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Abstract:- Test case prioritisation plays a vital role in regression testing as test case prioritisation provides 

significant outcomes for producing effective in regression and other testing test cases methodologies. Many 

factors can be used to prioritise taste cases. Prior researchers created approaches for prioritising test cases based 

on requirements. But they used rigid algorithms for computation, which suggests that the outcomes are imprecise 

and rigid. Here, a model is developed for test case prioritisation using requirement correlation and fault severity. 

This study was conducted using an experimental research methodology which accepts 1000 test cases that have 

been classified as positive and negative by specialists for the experiment. Natural Language Processing (NLP) 

principles were employed during the pre-processing of the datasets, which used as input to the proposed model. 

Following pre-processing, the Term Frequency-Inverse Document Frequency (TF-IDF) approach is used to 

vectorize the textual data format. The machine learning algorithms Support Vector Machine (SVM), K-Nearest 

Neighbor (KNN), Naive Bayes (NB), and Decision Tree (DT) were used to generate the model. Each trial's 

accuracy results ranged from 74% to 94%, which enabled us to find and select a model that performed well in our 

experiment. SVM based on requirement correlation and fault severity did well for prioritizing test cases. KNN is 

the sole useful technique for determining how significant a fault is. This outcome is due to the fact that SVM 

outperforms KNN for a large number of features while KNN outperforms SVM for a smaller number of features. 

Keywords: NLP, software testing, Test Case Prioritization, Machine learning. 

 

1. Introduction 

Making the best and most prioritized test cases you can is essential to expediting the software testing process as a 

whole [10]. Software businesses created Test Case Prioritization (TCP) strategies in an attempt to lower testing 

expenses without sacrificing product quality. Regression testing is an ongoing process that is part of software 

maintenance and is done in conjunction with software product review.. The phrase "testing phase" here refers to 

the initial regression testing, subsequent regression testing, and so forth, as well as the modifications that are 

concentrated on the regression testing. Instead of using source code information, which can occasionally make it 

difficult for testers to uncover flaws in software products, the quality of the requirements can be utilised to find 

error-prone test cases for the essential criteria. In the end, software testing determines whether the system complies 

with the requirements [4]. Considering this, increasing test efficiency and customer satisfaction may be achieved 

by linking test cases to requirement attributes. Test suites are frequently saved by software engineers so they can 

utilise them again during regression testing. Due to time and resource constraints, it might not be possible to finish 

all of the test cases during each iterative testing cycle [11,12]. Because of this, testers might wish to organize the 

test cases in a way that prioritizes particular criteria and runs the higher-priority instances before the lower-priority 

ones. Methods for ranking test cases for regression testing have been created as a consequence of this research. 

Leveraging requirement qualities is the foundation of these strategies. This study project's performance is 

evaluated using f1-score indications, recall, accuracy, and precision. Most of the times, individual requirements 

are interdependent rather than independent. One criterion may be dependent on another, such as in the case of the 
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inclusion relation. The functional requirements of the modules typically involve a number of sub-functional 

requirements. When all of the minor requirements have been tested and found to pass, a functional requirement is 

considered to pass the test [4, 11].  

TCP techniques set up and carry out a test suite which contains test cases to achieve their prioritizing goals [4]. 

To increase software testing's efficiency, TCP is made to adapt test instances according on predetermined criteria. 

Different test cases have varying levels of fault detection and requirement coverage. It improves the fault detection 

rate or requirement coverage rate by giving test cases with a high capacity to identify faults a higher priority. The 

effect that a flaw has on either the creation or operation of any programme determines how serious the flaw is. It 

is the extent to which a flaw affects the application. Consequently, determining fault severity is crucial for the 

next regression testing. The development of a test case prioritising method that took into consideration 

requirement correlations and fault severity was the main objective of this research project. 

In order to determine how requirements are interdependent, the main goal of this work is to develop a method that 

ranks test cases according to correlations between requirements and fault severity. To prepare raw datasets, train 

the model, and assess whether the model's performance is satisfactory. To classify the defect severity by reviewing 

various literatures [1]. In this paper the label data is taken to employ supervised machine learning technique. The 

attributes for the study are each test case's dependence value, fault severity, number of faults, fault number, and 

requirement coverage. The dataset consists of two categories: positive test cases and negative test cases. Positive 

test cases indicate the presence of defects and are considered highly significant, while negative test cases are test 

cases with fewer faults found and are of lesser value. Experts fill up the label for each test case according to its 

significance. By consulting several literatures on fault severity. The dataset is preprocessedusing Natural 

Language Toolkit (NLTK) NLP techniques, then, a vectorization method known as TF-IDF is applied for feature 

extraction. Four machine learning classification algorithms are then trained, and after classification is completed, 

the classification model is ranked to produce an ordered set of test instances. 

2. Related Works 

In this section, Credit is given to earlier work on machine learning-based prioritization techniques and test case 

prioritization. Current methods differ from ours in terms of both the fundamental ideas and the artefacts used (i.e., 

either merely using a portion of our technique or using different data). Unlike our innovative approach, no other 

methods can evaluate or leverage requirement correlation in test case prioritization using machine learning. The 

relevant work is presented in accordance with the artifacts used in the following. 

Xiaofang Zhang et al. [11] proposed prioritizing test cases based on various testing requirements, priorities, and 

test case costs. They factored in the requirement's unpredictability, fault-proneness, and customer-assigned 

priority, among other considerations. They developed a metric to quantify the proportion of "priority-met units of 

testing requirement per unit test case cost." Their focus was on different methods for ranking test cases according 

to their costs and testing specifications. 

R. Krishnamoorthi et al. [13] suggested prioritising new and regression test cases for systems based on demand 

analysis. They used six requirements’ factors—implementation difficulty, requirement changes, priority of 

customers, application flow, usability, and impact of faults —to prioritise the system test cases. Their prioritisation 

method increased the rate of severe fault identification and has been validated with numerous student and 

industrial projects. In comparison to [11], it adds more variables to the test case prioritising process. 

According to needs and risk criteria, Praveen Ranjan Srivastva and his colleagues [14] suggested prioritising test 

cases. They investigated two prioritising criteria as part of their research. The first is the order in which customers, 

developers, and managers have ranked their requirements. The degree and importance of risk variables that are 

included in the requirements make up the second factor. They determined the total value after determining the 

value for each need based on the two considerations. Test cases connected to a need with a higher total factor 

value should be prioritised, according to the analysis. 

There is still a potential that the priority test case will not be successful even though they were taken into 

consideration as a requirement risk element. In [15], Rayapureddy Kalyani recommended ranking test cases 
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according to requirement clustering. Prior to assigning priorities, they combined the requirements for the study 

and used clustering as a machine learning technique. Map the requirements to test cases after grouping them. It is 

simple to prioritise the test cases because they were mapped to the requirements once the test cases had been 

chosen. Prioritizing test cases for object-oriented applications by using a clustering strategy was advised by 

Dharmveer Kumar Yadav [16]. By using a k means clustering technique to a test scenario, they conducted 

research. A cluster of information about test case coverage may be created. For tests that look for errors, one 

cluster can be built. They simply arranged the test cases in a cluster using an intra-cluster prioritization technique 

such that the most important test case could be chosen first from the cluster. 

Omdev Dahiya [32] introduced the effective Ant Colony and Particle Swarm Optimization Hybrid Technique 

(APHT) to rank test cases based on the importance of requirements.The proposed method considered four 

variables: the perceived difficulty of the code implementation by the developer, the importance of the 

requirements as provided by the customer, the impact of faults, and changes in the requirements. After computing 

each value, the required factor value (RFV) was calculated by summing the four factor values and then dividing 

the total by four. A requirement with a higher RFV indicates greater complexity and a higher likelihood of 

containing errors. 

In 2015, Yiting Wang and his colleagues [33] proposed an effective strategy for prioritizing test cases based on 

the severity of faults. Their approach involves identifying the root cause of each error and assessing its impact on 

software functionality. The flaws are then categorized into four groups: fatal, serious, general, and minor. Test 

cases involving fatal flaws are given the highest priority. 

In our survey, Khatib Syarbini et al. [34] demonstrate that the number of publications on test case prioritisation 

has continued to expand in recent years. However, code analysis for priority computation remains the primary 

emphasis of most test case prioritisation techniques. Tonella and his colleagues [35] developed a case-based 

ranking mechanism for test case prioritization, utilizing attributes such as statement coverage and code 

complexity. However, the code was not accessible. Learning for prioritising was suggested by Busjaeger and Xie 

et al. [36], This method also uses test age, test-failure history, code coverage, failure history, and failure history 

to train the model. Therefore, whitebox testing could make advantage of this model. 

As noted above, numerous academics presented cost-based, requirement-based, and coverage-based test case 

prioritization approaches in relation to various artifacts. Most of the offered methods are computed utilising hard 

computing algorithms. Consequently, those methods have challenges with precision. White-box testing has 

already benefited from the application of machine learning. Catal has surveyed a variety of defect prediction 

methods that can be used after code analysis [37]. A white-box technique, on the other hand, necessitates code 

access, for example, to examine updated code fragments for their test relevance. Due of the absence of code 

access. Numerous studies have also suggested prioritising black-box regression test cases according to various 

criteria, including the quantity of requirements, the severity of defects, the length of the execution, etc. Whenever 

a study suggested TCP, the traceability between artefacts— employing machine learning approaches, for example, 

the relationship between test failures and test cases and the reliance between requirements —was not taken into 

consideration. The machine learning-based TCP technique that is being offered is unique in that it considers 

correlations between the requirements, the traceability of errors in terms of their severity, and test cases. 

3. Proposed Model 

A test management system stores data for test case prioritization. Each test case in hypotheses is associated with 

at least one requirement, such as the functionality of a specific feature. Failures detected by a test case should be 

linked similarly. According to our method, a test expert must select an initial set for the ML computation. The 

expert to select several "positive test cases," or test cases that are highly significant, frequently used, or significant 

for another reason for the current iteration being tested. The expert provides a set of unsuccessful test cases as an 

add-on to this step (Fig. 1). As the specific utility has not altered for some varieties or is typically safe, for example, 

these are of little consequence. 
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The methodologies prioritized test cases based on requirement correlation and fault severity. Features for each 

test case are identified using the completed requirement correlation matrix, which serves as input for the learning 

algorithms. To do this, several tasks were carried out, including data pre-processing, Feature selection, numerical 

vectorization of data and assessing the model utilising various machine learning classification techniques. 

 

Figure 1: Proposed framework for Test Case Prioritization 

Several preprocessing techniques include converting text to lowercase, breaking it into tokens, removing 

punctuation and stop words, applying stemming and lemmatization. In this study, the feature selection technique 

employed is Term Frequency-Inverse Document Frequency (TF-IDF). Following preprocessing, the cleaned data 

undergoes feature selection, where text representation is transformed into numerical format using TF-IDF. Once 

features are selected, creating a model to classify test cases becomes straightforward. Evaluation of the model 

aligns with the algorithm utilized for model generation. The primary goal of this study is to prioritize test cases. 

4. Methods 

To achieve the specific objectives, experimental research is adopted to investigate the causal link between one or 

more independent factors and the dependent variables. The requirement correlations and fault severity are the two 

independent variables because our research selected the test cases according to these two factors. When 

aresearcher wants to identify relationships between variables that indicate cause and effect, they should do 

experimental study. Nevertheless, causal inference in experimental studies faces notable constraints, and the 

specific experimental design employed greatly influences the interpretations feasible regarding trial results [38]. 

 The objectives were achieved by several continuous tasks. In the context of textual data processing, establishing 

the environment and development setup, preparing the dataset, performing dataset preprocessing, and converting 

the preprocessed data into a numerical or vector space format are essential steps to ensure the data is interpretable 

by the model.To produce ordered test cases, the data is collected using machine learning methods and sent them 

to a ranked classification model. 

4.1 Data Collection 

One of the key duties in a variety of research projects is the collection and preparation of data. The first stage of 

doing the experiment is to gather the relevant information from different sources. Supervised machine learning 
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methods is used to prioritise a test case, to arrange and categorise the data since the model chooses test cases 

determined by the correlation of requirements and the severity of faults., the number of requirements with exposed 

defects is obtained from the organization. To make it straightforward to determine the relationship between 

criteria, the research data was gathered from an E-College system, a single subject system 

(http://ir.bdu.edu.et/handle/123456789/14444). This system was chosen because it included a variety of different 

subsystems, including a student information system, a system for tracking income and expenses, a system for 

managing libraries and inventories, a system for managing human resources, a system for managing exams, and 

a system for tracking attendance. The E-College system contained fifty-four (54) errors and one hundred seventy-

four (174) prerequisites. The system testers compile the discovered flaws, with 174 requirements and 1000 test 

cases. 

4.2 Data Analysis 

In order to achieve the desired outcome, it's essential to analyze the acquired data. A team of specialists discussed 

and completed the interdependencies among the requirements. Utilize a correlation matrix to identify the 

connections between these requirements. A training set needs to be chosen by a testing expert for the machine 

learning algorithm. These experts will select a set of test cases that are notable, commonly used, or pertinent for 

another purpose in the current version under testing [4]. To aid this process, the experts provided a range of 

unsuccessful test scenarios. While their relevance may be limited, it's left to the tester to determine the importance 

of specific test cases, particularly in cases where a feature hasn't significantly changed across multiple versions or 

the risk is low. Test cases are developed to assess each functional requirement. 

From the correlation matrix, the features for each test instance are extrapolated, which then fed into the 

classification algorithms. The test case description, how many parents have high severe faults (NPWHSF), how 

many parents have medium severe faults (NPWMSF), how many parents have less severe faults (NPWLSF), how 

many siblings have high severe faults (NSWHSF), how many siblings have medium severe faults (NSWMSF), 

how many children have high severe faults (NCWHSF), and how many children have medium severe faults 

(NSWLSF) Based on the provided dependence. There could be numerous test cases for a single criterion. The 

percentage of requirements that correlate to test cases is known as "requirement coverage" (RC). How many 

problems are discovered or not discovered in the test cases is referred to as "fault coverage" (FC). The average 

severity rating of the defects identified in the test case is determined by the fault priority (FP) feature. By analysing 

several literatures,a consistent numerical value for each fault's severityis determined. Assign six (6) when a high 

severity flaw must be rectified in full before publication, four (4) when a medium severity flaw must be of typical 

relevance, and two (2) when a less severe flaw must be cosmetic [39, 33]. For instance, a test case might contain 

two faults of high severity, one fault of medium severity, and zero faults of lower severity. Fault priority (FP) = 

((2*6) + (1*4) + (0*2))/3, which is 5.333. 

 A labelled dataset is necessary for the supervised machine learning algorithm to train. The experts filled in the 

label for each test case as positive or negative depending on their significance. The results of prioritising are 

significantly influenced by the quality of the training data. When choosing training data, certain points of view 

should be taken into consideration [40]. Each test case should, in theory, be related to at least one need, such as 

the operation of a certain feature. A test case should be used to identify any flaws, and those flaws should then be 

connected appropriately. Since our research is experimental, the experiment needs reliable data for training and 

testing our findings. Nevertheless, the classifier cannot acquire raw data on its own, it needs to be pre-processed. 

The pre-processing jobs are ones that get the classifier ready. NLP techniques are used like lower case, 

tokenization, stemming, lemmatization, etc. to lessen repetition and ambiguity between words.  

Machine learning algorithms are chosen after preprocessed data. Support vector machines, K Nearest- Neighbor 

(KNN), Nave Bayes (NB), and decision trees. Since these four machine learning methods are the most widely 

used classifiers and perform well with minimal datasets. As a result, the learning outcome is fed into a ranked 

classification model to produce test cases that are either ordered or prioritised according to their priority value. 

The setting up of sample datasets is shown in the table 1. Where P stands for Positive and N for Negative in the 

label. 
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Table 1: Sample datasets 

TC_ID TC_Description 

NP

WH

SF 

NPWMS

F 

NPW

LSF 

NSWHS

F 

NSWM

SF 

NSWL

SF 

NCWHS

F 

NCWM

SF 

NC 

WL SF 
RC FC FP Label 

TC1 
valid username and 

password 
0 0 0 0 0 0 1 2 1 1 1 2 P 

TC2 
invalid username 

and password 
0 0 0 0 0 0 1 1 0 1 0 2 N 

TC3 
valid username and 

invalid password 
0 0 0 0 0 0 0 1 1 1 0 4 N 

TC4 
Invalid username 

and valid password 
0 0 0 0 0 0 0 0 0 1 0 0 N 

TC5 

Valid username, 

new password, old 

password and 

confirm password 

0 0 1 1 0 0 0 2 0 1 1 6 P 

4.3 Model Building 

4.3.1 Pre-processing of prepared dataset phase 

Pre-processing is the procedure used to transform the unprocessed dataset into one that can be predicted and 

analysed. Pre-processing plays a big part in creating better models.To have clean data for creating our model, pre-

processing entails several procedures, including tokenization, lower casing, stop words removal, stemming, and 

lemmatization [28]. The procedures are used to reduce dimensionality. These phases are utilised to optimise 

vectorization since each word or term in the word representation phase functions as an axis or dimension. For this 

work, thousand test cases are created that corresponded to their relevant features. Test case descriptions were then 

developed in text from using those features.  

4.3.2 Tokenization 

Tokenization is the process of breaking up raw data into sentence or word segments, with each segment being 

referred to as a token. The NLTK tool words tokenize was utilised in this experiment to do word tokenization 

(Figure-2). 

 

Figure 2: Sample dataset after word tokenization 

4.3.3 Lowercasing 

At this step of the pre-processing process, all letters in the data are changed to lowercase letters. Every identical 

word will have the same value once the data has been vectorized via lowercasing (Figure 3). For instance, while 

having various writing styles, the words "RESULT," "Result," and "result" are the same; nonetheless, all three 

words will be presented as "result" when the lowercasing pre-processing technique is used. 
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Figure 3: Sample dataset after lower case conversion 

4.3.4 Stop word removal 

Stop words are common phrases representing the most frequently used terms in a language. They are words that 

can be removed from a sentence without significantly altering its meaning or comprehension. Removing stop 

words can enhance the performance of a model as it allows the focus to be on learning the essential words rather 

than these common terms. Additionally, eliminating stop words can expedite the training and testing processes of 

the model, especially when dealing with limited datasets. 

 

Figure 4: English stop word examples 

The dataset appears as follows once the stop words have been removed: 

 

 

Figure 5: Sample dataset without stop words 
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4.3.5 Stemming 

Stemming is a vital step in transforming a derivative or inflected word into its root or base form. For instance, it 

allows matching nouns such as "checking," "checked," and "checks" to their core word, "check." Stemmers are 

software tools designed for this purpose. Similar to lowercasing, stemming helps decrease the variation in 

vectorization values for identical words. 

 

Figure 6: Sample dataset after stemming 

4.3.6 Lemmatization 

Lemmatization and stemming are related techniques. The process of returning inflected words to their base 

structure is alike in both methods. However, the difference lies in ensuring that the root word, or lemma, remains 

a valid part of the language. It's worth noting that some stemmed words may not be spelled correctly due to the 

removal of prefixes and suffixes from the words.Lemmatization is necessary because when it does, it complies 

with a few requirements but does not confirm that the word was correctly stemmed. WordNetLemmatizer is 

utilised from the NLTK package, which uses a variety of lemmatizers. A large, publicly accessible lexical database 

called Wordnet is utilised to build organised semantic links between words in English. Also, it features the earliest 

and most widespread lemmatization for English nouns.  

 

Figure 7: Sample dataset after performing lemmatization 

4.4 Model Learning using word representation and Feature selection 

After cleaning and lemma word preparation, the further tasks are feature selection, training, validation, and testing. 

Word representation and feature selection both employ TF-IDF. The vectorized data is subsequently subjected to 

machine learning methods to categorise it into positive or negative classifications. 

Word representation, or text vectorization, refers to the conversion of preprocessed textual content into a format 

understandable by machines. Many different techniques can be used to vectorize data. By eliminating terms that 

are not as important for analysis and so lowering the input dimensions, the model building process can be made 

simpler. 

Using CountVectorizer involves simply tallying the frequency of each word in the document, whereas Tf-idf 

assigns a score, and Word2vec generates a vector for individual words. As a result, the tf-idf method is more 

suitable for small datasets. TF-IDF calculates the importance of a word in a document by multiplying the 
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frequency of the word in the document by its average inverse document frequency across the entire document 

collection [28]. The following formula is utilized to compute the TF-IDF score for the word t which is inside the 

document d from the document collection D: 

tf − idf (t, d,D) = tf (t, d). idf (t,D) ……………………………...................... (Eq1) 

Many machine learning classification algorithms are fed the vectorized data after each vectorization on our pre-

processed dataset. Following the completion of the two-class classification, the classification model underwent 

evaluation to prioritize test examples and determine the most effective classification method. SVM, KNN, Naive 

Bayes, and Decision Tree classifiers were employed to classify the data, primarily due to their frequent utilization 

and effectiveness with small datasets. 

4.5 Model Training 

A. SVM  

Support Vector Machine (SVM), a supervised machine learning technique, aids in both classification and 

regression tasks by identifying an optimal boundary between potential outcomes. SVM employs various kernels 

such as linear, polynomial, Gaussian, and Radial Basis Function (RBF) to transform data. Initially designed for 

binary classification, SVM now extends to multiclass classification scenarios. In multiclass classification, SVM 

seeks to find a line that separates the dataset's points in two-dimensional space into distinct classes. Even in cases 

where the data isn't linearly separable, SVM's kernel function facilitates the transformation of data into a higher-

dimensional feature space, enabling classification. This involves determining a strategy for dividing the classes 

and adjusting the data to create a hyperplane as the separator. 

B. K-Nearest-Neighbour (KNN) 

KNN computes a value by considering the labels of neighboring instances and their distances from each other. 

The parameter "k" specifies the number of neighbors to be considered when determining the class of an unknown 

instance. In our approach, we utilize Euclidean distance with a k value of 5, as it yields optimal results. 

C. Decision tree  

The decision tree is a commonly employed supervised learning method for both classification and regression 

tasks. It operates on a tree structure, with leaf nodes representing outcomes and root nodes, along with other nodes 

lacking leaf nodes, reflecting the attributes of the dataset. 

D. Naïve Bayes 

A Naive Bayes classifier, based on Bayes Theorem, assesses the probability that a particular record or data point 

belongs to each class by computing membership probabilities for each class. The class with the highest probability 

is considered the most probable outcome. 

This can be mathematically stated as follows: 

𝐏(𝐀 𝐁⁄ ) =
[𝐏(𝐁 𝐀)𝐏(𝐀)]⁄

𝐏(𝐁)
 …………………………….........  (Eq2) 

Where:  

P(A)- likelihood, P(B)- evidence, P(A/B)- posterior, P(B/A)-prior 

3.5 Prediction phase 

This study aimed to prioritize test cases based on the correlation of requirements and the severity of faults. The 

process involved two main stages: test case classification and ranking. Initially, test examples were classified as 

positive or negative, followed by ranking the classification model. During the prediction phase of test case 

classification, the model's ability to categorize events into suitable classes (positive or negative) was assessed. To 

make predictions, the model was supplied with new test instances, which underwent pre-processing and feature 

extraction similar to the training data. This involved steps such as data cleaning, stemming, and lemmatization. 
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Feature vectors were then generated from the pre-processed test case, and the vectored data, along with test case 

labels and hypotheses, were passed to the trained model. Utilizing knowledge gained from the training data, the 

model classified the new test case as either positive or negative. 

4.6 Evaluation metrics 

To gauge the trained model, evaluation metrics are needed. The classification accuracy modelis used for 

evaluation metrics. By dividing the overall number of forecasts (both correctly and wrongly classified) by the 

total number of accurate forecasts, accuracy may be calculated.  

Accuracy = 
number of correct classified instances

Total number of instances
 ………………......  (Eq3) 

Classification accuracy provides a single value that summarises the entire performance of the model but does not 

provide specific information. F-score and confusion metrics are used. A true positive, true negative, false positive, 

and false negative are all performed by confusion metrics. The resilience and accuracy of a classifier are indicated 

by the harmonic mean of Precision and Recall, or F-Score (F-Measure). These can be determined mathematically 

in a similar manner. Precision of class the percentage of cases correctly classified as yes in a classification is equal 

to the total percentage of occurrences the classifier correctly classed as yes. 

Precision =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑃)
 …………….......…….  (Eq4) 

Recall = 
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑇𝑃)+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁)
 ………………......…..  (Eq5) 

The F-measure accounts for both measurements and is the harmonic-mean (average of rates) of precision and 

recall. 

F measure = 
2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
 ................................................................... (Eq6) 

5. Result Analysis 

To train our model, a laptop with an x64-based processor, an Intel(R) Core (TM) i5-4200M CPU clocked at 

2.50GHz, and 4GB of internal RAM is used. Anaconda environment installation was carried out with Python 3.10. 

This environment management system, which is free and open-source, consists of many Python distributions with 

hundreds of open-source packages and free community support.  

After establishing the working environment and installing the necessary libraries, tests on the dataset are carried 

out. Pre-processing the prepared data is the first step of the experiment.To transform textual data into numerical 

values, which are necessary for machine learning comprehension. Only textual information that has been 

numerically encoded or vectorized may be understood by machine learning algorithms.Features using the 

traditional TF-IDF method is chosen. 

Table 2: Preprocessing tasks and their method of application 

Preprocessing tasks Employed methods 

Tokenization Word Tokenization (Word_Tokenize) 

Lower casing English small letters 

Stop word removal English stop word 

Stemming Porter Stemmer 

Lemmatization WordNet Lemmatize 

Table 2 contains pre-processing tasks and their methods of applications are finished to produce the pre-processed 

and vectorized dataset. To achieve the intended goal, the most popular machine learning algorithms are used on 

the pre-processed and vectorized dataset, choosing 80% of the 1000 samples for training and 20% for testing [43]. 
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Two distinct trials were conducted. Building a classification model for test cases was done in the first experiment, 

and ranking the classification model was done in the second.  

5.1. Performance evaluations for test case classification: 

Several trials using SVM, KNN, DT, and NB, four machine learning algorithms are used to classify the test 

instances as positive or negative. It examined several variables or traits to assess the models' efficacy. 

5.1.1 Performance of proposed models by considering SF 

Using TF-IDF vectorization algorithms on the cleaned dataset, the data's vectorized.Based onprecision, recall, and 

f1-score it produced various accuracy outcomes using the four algorithms on the vectorized data which is shown 

in (Table-3). 

Table 3: Precision, Recall, and F1-Score result by considering severity of faults 

Sl.no Classifiers Class Precision Recall F1-Score 

1 SVM 
Positive 0.81 0.67 0.74 

Negatve 0.73 0.85 0.79 

2 KNN 
Positive 0.89 0.66 0.76 

Negatve 0.74 0.92 0.82 

3 DT 
Positive 0.75 0.79 0.76 

Negatve 0.78 0.75 0.76 

4 NB 
Positive 0.76 0.71 0.74 

Negatve 0.74 0.78 0.76 

As seen in table 3 above, the SVM model's accuracy, recall, and F1-Score scores are reasonably high in percentage 

terms. It demonstrates that the model misclassifies test cases according to the severity of their flaws, classifying 

them as either positive or negative. Precision is defined as the ratio of correctly anticipated positive labelling to 

all predicted positive labelling. How many overall positive labels there are is a question that can be answered by 

precision metrics. It is possible to use (Eq4) to compute the precision value. Although certain test cases were 

projected to be positive for those whose real test case values are negative, the precision value for positives is 0.81. 

The ratio of successfully completed test cases to fully anticipated test cases with a label positive is used to calculate 

recall or sensitivity. Even though certain test instances were classified as negative even though the true label was 

positive, the recall value for positive is 0.67. Negative classes operate in the opposite manner. The weighted 

average of recall and precision is known as the F1-Score. Therefore, both false positives and false negatives are 

considered while calculating this score. According to (Eq6), the positive class's F1-Score value is 0.74. The 

simplest logical performance metric is accuracy, which is simply the proportion of accurate forecasts to all other 

predictions. Our experiment had a 76% accuracy rate and incorporated the TF-IDF feature selector and SVM 

classifier while taking the severity of faults into consideration. The results demonstrate that test case prioritisation 

based on fault severity is a challenging task for the SVM classifier. 

On the cleaned dataset, the vectorized value of the data is extracted using TF-IDF vectorization algorithms. Based 

on a variety of criteria, accuracy result is achieved using the vectorized data and the KNN algorithm. As seen in 

the above table, the KNN model produces results for precision, recall, and F1-Score with a reasonable percentage 

value. The model's accuracy while utilising the KNN classifier to determine fault severity is 80%. The 

experiment's findings show that, when compared to other classifiers, the KNN classifier performs well for 

prioritising test cases based on the severity of defects. The precision, recall, and F1-Score outcomes for the DT 

model are moderately high percentage values, as indicated in the table above. The model's accuracy while 

employing the DT classifier based on fault severity is 77%. The experiment's findings show that the DT classifier 

performs poorly when test cases are prioritised according to the severity of defects. The precision, recall, and F1-
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Score outcomes for the NB model are moderately high percentage values, as indicated in the table above. The 

model's accuracy while utilising the NB classifier based on fault severity is 75%. The experiment's findings show 

that the NB classifier performs poorly when test cases are prioritised according to the severity of defects. 

(a) SVM 

 

(b) KNN  

 

(c) DT  

 

(d) NB  

 

Figure-8: Confusion matrix by considering severity of faults 

The confusion matrix displays the test data's TP, FP, TN, and FN values, as shown in figure 8(a). Out of 200 test 

data samples, the model identified 66 test cases as positive, which means that TP = 66. 15 test cases were deemed 

positive by the model, even though the actual 32 test cases classified as negative even though their actual class is 

positive, FN=32; 87 test cases classed as expectedly negative class, TN=87; and class of those test cases is 

negative, it suggests FP=15. Out of a total of 200 test instances, 47 are incorrectly identified as such by the model, 

whilst 32 test cases belong to the positive class. The actual class of 15 test cases is negative yet the model is 

classed as negative, and vice versa. As a result, conclusion is drawn that the SVM model performs poorly when 

it comes to classifying and ranking test instances according to the severity of defects. 

5.1.2. Performance of proposed models by considering RCR 

The SVM model, when considering necessary correlation as indicated in Table 4, achieves high precision, recall, 

and F1-Score outcomes. With consideration of needs correlation, the SVM classifier attains an accuracy rate of 

91%. This suggests that prioritizing test cases based on the correlation between requirements and fault severity 

leads to strong performance by the SVM classifier. Similarly, the KNN model demonstrates high precision, recall, 

and F1-Score values, with the KNN classifier achieving a 93% accuracy rate when based on requirements 

correlation. These findings indicate that the KNN classifier performs effectively when prioritizing test cases 
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according to the closeness of requirements to fault severity. Moreover, the DT classifier, when utilizing 

requirements correlation, achieves an accuracy rate of 92%. This underscores the effectiveness of the DT classifier 

when prioritizing test cases based on the association between requirements and fault severity. 

Table 4: Performance of the proposed models by considering RCR 

Sl.no Classifiers Class Precision Recall F1-Score 

1 SVM 
Positive 0.90 0.93 0.91 

Negatve 0.93 0.90 0.92 

2 KNN 
Positive 0.90 0.97 0.93 

Negatve 0.97 0.89 0.93 

3 DT 
Positive 0.90 0.94 0.92 

Negatve 0.94 0.90 0.92 

4 NB 
Positive 0.79 0.88 0.83 

Negatve 0.87 0.77 0.82 

The model using the NB classifier based on requirements correlation has an accuracy rating of 83%. The results 

of the experiment demonstrate that when test cases are prioritised according to how requirements and fault severity 

are associated, the NB classifier performs well. 

(a) SVM 

 

(b) KNN 

 

(c) DT  

 

(d) NB 

 

Figure 9: Confusion matrix by considering requirements correlation 
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 Figure 9 illustrates the confusion matrix, which indicates the TP, FP, TN, and FN value of the test data. The 

model identified 91 test instances out of 200 test data as positive, which suggests that TP = 91. These test cases 

indeed belong to the positive class. FP=10 is implied by the model's classification of 10 test instances as positive 

even if their real class is negative. 93 test cases were classified as the expected negative class, which is TN=93; 

Despite having a positive class, 7 test cases were assigned to the anticipated negative class; this equals FN=7. A 

total of 17 test instances out of 200 are incorrectly classified by the model, meaning that 10 test cases are in a 

negative class despite the model classifying them as positive, and 7 test cases belong to a positive class.  

5.1.3 Performance of the proposed models by considering RCR and SF 

The SVM model may generate results with a high percentage of precision, recall, and F1-Score thanks to the 

necessary correlation and fault severity parameters, as shown in table 5. When requirements correlation and fault 

severity are considered, the model's SVM classifier's accuracy is 94%. According to the experiment's findings, 

the SVM classifier works better when test cases are prioritised according to how closely requirements match up 

with fault severity. Based on requirements correlation and defect severity, the KNN classification model's 

accuracy is 93%. The results of the experiment demonstrate that when test cases are prioritised according to the 

correlation between requirements and fault severity, the KNN classifier works well. 90% of errors are successfully 

predicted by the model utilising the DT classifier based on requirements correlation and fault severity. The results 

of the experiment demonstrate that when test cases are prioritised according to the correlation between 

requirements and fault severity, the DT classifier performs well. 

Table 5: Performance of the proposed models by considering RCR and SF 

Sl.no Classifiers Class Precision Recall F1-Score 

1 SVM 
Positive 0.92 0.95 0.94 

Negatve 0.96 0.91 0.94 

2 KNN 
Positive 0.91 0.95 0.93 

Negatve 0.95 0.91 0.93 

3 DT 
Positive 0.89 0.91 0.90 

Negatve 0.91 0.89 0.90 

4 NB 
Positive 0.78 0.72 0.75 

Negatve 0.75 0.80 0.78 

The NB classifier, based on the correlation between requirements and fault severity, achieves a 77% accuracy rate 

according to the experiment results. These findings indicate that when test cases are prioritized based on this 

correlation, the NB classifier performs poorly. The confusion matrix depicted in Figure 10 reveals the true 

positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) values of the test data. The 

model correctly identifies 94 test instances out of 200 as positive (TP=94), accurately classifying them as 

belonging to the positive class. It incorrectly classifies 8 test instances as positive (FP=8) when their actual class 

is negative. Furthermore, it correctly identifies 94 test cases as belonging to the negative class (TN=94) and 

misclassifies 4 test cases as negative (FN=4) when they actually belong to the positive class. Overall, the model 

misclassifies 12 test cases out of 200, 8 as negative when they should be positive and 4 as positive when they 

should be negative. Consequently, the SVM model outperforms other classification and ranking methods based 

on the correlation between requirements and defect severity. 
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(a)SVM 

 

(b)KNN 

 

(c)DT 

 

(d)NB 

 

Figure 10: Confusion matrix by considering RC and SF 

5.2 Comparison of different classifier results 

To determine the best performing technique, four machine learning methods, namely SVM, KNN, DT, and NB, 

as well as the TF- IDF feature extractors are used.  

 

Figure-11: Comparison of ML Classifier accuracy results 
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The experimental results depicted in Fig. 11 offer insights from two perspectives. Firstly, they relate to the 

characteristics utilized for grouping test cases. When trials were conducted solely based on the severity of errors, 

all machine learning algorithms, with the exception of KNN, exhibited poor performance in categorizing test 

cases. Conversely, when considering requirements correlation, all machine learning algorithms outperformed the 

model's performance based on defect severity. However, they showed subpar performance when compared to the 

model's performance based on the correlation between requirements and defect severity. With the exception of 

NB, all machine learning approaches accurately identified test cases based on the correlation between 

requirements complexity and the severity of issues. Test examples were organized based on their likelihood of 

being assigned to a specific class. If a model exhibits low classification accuracy, it may not provide the correct 

probability value for each test scenario. According to this interpretation, all machine learning algorithms 

demonstrated poor performance when prioritizing test cases based solely on fault severity, moderate performance 

when prioritizing based on requirements correlation, and excellent performance when prioritizing based on both 

requirements correlation and fault severity. Secondly, the results highlight a set of highly effective machine 

learning algorithms for categorizing test results as positive or negative. The graph illustrates that SVM classifiers 

outperform other methods, while KNN performs better for small datasets with a high number of features, and 

SVM excels with a limited number of features. 

Using a built-in test case classification model, evaluate the priority of test cases. 

After evaluating the categorization of test examples using the TFIDF vectorizer and various machine learning 

methods, the performance with the SVM classifier has been enhanced. The model assesses the likelihood of new 

test cases to prioritize them accordingly. Test cases with a high probability value of the positive class are 

considered more important and are arranged at the top of the list, while those with a high probability value of the 

negative class are placed lower. Conversely, if the probability value of the negative class for each test case is 

evaluated, the test cases are ranked in ascending order. As previously mentioned, the model prioritizes new test 

cases based on the probabilities of either positive or negative categorization. Figure 13 displays the projected class 

and associated probability value for the negative class for each test case. For example, the probability of TC17 

being categorized as a negative class is extremely low (0.02922), indicating its crucial importance compared to 

other test cases. Conversely, TC16 has a high (0.99919) likelihood of being categorized as a negative class, 

suggesting its relatively lower significance compared to other test cases. 
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Figure 12: Sample unordered test cases 

 

Figure 13: New test cases' prediction classes and their negative class probabilities 

The model arranges the new unordered test cases after calculating the negative and positive class probability 

values for each test case. The test case is run earlier the lower the determined negative class probability value. 

The model's positive class probability value and negative class probability values were used, respectively, to order 

the items. Figure 14 shows the test cases arranged based on their negative class probability scores. 
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Figure 14: Ordered test cases with their negative class probability value 

6. Discussion 

Software testing is a critical stage in the software development life cycle, aimed at assessing the effectiveness, 

accuracy, and completeness of software products. Regression testing, a subset of software testing, involves 

retesting a software system following modifications, such as updates or new versions. Due to resource constraints, 

only a subset of test cases is typically executed for each release, making it challenging to identify scenarios likely 

to uncover most issues. Thus, prioritizing test cases becomes crucial for regression and other testing 

methodologies. Test case prioritization can be based on various factors, including severity of errors and the 

correlation between requirements. In this study, NLP techniques were employed to preprocess the dataset due to 

its textual nature, including steps like lowercasing, stemming, lemmatization, stop word removal, and punctuation 

removal. Subsequently, the TF-IDF feature extraction technique was utilized to vectorize the cleaned datasets. 

Four machine learning algorithms (SVM, KNN, NB, and DT) were employed to develop and evaluate the model. 

Various combinations of factors were analyzed to determine the algorithm with the best performance, such as 

SVM based on fault severity, SVM based on requirement correlation, etc. SVM exhibited superior performance 

in classifying test cases across these combinations, achieving an accuracy rate of 94%. The model can effectively 

prioritize test cases even when they are not initially ordered. KNN generally performs well in terms of fault 

severity, while the other three classifiers exhibit varying performance levels depending on whether they assess 

fault severity alone, requirement correlation alone, or both factors together. 

7. Future Scopes 

Due to the large quantity of datasets, both positive and negative labels are employed. However, by expanding 

more datasets and labelling them with more than two labels. Performance on a range of datasets can be assessed 

using machine learning techniques. To get excellent performances on various machine learning approaches, large 

datasets of test cases are prepared for classification into negative and positive classesCreating a substantial dataset 

enables comparison of the results between deep learning and machine learning. Several literary works categorize 

the severity of faults. The severity level of fault is categorised as high, medium, and low in certain publications. 

Degree of the error can be categorised as essential, significant, moderate, minor, or cosmetic by some persons. 

The three severity classifications of high, medium, and low are utilised in this work. The researchers can prioritise 

test cases using the five severity levels and compare the performance of the three severity levels. 
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