examples and determine the most effective classification method. SVM, KNN, Naive
Bayes, and Decision Tree classifiers were employed to classify the data, primarily due to their frequent utilization
and effectiveness with small datasets.

4.5 Model Training
A.SVM

Support Vector Machine (SVM), a supervised machine learning technique, aids in both classification and
regression tasks by identifying an optimal boundary between potential outcomes. SVM employs various kernels
such as linear, polynomial, Gaussian, and Radial Basis Function (RBF) to transform data. Initially designed for
binary classification, SVM now extends to multiclass classification scenarios. In multiclass classification, SVM
seeks to find a line that separates the dataset's points in two-dimensional space into distinct classes. Even in cases
where the data isn't linearly separable, SVM's kernel function facilitates the transformation of data into a higher-
dimensional feature space, enabling classification. This involves determining a strategy for dividing the classes
and adjusting the data to create a hyperplane as the separator.

B. K-Nearest-Neighbour (KNN)

KNN computes a value by considering the labels of neighboring instances and their distances from each other.
The parameter "k" specifies the number of neighbors to be considered when determining the class of an unknown
instance. In our approach, we utilize Euclidean distance with a k value of 5, as it yields optimal results.

C. Decision tree

The decision tree is a commonly employed supervised learning method for both classification and regression
tasks. It operates on a tree structure, with leaf nodes representing outcomes and root nodes, along with other nodes
lacking leaf nodes, reflecting the attributes of the dataset.

D. Naive Bayes

A Naive Bayes classifier, based on Bayes Theorem, assesses the probability that a particular record or data point
belongs to each class by computing membership probabilities for each class. The class with the highest probability
is considered the most probable outcome.

This can be mathematically stated as follows:

P(B/A)P(A
P(A/B) :% .. (Eq2)

Where:
P(A)- likelihood, P(B)- evidence, P(A/B)- posterior, P(B/A)-prior
3.5 Prediction phase

This study aimed to prioritize test cases based on the correlation of requirements and the severity of faults. The
process involved two main stages: test case classification and ranking. Initially, test examples were classified as
positive or negative, followed by ranking the classification model. During the prediction phase of test case
classification, the model's ability to categorize events into suitable classes (positive or negative) was assessed. To
make predictions, the model was supplied with new test instances, which underwent pre-processing and feature
extraction similar to the training data. This involved steps such as data cleaning, stemming, and lemmatization.

3646

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

Feature vectors were then generated from the pre-processed test case, and the vectored data, along with test case
labels and hypotheses, were passed to the trained model. Utilizing knowledge gained from the training data, the
model classified the new test case as either positive or negative.

4.6 Evaluation metrics

To gauge the trained model, evaluation metrics are needed. The classification accuracy modelis used for
evaluation metrics. By dividing the overall number of forecasts (both correctly and wrongly classified) by the
total number of accurate forecasts, accuracy may be calculated.

number of correct classified instances
(Ea3)

Accuracy = Total number of Instancas Tt e

Classification accuracy provides a single value that summarises the entire performance of the model but does not
provide specific information. F-score and confusion metrics are used. A true positive, true negative, false positive,
and false negative are all performed by confusion metrics. The resilience and accuracy of a classifier are indicated
by the harmonic mean of Precision and Recall, or F-Score (F-Measure). These can be determined mathematically
in a similar manner. Precision of class the percentage of cases correctly classified as yes in a classification is equal
to the total percentage of occurrences the classifier correctly classed as yes.

TruePositive(TP)
TruePositive(TP)+FalsePositive(Fp) ~ "~ " ' irirrmmeereees

Precision = (Eq4)

Recall = TrucPositive M) (Eg5)

TruePositive(TP)+FalseNegative(FN)

The F-measure accounts for both measurements and is the harmonic-mean (average of rates) of precision and
recall.

F IMBBSUI = e e eeeeeeeseeeeese s eeeeesse s (Eq6)

2+xTP+FP+FN

5. Result Analysis

To train our model, a laptop with an x64-based processor, an Intel(R) Core (TM) i5-4200M CPU clocked at
2.50GHz, and 4GB of internal RAM is used. Anaconda environment installation was carried out with Python 3.10.
This environment management system, which is free and open-source, consists of many Python distributions with
hundreds of open-source packages and free community support.

After establishing the working environment and installing the necessary libraries, tests on the dataset are carried
out. Pre-processing the prepared data is the first step of the experiment.To transform textual data into numerical
values, which are necessary for machine learning comprehension. Only textual information that has been
numerically encoded or vectorized may be understood by machine learning algorithms.Features using the
traditional TF-1DF method is chosen.

Table 2: Preprocessing tasks and their method of application

Preprocessing tasks Employed methods
Tokenization Word Tokenization (Word_Tokenize)
Lower casing English small letters

Stop word removal English stop word

Stemming Porter Stemmer

Lemmatization WordNet Lemmatize

Table 2 contains pre-processing tasks and their methods of applications are finished to produce the pre-processed
and vectorized dataset. To achieve the intended goal, the most popular machine learning algorithms are used on
the pre-processed and vectorized dataset, choosing 80% of the 1000 samples for training and 20% for testing [43].

3647

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

Two distinct trials were conducted. Building a classification model for test cases was done in the first experiment,
and ranking the classification model was done in the second.

5.1. Performance evaluations for test case classification:

Several trials using SVM, KNN, DT, and NB, four machine learning algorithms are used to classify the test
instances as positive or negative. It examined several variables or traits to assess the models' efficacy.

5.1.1 Performance of proposed models by considering SF

Using TF-IDF vectorization algorithms on the cleaned dataset, the data's vectorized.Based onprecision, recall, and
f1-score it produced various accuracy outcomes using the four algorithms on the vectorized data which is shown
in (Table-3).

Table 3: Precision, Recall, and F1-Score result by considering severity of faults

Sl.no Classifiers Class Precision Recall F1-Score
Positive 0.81 0.67 0.74
1 SVM
Negatve 0.73 0.85 0.79
Positive 0.89 0.66 0.76
2 KNN
Negatve 0.74 0.92 0.82
Positive 0.75 0.79 0.76
3 DT
Negatve 0.78 0.75 0.76
Positive 0.76 0.71 0.74
4 NB
Negatve 0.74 0.78 0.76

As seen in table 3 above, the SVM model's accuracy, recall, and F1-Score scores are reasonably high in percentage
terms. It demonstrates that the model misclassifies test cases according to the severity of their flaws, classifying
them as either positive or negative. Precision is defined as the ratio of correctly anticipated positive labelling to
all predicted positive labelling. How many overall positive labels there are is a question that can be answered by
precision metrics. It is possible to use (Eg4) to compute the precision value. Although certain test cases were
projected to be positive for those whose real test case values are negative, the precision value for positives is 0.81.

The ratio of successfully completed test cases to fully anticipated test cases with a label positive is used to calculate
recall or sensitivity. Even though certain test instances were classified as negative even though the true label was
positive, the recall value for positive is 0.67. Negative classes operate in the opposite manner. The weighted
average of recall and precision is known as the F1-Score. Therefore, both false positives and false negatives are
considered while calculating this score. According to (Eg6), the positive class's F1-Score value is 0.74. The
simplest logical performance metric is accuracy, which is simply the proportion of accurate forecasts to all other
predictions. Our experiment had a 76% accuracy rate and incorporated the TF-IDF feature selector and SVM
classifier while taking the severity of faults into consideration. The results demonstrate that test case prioritisation
based on fault severity is a challenging task for the SVM classifier.

On the cleaned dataset, the vectorized value of the data is extracted using TF-IDF vectorization algorithms. Based
on a variety of criteria, accuracy result is achieved using the vectorized data and the KNN algorithm. As seen in
the above table, the KNN model produces results for precision, recall, and F1-Score with a reasonable percentage
value. The model's accuracy while utilising the KNN classifier to determine fault severity is 80%. The
experiment's findings show that, when compared to other classifiers, the KNN classifier performs well for
prioritising test cases based on the severity of defects. The precision, recall, and F1-Score outcomes for the DT
model are moderately high percentage values, as indicated in the table above. The model's accuracy while
employing the DT classifier based on fault severity is 77%. The experiment's findings show that the DT classifier
performs poorly when test cases are prioritised according to the severity of defects. The precision, recall, and F1-

3648

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

Score outcomes for the NB model are moderately high percentage values, as indicated in the table above. The
model's accuracy while utilising the NB classifier based on fault severity is 75%. The experiment's findings show
that the NB classifier performs poorly when test cases are prioritised according to the severity of defects.

(@ SVM (b) KNN

Confusion matrx on test data Confusion matrix on test data

: Y
B 3
T g
= =
= =
5 =]
= =
L =
= =
2 £
Negative Pasitive MNegative Positive
? Pradicted Predicted
(c) DT (d) NB
Confusion matrix on test data Confusion matrix on test data
w
4 -
7 g
= =
£ =
= =
£ z
2 =
&
Megative Positive 1 |
Predicted Megative Pasitive

Predicted

Figure-8: Confusion matrix by considering severity of faults

The confusion matrix displays the test data's TP, FP, TN, and FN values, as shown in figure 8(a). Out of 200 test
data samples, the model identified 66 test cases as positive, which means that TP = 66. 15 test cases were deemed
positive by the model, even though the actual 32 test cases classified as negative even though their actual class is
positive, FN=32; 87 test cases classed as expectedly negative class, TN=87; and class of those test cases is
negative, it suggests FP=15. Out of a total of 200 test instances, 47 are incorrectly identified as such by the model,
whilst 32 test cases belong to the positive class. The actual class of 15 test cases is negative yet the model is
classed as negative, and vice versa. As a result, conclusion is drawn that the SVM model performs poorly when
it comes to classifying and ranking test instances according to the severity of defects.

5.1.2. Performance of proposed models by considering RCR

The SVM model, when considering necessary correlation as indicated in Table 4, achieves high precision, recall,
and F1-Score outcomes. With consideration of needs correlation, the SVM classifier attains an accuracy rate of
91%. This suggests that prioritizing test cases based on the correlation between requirements and fault severity
leads to strong performance by the SVM classifier. Similarly, the KNN model demonstrates high precision, recall,
and F1-Score values, with the KNN classifier achieving a 93% accuracy rate when based on requirements
correlation. These findings indicate that the KNN classifier performs effectively when prioritizing test cases

3649

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

according to the closeness of requirements to fault severity. Moreover, the DT classifier, when utilizing
requirements correlation, achieves an accuracy rate of 92%. This underscores the effectiveness of the DT classifier
when prioritizing test cases based on the association between requirements and fault severity.

Table 4: Performance of the proposed models by considering RCR

Sl.no Classifiers Class Precision Recall F1-Score
Positive 0.90 0.93 0.91
1 SVM
Negatve 0.93 0.90 0.92
Positive 0.90 0.97 0.93
2 KNN
Negatve 0.97 0.89 0.93
Positive 0.90 0.94 0.92
3 DT
Negatve 0.94 0.90 0.92
Positive 0.79 0.88 0.83
4 NB
Negatve 0.87 0.77 0.82

The model using the NB classifier based on requirements correlation has an accuracy rating of 83%. The results
of the experiment demonstrate that when test cases are prioritised according to how requirements and fault severity
are associated, the NB classifier performs well.

(@) SVM (b) KNN

Confusion matrix on test data Confusion matrix on test data

w -80
u 2
- -
= =
m o
o L1}
] =
= - 60
£ +
£ =
= -1
U
v 2
= -
= W
i g -20
&£
' ! Negative Positive
Negative) Positive Predicted
Pradicted
(c) DT (d) NB

Confusion matrix on test data

Confusion matrix on test data

Negative
Megative

Tuth

Tuth

Positive
Fositive

Positive Negative Positive

Pradicted Predicted

Negative

Figure 9: Confusion matrix by considering requirements correlation

3650

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

Figure 9 illustrates the confusion matrix, which indicates the TP, FP, TN, and FN value of the test data. The
model identified 91 test instances out of 200 test data as positive, which suggests that TP = 91. These test cases
indeed belong to the positive class. FP=10 is implied by the model's classification of 10 test instances as positive
even if their real class is negative. 93 test cases were classified as the expected negative class, which is TN=93;
Despite having a positive class, 7 test cases were assigned to the anticipated negative class; this equals FN=7. A
total of 17 test instances out of 200 are incorrectly classified by the model, meaning that 10 test cases are in a
negative class despite the model classifying them as positive, and 7 test cases belong to a positive class.

5.1.3 Performance of the proposed models by considering RCR and SF

The SVM model may generate results with a high percentage of precision, recall, and F1-Score thanks to the
necessary correlation and fault severity parameters, as shown in table 5. When requirements correlation and fault
severity are considered, the model's SVM classifier's accuracy is 94%. According to the experiment's findings,
the SVM classifier works better when test cases are prioritised according to how closely requirements match up
with fault severity. Based on requirements correlation and defect severity, the KNN classification model's
accuracy is 93%. The results of the experiment demonstrate that when test cases are prioritised according to the
correlation between requirements and fault severity, the KNN classifier works well. 90% of errors are successfully
predicted by the model utilising the DT classifier based on requirements correlation and fault severity. The results
of the experiment demonstrate that when test cases are prioritised according to the correlation between
requirements and fault severity, the DT classifier performs well.

Table 5: Performance of the proposed models by considering RCR and SF

Sl.no Classifiers Class Precision Recall F1-Score
Positive 0.92 0.95 0.94
1 SVM
Negatve 0.96 0.91 0.94
Positive 0.91 0.95 0.93
2 KNN
Negatve 0.95 0.91 0.93
Positive 0.89 0.91 0.90
3 DT
Negatve 0.91 0.89 0.90
Positive 0.78 0.72 0.75
4 NB
Negatve 0.75 0.80 0.78

The NB classifier, based on the correlation between requirements and fault severity, achieves a 77% accuracy rate
according to the experiment results. These findings indicate that when test cases are prioritized based on this
correlation, the NB classifier performs poorly. The confusion matrix depicted in Figure 10 reveals the true
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) values of the test data. The
model correctly identifies 94 test instances out of 200 as positive (TP=94), accurately classifying them as
belonging to the positive class. It incorrectly classifies 8 test instances as positive (FP=8) when their actual class
is negative. Furthermore, it correctly identifies 94 test cases as belonging to the negative class (TN=94) and
misclassifies 4 test cases as negative (FN=4) when they actually belong to the positive class. Overall, the model
misclassifies 12 test cases out of 200, 8 as negative when they should be positive and 4 as positive when they
should be negative. Consequently, the SVM model outperforms other classification and ranking methods based
on the correlation between requirements and defect severity.

3651

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

(2)SVM (b)KNN

Confusion matrix on test data Confusion matrix on test data

Negative
Negative

Tuth
Tuth

Positive
Positive

Positive Negative Pasitive

Predicted Predicted

Negative

(©)DT (d)NB

Confusion matrix on test data .)
Confusion matrix on test data

Megative
Megative

Tuth
Tuth

Positive
Pasitive

Megative Positive Y !
Predicted Megative i Positive
Predicted

Figure 10: Confusion matrix by considering RC and SF
5.2 Comparison of different classifier results

To determine the best performing technique, four machine learning methods, namely SVM, KNN, DT, and NB,
as well as the TF- IDF feature extractors are used.

Comparison of Experimental Results

100
80

>

S 60

= SVM

2

S 40 = KNN

<
20 1 mDT

= NB

O ,

SF RCR SF & RCR
MACHINE LEARNING ALGORITHMS

Figure-11: Comparison of ML Classifier accuracy results

3652

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

The experimental results depicted in Fig. 11 offer insights from two perspectives. Firstly, they relate to the
characteristics utilized for grouping test cases. When trials were conducted solely based on the severity of errors,
all machine learning algorithms, with the exception of KNN, exhibited poor performance in categorizing test
cases. Conversely, when considering requirements correlation, all machine learning algorithms outperformed the
model's performance based on defect severity. However, they showed subpar performance when compared to the
model's performance based on the correlation between requirements and defect severity. With the exception of
NB, all machine learning approaches accurately identified test cases based on the correlation between
requirements complexity and the severity of issues. Test examples were organized based on their likelihood of
being assigned to a specific class. If a model exhibits low classification accuracy, it may not provide the correct
probability value for each test scenario. According to this interpretation, all machine learning algorithms
demonstrated poor performance when prioritizing test cases based solely on fault severity, moderate performance
when prioritizing based on requirements correlation, and excellent performance when prioritizing based on both
requirements correlation and fault severity. Secondly, the results highlight a set of highly effective machine
learning algorithms for categorizing test results as positive or negative. The graph illustrates that SVM classifiers
outperform other methods, while KNN performs better for small datasets with a high number of features, and
SVM excels with a limited number of features.

Using a built-in test case classification model, evaluate the priority of test cases.

After evaluating the categorization of test examples using the TFIDF vectorizer and various machine learning
methods, the performance with the SVM classifier has been enhanced. The model assesses the likelihood of new
test cases to prioritize them accordingly. Test cases with a high probability value of the positive class are
considered more important and are arranged at the top of the list, while those with a high probability value of the
negative class are placed lower. Conversely, if the probability value of the negative class for each test case is
evaluated, the test cases are ranked in ascending order. As previously mentioned, the model prioritizes new test
cases based on the probabilities of either positive or negative categorization. Figure 13 displays the projected class
and associated probability value for the negative class for each test case. For example, the probability of TC17
being categorized as a negative class is extremely low (0.02922), indicating its crucial importance compared to
other test cases. Conversely, TC16 has a high (0.99919) likelihood of being categorized as a negative class,
suggesting its relatively lower significance compared to other test cases.

TC_ID TC_Description NPWHSF NPWMSF NPWLSF NSWHSF NSWMSF NSWLSF NCWHSF NCWMSF NCWLSF RC NHSF NMSF NLSF FC FP
Check the
results by

TC1 entering valid 0 1 0 1 2 1 1 1 1] 1 1] 1 1 0 2.000000
username a...
Check the
results by

TC2 entering invalid 0 [} 0 0 [} 0 0 1 1] 1 1] 0 0 0 0.000000
usernam...
Check the
results by

TC3 entering invalid 0 0 i] 0 0 0 0 1 0 1 0 2 1 1 3333333
usernam...
Check the
results by

TC4 entering valid 0 3 2 0 1 0 4 1 1 1 2 1 0 2 5333333
usemame ...
Check the
responses when

TCH TETTATT R AT 0 0 0 0 0 0 0] 0 1 0 0 0 0 0.000000
password...
Check result by

TC6 entering invalid 1 2 0 1 1] 0 4] 0 1 1 0 1] 1 2.000000
Date of Birth...

3653

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

TC7

TC8

TC9

TC10

TCN

TC12

TC13

TC14

TC15

TC16

TCA7

TC18

TC19

TC20

Check result by
entering invalid
Program and v...

Check result by
entering invalid
Religion and ...

Check result by
entering invalid
Mobile
Number...

Check result by
entering invalid
Email and val...

Check result by
entering invalid
Admission Dat...

Check result by
entering invalid
Class
Deparim...

Check the
results by
entering valid
usermame, ...

Check the
results by
entering invalid
username...

check the
results by
entering
different value ...

Check result by
entering valid
value forall a...

Check result by
entering invalid
Full Name and...

Check result by
entering invalid
Gender and
Va...

Check result by
missing Student
Photo and vali...

Check result by
entering invalid
Place of Birt...

Figure 12: Sample unordered test cases

0.000000

2666667

0.000000

2666667

6.000000

0.000000

2.000000

0.000000

0.666667

0.000000

4.000000

0.000000

5333333

0.000000

('positive’, 'TC1',
"positive’,
positive’,

Ted',
e,

B.22268120803527258),
0.40574706517338217), ('negative ',
0.18665772212868762), ('positive’,

("negative ', 'TC2', 0.0963771378725718),

"TCs,

positive’, 'TCIL'

("negative '
8.0001028501244268), ('positive’,
'T(8', 0.8169920518067845), ('negative ', 'TCO',

e,

6",

, 0.3036179365801241), ('negative ', 'TC12'

"negative ', 'T(16',

negative ', 'TC13', 8.9949872993137512),

8.8991928501244268),

"positive’, "TCLT,

Te1s'

B.9214178380874304),
0.85200220735671364),
0.8022769434153938)
, 0.0645155004508877),
, B.42554237474867934),
, B.981044682811946

B.020226028318093833), ('negative ', 'TC18’

[
(
(
('negative ', 'TC1", 9.6899506239889887),
(
(
7

(
('negative ', 'TC14", 8.9999671488495085), ('positive’,
(
6

), ("negative ', 'TC19', 0.6046580717387856), ('negative ', 'TC26", 9.9230995895303881)]

Figure 13: New test cases' prediction classes and their negative class probabilities

The model arranges the new unordered test cases after calculating the negative and positive class probability
values for each test case. The test case is run earlier the lower the determined negative class probability value.
The model's positive class probability value and negative class probability values were used, respectively, to order
the items. Figure 14 shows the test cases arranged based on their negative class probability scores.

3654

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

[{'TC17", ©.825226828318883833),
('TC6', 8.8528@228735671364),
('TC8', 8.B816@828518967845),
('TC7", @.186657722128608762),
('TC1', @.22288129993527258),
('TC11", ©.383617935658081241),
('TCA', @.48574786517338217),
('TC15", ©.42554237474867984),
('TCl19", ©.6846589717387856),
('TCl8", ©.68599508280880887),
('TC9', @.8022760484158038),
('TC3', 8.9214178388873304),
('TC28", ©.9239985895303881),
('TC12", ©.9545155984508877),
('TC18", ©.981844682811%467),
('TC13", ©.9949872903137512),
('TC2', 8.9953771378725718),
('TCl4", 6.995867148840505),
('TCS', @.90991928581244268),
('TCl6", ©.9951928581244268)]

Figure 14: Ordered test cases with their negative class probability value
6. Discussion

Software testing is a critical stage in the software development life cycle, aimed at assessing the effectiveness,
accuracy, and completeness of software products. Regression testing, a subset of software testing, involves
retesting a software system following modifications, such as updates or new versions. Due to resource constraints,
only a subset of test cases is typically executed for each release, making it challenging to identify scenarios likely
to uncover most issues. Thus, prioritizing test cases becomes crucial for regression and other testing
methodologies. Test case prioritization can be based on various factors, including severity of errors and the
correlation between requirements. In this study, NLP techniques were employed to preprocess the dataset due to
its textual nature, including steps like lowercasing, stemming, lemmatization, stop word removal, and punctuation
removal. Subsequently, the TF-IDF feature extraction technique was utilized to vectorize the cleaned datasets.
Four machine learning algorithms (SVM, KNN, NB, and DT) were employed to develop and evaluate the model.
Various combinations of factors were analyzed to determine the algorithm with the best performance, such as
SVM based on fault severity, SVM based on requirement correlation, etc. SVM exhibited superior performance
in classifying test cases across these combinations, achieving an accuracy rate of 94%. The model can effectively
prioritize test cases even when they are not initially ordered. KNN generally performs well in terms of fault
severity, while the other three classifiers exhibit varying performance levels depending on whether they assess
fault severity alone, requirement correlation alone, or both factors together.

7. Future Scopes

Due to the large quantity of datasets, both positive and negative labels are employed. However, by expanding
more datasets and labelling them with more than two labels. Performance on a range of datasets can be assessed
using machine learning techniques. To get excellent performances on various machine learning approaches, large
datasets of test cases are prepared for classification into negative and positive classesCreating a substantial dataset
enables comparison of the results between deep learning and machine learning. Several literary works categorize
the severity of faults. The severity level of fault is categorised as high, medium, and low in certain publications.
Degree of the error can be categorised as essential, significant, moderate, minor, or cosmetic by some persons.
The three severity classifications of high, medium, and low are utilised in this work. The researchers can prioritise
test cases using the five severity levels and compare the performance of the three severity levels.

3655

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

References

[1] Ma, T., Zeng, H., & Wang, X. (2016, May). Test case prioritization based on requirement correlations. In
2016 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD) (pp. 419-424). IEEE.

[2] Wyrich, M., & Bogner, J. (2024). Beyond Self-Promotion: How Software Engineering Research Is
Discussed on LinkedlIn. arXiv preprint arXiv:2401.02268.1EEE. (1990).IEEE_SoftwareEngGlossary.pdf (p.
84).

[3] Amrita, & Gupta, P. (2021). Test Case Prioritization Based on Requirement. Lecture Notes in Networks and
Systems, 204(61170044), 309-314

[4] Cheng, R., Zhang, L., Marinov, D., & Xu, T. (2021). Test-case prioritization for configuration testing. ISSTA
2021 - Proceedings of the 30th ACM SIGSOFT International Symposium onSoftware Testing and Analysis,
069(average 821), 452-465.

[5] Dongoor, S. P. (2019). Selecting an appropriate Requirements Based Test Case Prioritization Technique.
March.

[6] Vescan, A., Chisalita-Cretu, C., Serban, C., &Diosan, L. (2021). On the use of evolutionary algorithms for
test case prioritization in regression testing considering requirements dependencies. In AISTA 2021 -
Proceedings of the 1st ACM International Workshop on Al and Software Testing/Analysis, co-located with
ECOOP/ISSTA 2021 (Vol. 1, Issue 1).Association for Computing Machinery.

[71 Quadri, S. M. ., & Farooq, S. U. (2010). Software Testing — Goals, Principles, and Limitations. International
Journal of Computer Applications, 6(9), 7-10

[8] Nesi¢, D., Kriger, J., Stanciulescu, S., & Berger, T. (2019). Principles of feature modelling. ESEC/FSE 2019
- Proceedings of the 2019 27th ACM Joint Meeting European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 62—73.

[9] Rabbi, K., Mamun, Q., & Islam, M. D. R. (2015). An efficient particle swarm intelligence based strategy to
generate optimum test data in t-way testing. Proceedings of the 2015 10th IEEE Conference on Industrial
Electronics and Applications, ICIEA 2015, 123-128.

[10] Zhang, X., Nig, C., Xu, B., & Qu, B. (2007). Test case prioritization based on varying testing requirement
priorities and test case costs. Proceedings - International Conference on Quality Software, Qsic, 15-24.

[11] Kundu, D., Sarma, M., Samanta, D., & Mall, R. (2009). System testing for object-oriented systems with test
case prioritization. Software Testing Verification and Reliability, 19(4), 297-333.

[12] Krishnamoorthi, R., &Sahaaya Arul Mary, S. A. (2009). Requirement based system test case prioritization
of new and regression test cases. International Journal of Software Engineering and Knowledge
Engineering, 19(3), 453-475.

[13] Srivastva, P. R., Kumar, K., &Raghurama, G. (2008). Test case prioritization based on requirements and risk
factors. ACM SIGSOFT Software Engineering Notes, 33(4), 1-5.

[14] Kalyani, R., Sai Mounika, P., Naveen, R., Maridu, G., & Ramya, P. (2018). Test Case Prioritization Using
Requirements Clustering. International Journal of Applied Engineering Research, 13(15), 11776-11780.

[15] Yadav, D. K., & Dutta, S. K. (2019). Test case prioritization using clustering approach for object oriented
software. International Journal of Information System Modeling and Design, 10(3), 92—-1009.

[16] Harrold, M. J. (2000). Testing: A roadmap. Proceedings of the Conference on the Future of Software
Engineering, ICSE 2000, July 2000, 61-72.

[17] Tahat, L., Korel, B., Koutsogiannakis, G., & Almasri, N. (2017). State-based models in regression test suite
prioritization. Software Quality Journal, 25(3), 703-742.

[18] Almog, D., & Heart, T. (2009). What is a test case? revisiting the software test case
concept.Communications in Computer and Information Science, 42(June 2014),13-31.

[19] Craig, R. D., &Jaskiel, S. P. (2002). Systematic Software Testing, Artech House. In Inc., Norwood, MA.
Artech House.

[20] Zhang, C., Chen, Z., Zhao, Z., Yan, S., Zhang, J., & Xu, B. (2010). An improved regression test selection
technique by clustering execution profiles. Proceedings — International Conference on Quality Software,
171-179.

3656

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 45 No. 2 (2024)

[21] Lin, C. T., Tang, K. W., Wang, J. S., & Kapfhammer, G. M. (2017). Empirically evaluating Greedy-based
test suite reduction methods at different levels of test suite complexity. Science of Computer Programming,
150(May), 1-25.

[22] Yoo, S., & Harman, M. (2012). Survy_Mark_Yoo_2010.Pdf. March 2010, 67-120.

[23] Rosero, R. H., Gomez, O. S., & Rodriguez, G. (2017). Regression Testing of Database Applications under
an Incremental Software Development Setting. IEEE Access,5(September), 18419-18428.

[24] Lin,C.T., Tang, K. W., & Kapfhammer, G. M. (2014). Test suite reduction methods that decrease regression
testing costs by identifying irreplaceable tests. Information and Software Technology, 56(10), 1322-1344.

[25] Anish, P. R., Balasubramaniam, B., Cleland-Huang, J., Wieringa, R., Daneva, M., & Ghaisas, S. (2015).
Identifying Architecturally Significant Functional Requirements. Proceedings - 5 International Workshop
on the Twin Peaks of Requirements and Architecture, TwinPeaks 2015, 3-8.

[26] Henningsson, K. (2005). A fault classification approach to software process improvement.

[27] Sarkar, D. (2019). Text Analytics with Python - A Practitioner’s Guide to Natural Language Processing. In
Text Analytics with Python.

[28] Shahi, T. B., & Sitaula, C. (2022). Natural language processing for Nepali text: a review. Artificial
Intelligence Review, 55(4), 3401-3429.

[29] Dey, A. (2016). Machine Learning Algorithms: A Review. International Journal of Computer Science and
Information Technologies, 7(3), 1174-1179.

[30] Binkhonain, M., & Zhao, L. (2019). A review of machine learning algorithms for identification and
classification of non-functional requirements. Expert Systems with Applications: X, 1.

[31] Dahiya, O., & Solanki, K. (2021). An efficient APHT technique for requirement-based test case
prioritization. International Journal of Engineering Trends and Technology, 69(4), 215-227.

[32] Wang, Y., Zhao, X., & Ding, X. (2015). An effective test case prioritization method based on fault severity.
Proceedings of the IEEE International Conference on Software Engineering and Service Sciences, ICSESS,
2015-Novem, 737-741.

[33] Khatibsyarbini, M., Isa, M. A., Jawawi, D. N. A., &Tumeng, R. (2018). Test case prioritization approaches
in regression testing: A systematic literature review. Information and Software Technology, 93, 74-93.

[34] Singh, A., Singhrova, A., Bhatia, R., & Rattan, D. (2023). A systematic literature review on test case
prioritization techniques. Agile Software Development: Trends, Challenges and Applications, 101-159.

[35] Busjaeger, B., & Xie, T. (2016). Learning for test prioritization: An industrial case study. Proceedings of the
ACM SIGSOFT Symposium on the Foundations of Software Engineering, 13-18-Nove, 975-980.

[36] Catal, C. (2011). Software fault prediction: A literature review and current trends. Expert Systems with
Applications, 38(4), 4626-4636.

[37] Tanner, K. (2002). Experimental research designs. Research Methods for Students, Academics and
Professionals, 125-146.

[38] Mary, S. A. S. A., & Krishnamoorthi, R. (2011). Time-aware and weighted fault severity based metrics for
test case prioritization. International Journal of Software Engineering and Knowledge Engineering, 21(1),
129-142.

[39] Gao, K., Khoshgoftaar, T. M., & Napolitano, A. (2012). A hybrid approach to coping with high
dimensionality and class imbalance for software defect prediction. Proceedings - 2012 11" International
Conference on Machine Learning and Applications, ICMLA 2012, 2, 281-288.

[40] Khanna, M. (2022). A Systematic Review of Ensemble Techniques for Software Defect and Change
Prediction. E-Informatica Software Engineering Journal, 16(1), 220105.

[41] Portugal, I., Alencar, P., & Cowan, D. (2018). The use of machine learning algorithms in recommender
systems: A systematic review. Expert Systems with Applications, 97, 205-227.

[42] Mece, E. K., Binjaku, K., & Paci, H. (2020). The Application Of Machine Learning In Test Case
Prioritization - A Review. European Journal of Electrical Engineering and Computer Science, 4(1)..

[43] Ralph, P. (2015). Developing and evaluating software engineering process theories. Proceedings-
International Conference on Software Engineering, 1, 20-31.

3657

