
Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

__________________________________________________________________________________ 

3307 

GA-ANN Prediction Model for Establishment 

of Langmuir Isotherm and characteristics 

study of Langmuir Isotherm constants 

Satyaveer Singh1, Annapurna Barouah2 

UPES, Dehradun, UK-248007, India 

Abstract:- Adsorption of gases on solid surface is very common phenomenon and naturally occurs in nature. 

Langmuir Isotherm is commonly used to describe the adsorption of gas on solid surface due to its very similar 

pattern depiction as derived from experimental data. A profound understanding of Langmuir Isotherm 

establishment and its dependency on different influencing parameters is very essential for prediction of sorption 

process of gas on solid surface. Langmuir Isotherm establishment depends on Langmuir constants, so very precise 

evaluation of Langmuir constants is essential for successful accurate establishment of Langmuir Isotherm.  

In this paper dependency of Langmuir constants on coal quality parameters (moisture, volatile matter, fixed 

carbon, ash content and vitrinite reflectance) and temperature have been studied to predict Langmuir constants for 

establishment of Langmuir Isotherm for coal in a specified geological condition without going into tedious and 

time consuming experimental experiments. Genetic Algorithm (GA) and Artificial Neural Network (ANN) in 

combination have been used as a mathematical modelling tool for prediction Langmuir constants for sorption 

study. This study reveal that Langmuir Volume Constant (VL) depends on properties of sorbent only while 

Langmuir Pressure constant (PL) depends on properties of sorbent and physical condition of sorption system. As 

the coal quality parameters changes for every point, so this prediction model would be very useful in insitu gas 

estimation by real time modelling of coal reservoir. 

Keywords: Sorption, Langmuir Isotherm, Langmuir constants, Genetic Algorithm (GA), Artificial Neural Network 

(ANN) 

1. Introduction 

Methane is the cleanest form of all burning fossil fuel having heating value of approximately 8500 KCal/kg [1]. 

Methane is naturally occurring in coal bed and natural gas reservoir. Methane associated with coal bed is also 

called as Coal Bed Methane (CBM). Coal bed methane is generated during coalification process, some amount of 

generated gas adsorbed into coal matrix itself at higher pressure while some amount of generated gas migrated 

and get entrapped into a distant located natural gas reservoir [2].  Coal seam serve as a source and reservoir rock 

for CBM, while in conventional gas reservoirs the source and reservoir rocks are different [3]. Generated methane 

gas retention in coal bed is depends on sorption capacity of coal and geological condition [4]. Coal system is 

complicated matrix-fracture system. The micropores in coal matrix have very large amount of area to store the 

gas in adsorbed state and bind with the surface free energy of coal [5]. CBM stored in coal seam is mainly in 

adsorbed state into micropores of coal matrix. Sorption of gas into coal matrix depends on coal quality, coal rank, 

macerals content, cleats in coal matrix, geological burial pressure and temperature[6] [7] [8][9][10]. Dependency 

of  Langmuir constants on temperature have been studied by different researchers [11] [12] [13]. 
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Diffusion rate of gas is estimated by Diffusion coefficient. Diffusion coefficient of gas is also depend on 

adsorption capacity of coal. Diffusion coefficient of CBM reservoir can be estimated on the basis of adsorption 

amount [14]. Due low permeability and insitu stress of CBM reservoir, its recovery is low (around 50%) in normal 

case. CBM hydraulic fracturing and insertion of inert gas into coal matrix are some stimulation techniques to 

increase the CBM recovery by improving diffusion rate [15]. 

Langmuir Isotherm is commonly used Isotherm in industry to estimate the sorption of gas in coal matrix due to 

its simplicity and near to most accurate estimation [11] [13]. It has been found a very good resemble of Langmuir 

Equation with experimental data of CH4 gas adsorption into coal matrix [16]. The adsorption theory was developed 

in 1918 with a specific assumption, “A gas molecule always adsorbed at single adsorption site and it does not 

affect the neighboring site.  The gas molecules adsorption on open surface with lack of gas access to sites and the 

sites are indistinguishable by the gas molecules.” [17]. 

On the basis of above considered assumption Langmuir Isotherm equation is derived and given below: 

V=VL*P / (P+PL) 

Where, 

V=Volume of gas adsorbed per unit weight of solid at pressure P  

VL= Langmuir Volume constant (Maximum amount of gas adsorbed per unit weight of solid) 

PL=Langmuir Pressure constant (Pressure at which half of the maximum possible gas adsorbed) 

Some of the researchers have tried to establish the prediction equation to predict the Langmuir constants for insitu 

gas estimation on the basis of coal quality parameters and geological conditions. The Langmuir Rank Equation 

[19],  Jian Shen  established prediction equation [20], and AK Verma prediction model [12] are some of the work 

done for prediction of Langmuir constants. Kim’s empirical equation was given for direct estimation of insitu gas 

on the basis of proximate analysis [21]. The detail of above mentioned prediction equations and model are given 

in Table 1. 

Table 1 (Adsorption Prediction Model) 

Name of predictor 

equation/ Model 

Equations Remark 

Langmuir Rank Equation 

[19] 

 

V=VL*P/(P+PL) 

Log (VL )= k1* log (FC/VM)+k2 

Log (PL )= k3* log (FC/VM)+k4 

Ki is temperature dependent 

Only FCdaf, VMdaf and 

temperature are considered to 

evaluate adsorption.  The direct 

effect of Ash content, Moisture 

and Maceral effects are not 

considered. 

Jian Shen  established 

equation  

[20] 

 

V=VL*P/(P+PL) 

VL= (17.65 * Ro +10.97)*e(-0.0098T) 

PL=.4.44*Ro
2-17.32*Ro+19.81 

Only Maceral effects and 

temperature dependency are 

considered in prediction model 

but other influencing coal 

parameters not considered. 

Kim’s Equation  

[21] 

Gc=(1-w-a)Vw*(k0*Pn0-bT)/Vd 

Vw, Vd, K0 & n0 are kims constant 

All Proximate Parameters and 

temperature are considered in 

prediction model. Only Maceral 

effects are not considered, but 

this prediction model was 

established on the basis of 

regression analysis not with soft 

robust computing technique. 
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Where, 

V=Volume of gas adsorbed per unit weight of solid at pressure P  

VL= Langmuir Volume constant  

PL=Langmuir Pressure constant  

FC= Fixed Carbon % in proximate analysis 

VM= Volatile Matter % in proximate analysis 

Ro= Maximum Vitrinite Reflectance 

T= Temperature  

Gc= Insitu Volume of gas adsorbed per unit weight of coal 

A comparison for the efficacy of all the above mentioned prediction models with our proposed prediction model 

have been done and shown in Table 3.  

Genetic Algorithm (GA) 

Genetic Algorithm (GA) is very powerfull optimization tool and provide better optimization solution of the 

problem than conventional one. Genetic algorithm is basdded on the principle of natural genetics and natural 

selection rule [22]. GA generates different population sets for getting solution of the problems wth optimisation 

technique. A fitness function evaluates the weightage of each solution and contribution to the next level of 

offspring decided accordingly. A crossover mechanism among the parents like gene transfer in sexual 

reproduction, the algorithm creates a new population for GA solutions [23]. The following steps are mainly used 

in Genetic Alogorithm (GA)  

• Definition of objective function 

• Encoding of fitness function 

• Reproduction 

• Cross over 

• Mutation 

Artificial Neural Network (ANN) 

Artificial neural network (ANN) is supervised learning technique and inspired by biological nervous system [24]. 

A network is formed on the basis of transfer function. Network is trained to perform a particular function with 

mathematical connection (weights and biases) between elements. The formed network with specific transfer 

function is used to transfer the input data to neuron layer. The elements are connected with some weights and 

biases to attain the specified goal. This trained network is used for prediction purpose.  

Feed forward back propagation is used in this work. The feed forward back-propagation neural network (BPNN), 

the received inputs are forwarded through neuron to the entire next layer with connected weight and biases to 

obtain the outputs and these weight and biases are modified in next step on the basis of performance of error 

function [25]. These weights and biases are modified in each training steps according to generated rule. A sigmoid 

layer and a linear output layer of transfer functions are capable of approximating any function in BPNN [26]. 

Combined Genetic Algorithm and Artificial Neural Network (GA-ANN) 

Genetic Algorithm (GA) and Artificial Neural Network (ANN) are very powerful optimizing and learning 

techniques for problem solving, but both have its own strength and weakness [27]. By combining Genetic 

Algorithms with Neural Networks (GA-NN) may provide a better result by overcoming its weakness. Nature also 

represent very successful implementation of GA-ANN in natural process of progression. Success of any species 

depends on its natural evolution as well as its own learning for improvement [27].  

With small data set ANN prediction model may stuck into network over fitting during network training which 

may provide very erroneous result. For network generalization Bayesian regularization, early stopping or very 

large data set is required for establishment of correct ANN prediction model. With use of Bayesian regularization 
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and early stopping for small data set, network over fitting problem may be avoided but this trained network provide 

very error in prediction due to diverged training. GA provide reasonable output even with small data set. GA may 

be used to increase data set reasonably for better result by ANN. Combining the GA with ANN, which is termed 

here as GA-ANN is very useful in modelling with small data set. A supportive approach of combining of the GA 

and ANN has been used in this study for preprocessing of data by GA and preprocessed data use in ANN for 

better result. 

2. Objectives 

Estimation of Langmuir constants (VL & PL) is done by experimental adsorption studies of gas on coal sample in 

specially designed adsorption isotherm bath tub attached with gas chromatograph. The adsorbed volume of gas 

into coal sample at different pressures and constant temperature is to be measured by experimental adsorption 

studies for establishment of Langmuir isotherm [18]. As the coal quality parameters may vary from point to point 

of coal reservoir. So it is very difficult to do the experiment for all coal to evaluate Langmuir constants.  

A prediction model based on GA-ANN soft computing tool has been established to assess the Langmuir constants. 

On the basis of assessed Langmuir constants, Langmuir isotherm would be established to estimate thesorption of 

gas into coal matrix. The charaterstic study of Langmuir constants (VL & PL) depending on different parameters 

have also been studied in this paper for better understanding of sorption process.  

3. Methods 

The data set considered in this study for prediction modelling are taken from experimental data set and previous 

various published studies. 80 Nos. of data set of worldwide located coal samples from experimentally evaluated 

data of Singrauli Coalfiled, India and previous available different worldwide literatures have been considered. 

The collected data sets have been converted into a standard SI unit and used for modelling of GA prediction model 

& GA-ANN prediction model. The referential detail of considered data set are given in Annexure-I [9].  

Coal from Moonidih Mine has been used for testing of established prediction GA model & GA-ANN prediction 

model. CBM Project of Moonidih is located in the central part of the Jharia coalfield in Dhanbad district of 

Jharkhand, India. It is included in the Survey of India Toposheet No. 73 I/5 & I/6 (R.F 1:50,000). Jharia coalfield 

is completely covered by the Barren Measure Formation rocks (Middle Permian), overlying Barakar Formation 

(Lower Permian). Total 51 Nos. of coal seams including splits and local seams/coal bands occur in the Barakar 

formation of Moonidih, however, 18 of them are persistent. Seam No. V, VI & VII are thick and prominent seam 

for CBM.  
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Langmuir constants for coal sample collected from XV-Top seam of Monidih Mine has been experimentally 

evaluated by Laboratory of CMPDI, Ranchi. The measured value of coal quality parameters and Langmuir 

constants from experimental data has been used to validate the efficacy of developed GA-ANN prediction model.  

GA Model 

GA model developed here uses important parameters on which Langmuir constants depends. The GA prediction 

model has been developed by using coal quality parameters (moisture, volatile matter, fixed carbon, ash content 

and vitrinite reflectance) and temperature as a input parameters and Langmuir constants (PL & VL) as output 

parameters. A fitness function has been encoded in MATLAB for prediction of Langmuir constants (PL & VL) 

with coal quality parameters and temperature alongwith corresponding prediction constants (ai & bi). GA 

optimisation has been used for mininmisation of objective function and estimation of prediction constants (ai & 

bi) [9] . 

 Z1 = Σ | PLoi – PLci | and Z2 = Σ | VLoi – VLci | 

Where, 

PLo = Observed value of PL in (MPa) 

PLp  = Predicted value of  PL in (MPa) 

VLo = Observed value of VL in (Sm3/t) 

VLp = Predicted value of VL in (Sm3/t) 
 

The following parameters has been considered to establish GA prediction model: 

• 13 Nos. of variables as prediction constant in fitness function 

• Rank based fitness scaling function  

• Stochastic Uniform selection function 

• Gaussian Mutation function 

• Heuristic Crossover function  

The 80 No. of data set has been taken from experimental studies of coal samples from Main Basin of Singrauli 

coalfield, India and worldwide earlier published data set (Annexure-I) [9]. The parameters of the above referenced 

published data set has been utilized by GA tool to minimize the objective function for evaluation of Prediction 

constants (ai & bi). GA modelling plot for estimation of prediction constants in Langmuir Pressure Constant (PL) 

and Langmuir Volume Constant (VL) are shown in Fig. 1 & Fig. 2 respectively.  

 
Fig. 1 (GA modelling Graph for Langmuir Pressure Constant PL) 

(A)  Fitness value of objective function Vs Generation of offspring (B) Best fitted value of individual variables Vs Variables 

(C) Convergence Vs Generation of offspring (D) Stopping Criteria to overcome defined limit for GA process 
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Fig. 2 (GA modelling Graph for Langmuir Volume Constant VL) 

(A)  Fitness value of objective function Vs Generation of offspring (B) Best fitted value of individual variables Vs Variables 

(C) Convergence Vs Generation of offspring (D) Stopping Criteria to overcome defined limit for GA process.  

The full convergence of generation in GA model are shown in above plots depict the best evaluation of the 

Prediction constants in the considered Objective function with possible minimum deviation (error) in prediction 

modelling. 

 

GA-ANN Model 

The 80 No. of experimental data set (Annexure-I) has been considered in this study [9] . This is small data set for 

neural network modelling with 6 Nos. of input parameters. So, A GA model has been developed with 80 

experimental data set. 460 Nos. of rationalized random data has been used as input data to generate corresponding 

output of the data by GA model. These 80 experimental data and 460 GA predicted data set has been used for 

ANN modelling. This GA-ANN developed model is a basically ANN model, which is modeled based on 80 

experimental data set and 460 GA predicted data set. Detailed Network architecture for GA-ANN is shown in  

Fig. 3. 
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Fig. 3 (GA-ANN Network Architecture) 

Feed forward back propagation network (BPNN) is adopted for the problem. A network of three layers has been 

set for the problem with 6 Nos. of input variables (Moisture (M), Volatile Matter (VM), Fixed Caron (FC), Ash 

(A), Vitrinite Reflectance (Ro) and Temperature (T)) and  2 output variables (Langmuir Pressure Constant (PL) & 

Langmuir Volume Constant (VL)). The ANN network architecture consist 6 input and 2 output alongwith network 

of 18 neurons in input layer and 12 neurons in first intermediate layer to develop prediction model. Transfer 

functions are set ‘tansig’, ‘logsig’ and ‘purelin’ for input layer, first intermediate layer and output layer 

correspondingly. The defined network has been trained with ‘trainbr’ function. Bayesian regularization function 

‘trainbr’ has been used to avoid over fitting. Neural Network architecture showing neurons and ANN defined 

layer-wise network are shown in Fig. 4a and Fig 4b respectively. 

 

Fig. 4a (ANN Model Network Architecture) 
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Fig. 4b (ANN defined layer-wise Network with transfer function) 

70% of input data has been used for training, 15% of input data has been used for validation and 15% of input 

data has been used for testing. Training and Testing performance of network is given in Fig. 4c. 

 

Fig. 4c (Mean Square Error Vs ANN iteration showing ANN Training & Testing Performance) 

The regression analysis for training and testing of ANN model is given in Fig. 5. 

Fig. 5 (Regression Analysis of ANN model Training & Testing) 

(A) Regression Analysis for Training data (B) Regression Analysis for Testing data (C) Regression Analysis for 

total data set 

The regression analysis of ANN model shows that regression coefficient for training data set is 1 while in testing 

data set regression coefficient is 0.93 and for overall data set regression coefficient is 0.98. So prediction model 

efficient and has sufficient accuracy. 
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4. Results 

GA Prediction Model 

The fitness function used in GA model is absolute percentage error function derived from experimental data and 

predicted data of Langmuir Pressure constant (PL) and Langmuir Volume constant (VL). Langmuir constants (PL 

and VL) may be expressed as a linear polynomial function of coal quality parameters and temperature alongwith 

13 Nos. of corresponding prediction constants.  

PL=a1*Ma2+a3*VMa4+a5*FCa6+a7*Aa8+a9*Ro
a10+a11*Ta12+a13; 

VL=b1*Mb2+b3*VMb4+b5*FCb6+b7*Ab8+b9*Ro
b10+b11*Tb12+b13; 

Where 

PL =Langmuir Pressure Constant (MPa)                                                   Output Parameters 

VL= Langmuir Volume Constant (Sm3/t) dry ash free basis (daf) 

 

M= Moisture (%) air dry basis (ad) 

VM = Volatile Matter (%) air dry basis (ad) 

FC= Fixed Carbon (%) air dry basis (ad)                                                Input Parameters       

Ro=Vitrinite Reflectance 

T=Temperature (0C) 

ai=Prediction Constants for PL 

bi=Prediction Constants for VL  

 

The value of 13 Nos. of prediction constant used in GA prediction model for Langmuir constant derived by GA 

tool have been enlisted in Table 2.  

 

Table 2. (Prediction Constants (ai & bi) for PL & VL) 

Prediction Constant (ai) 

for Langmuir Pressure 

Constant (PL)   

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 

-0.08 1.81 5.80 -0.21 16.76 -0.08 9.66 0.17 3.05 -0.09 0.10 0.09 0.36 

Prediction Constant (bi) 

for Langmuir Volume 

Constant (VL) 

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 

-0.13 2.53 7.20 -0.25 23.18 -0.14 -1.16 0.10 -0.10 -0.20 -0.09 0.09 2.62 
 

The average percentage error in prediction and experimental data set used for testing of GA model are 10.64% 

and 7.44% for Langmuir Pressure constant (PL) and Langmuir Volume constant (VL) respectively. The above GA 

model uses all possible influencing parameters as input parameters, which increases the reliability and efficacy of 

the prediction model. 
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GA-ANN Prediction Model 

The 80 experimental data and 460 GA predicted data set has been used for ANN modelling. 15% of input data 

has been used for testing of the ANN model. The percntage error during testing of GA-ANN model in the process 

of ANN modeling are 4.19% and 2.57% for Langmuir Pressure constant (PL) and Langmuir Volume constant (VL) 

respectively.  

The detail of 6 Nos. input parameters and 2 Nos. output parameters used in GA-ANN model are given below: 

 

PL =Langmuir Pressure Constant (MPa)                                                   Output Parameters 

VL= Langmuir Volume Constant (Sm3/t) dry ash free basis (daf) 

 

M= Moisture (%) air dry basis (ad) 

VM = Volatile Matter (%) air dry basis (ad) 

FC= Fixed Carbon (%) air dry basis (ad)                                         Input Parameters 

Ro=Vitrinite Reflectance 

T=Temperature (0C) 

 

A comparison of prediction model has been done among established GA prediction model & GA-ANN prediction 

model and Langmuir Rank Equation prediction model & Jian Sen etal, 2015 prediction model suggested by 

different researchers.  30 Nos. of experimental data set collected from worldwide published literature has been 

used for comparison of these prediction models on the basis of absolute percentage error in predicted values and 

measured values. All comparisons have been enlisted in Table 3.  

A bar chart diagram of average absolute percentage error (%) in prediction of 30 Nos. of data set by different 

prediction models has been shown in Fig. 6. The average absolute percentage error (%) in prediction of Langmuir 

Pressure constant (PL) are 8.95%, 5.26%, 161.73% & 529.13% and Langmuir Volume constant (VL) are 6.77%, 

2.35%, 19.91% & 91.91% by GA model & GA-ANN model and Langmuir Rank Equation prediction model & 

Jian Sen etal, 2015 prediction model respectively. This shows that the developed prediction model using the soft 

computing tool in this study have better efficacy than other earlier developed prediction model by different 

reserchers. Soft computing tools is able to incorporate the impact of all the possible influencing parameters as 

input and which make the developed model more robust and reliable with greater accuracy in prediction. 
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Table 3 (Absolute % Error in prediction of Different Prediction Model) 
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Fig. 6 (Avg. % Error in Prediction of Langmuir Pressure Constant (PL) & Langmuir Volume Constant (VL) ) 

It is obvious from the Table 3 and Fig. 6 that avg. % error of prediction model is lowest for GA-ANN prediction 

model. The GA prediction model has slightly greater % error than the GA-ANN model but have significantly 

lesser than other researcher prediction model. The GA-ANN model can only be used in specific computer 

environment and observation of dependency of variable can’t be done directly, while GA model provide a 

polynomial equation which can be utilized easily and dependency of variable can be observed directly. So both 

GA and GA-ANN model has its own pros and cons. So, developed GA & GA-ANN Prediction model can be used 

for prediction of Langmuir constant with greater accuracy and without time consuming.  
 

Testing of Developed Prediction Models (GA & GA-ANN) with Experimental Data 

Coal Sample collected from XV-Top seam of Monidih Mine has been experimentally tested for proximate analysis 

and Adsorption behavior of CH4 gas at different temperatures. Coal quality Parameters (air dry basis) of coal 

sample based on the proximate analysis and Langmuir Constants estimated by CH4 adsorption study on coal 

sample at different temperatures vis-a-vis Predicted by GA & GA-ANN prediction model are given in Table 4. 

Table 4 (Coal Quality Parameters & Langmuir Constants) 
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Fig. 7a (Langmuir Pressure constant (PL)) 

(Measured value vis a vis Predicted value by GA & GA-ANN model) 

 

Fig. 7b (Langmuir Volume constant (VL)) 

(Measured value vis a vis Predicted value by GA & GA-ANN model) 

 

It is illustrated by Table 4 and Fig. 7a & 7b that established both Prediction model (GA Prediction model and GA-

ANN Prediction) are able to predict Langmuir constants quite accurately, while GA-ANN Prediction model is 

more robust and predict more accurately. 
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Study of Langmuir Constants 

The developed both GA & GA-ANN prediction model have sufficient accuracy in prediction of Langmuir 

constants. These have been used for correlation study of Langmuir constants with various influencing parameters. 

The value of Langmuir constants have been predicted by both GA & GA-ANN model with varying value of only 

one influencing variable keeping other influencing variables constant. So the impact of change in one influencing 

variable on Langmuir constants can be accessed by these prediction models. The graph between Langmuir 

Constants (PL & VL) Vs different variables have been plotted and best curve fitting equation alongwith regression 

coefficient R2 have been shown on the graph for correlation study. 

 

Study of Langmuir Pressure Constant (PL) Vs Moisture (Mad %), Volatile Matter (VMad %), Ash (Aad %), 

Vitrinite Reflectance (Ro,max %) & Temperature (T oC) 

The Graphs between Langmuir Pressure constant (PL) and different variables have been plotted with varying only 

one variable while keeping other variables constant. The Graphs between Langmuir Pressure constant (PL) Vs 

Moisture on air dry basis in % (Mad %) (Fig.  8a1), Fixed Carbon (FCad %) to Moisture (Mad %) ratio on air dry 

basis (Fig. 8a2), Volatile Matter on air dry basis in % (VMad  %) (Fig. 8b1), Volatile Matter (VMad %) ratio on air 

dry basis (Fig. 8b2), Ash on air dry basis in % (Aad  %)  (Fig. 8c1), Fixed Carbon (FCad %) to Ash (Aad %) ratio on 

air dry basis (Fig. 8c2), Vitrinite Reflectance (Ro,max %) (Fig. 8d) & Temperature (T oC) (Fig. 8e) have been plotted, 

which are respectively shown below: 

 

Fig. 8a1 (Langmuir Pressure (PL) Vs Moisture(M) ) 

 

Fig. 8(a2) (Langmuir Pressure (PL) Vs Fixed Carbon (FC)/Moisture (M)) 
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Fig. 8 b1 (Langmuir Pressure (PL) Vs Volatile Matter(VM)) 

 

Fig. 8b2 (Langmuir Pressure (PL) Vs Fixed Carbon(FC)/Volatile Matter (VM)) 

 

Fig. 8c1 (Langmuir Pressure (PL) Vs Ash(A)) 
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Fig. 8c2 (Langmuir Pressure (PL) Vs Fixed Carbon(FC)/Ash(A)) 

 

Fig. 8d (Langmuir Pressure (PL) Vs Vitrinite reflectance (Ro,max)) 

 

Fig. 8e (Langmuir Pressure (PL) Vs Temperature (T)) 
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• as Moisture (Mad %) increases Langmuir Pressure constant (PL) value gradually increases (Fig. 8a1),  

• as ratio of Fixed carbon (FCad %) to Moisture (Mad %) increases Langmuir Pressure constant (PL) value decreases 

(Fig. 8a2),  

• as Volatile Matter (VMad %) increases Langmuir Pressure constant (PL) value increases (Fig. 8b1),  

• as ratio of Fixed carbon (FCad %) to Moisture (Mad %) increases Langmuir Pressure constant (PL) value decrease 

(Fig. 8b2),  

• as Ash (Aad %) increases Langmuir Pressure constant (PL) value increase (Fig. 8c1),  

• as ratio of Fixed carbon (FCad %) to Ash (Aad %) increases Langmuir Pressure constant (PL) value 

decrease (Fig. 8c2),  

• as Vitrinite Reflectance (Ro,max %) increases Langmuir Pressure constant (PL) value decreases (Fig. 8d),   

• as Temperature (T oC) increases Langmuir Pressure constant (PL) value increases (Fig. 8e).  
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Langmuir Volume Constant (VL) Vs Moisture (Mad %), Volatile Matter (VMad %), Ash (Aad %), Vitrinite 

Reflectance (Ro,max %) & Temperature (T oC)  

The Graphs between Langmuir Volume constant (VL) and different variables have been plotted with varying only 

one variable while keeping other variables constant. The Graphs between Langmuir Volume constant (VL) Vs 

Moisture on air dry basis in % (Mad %) (Fig.  9a1), Fixed Carbon (FCad %) to Moisture (Mad %) ratio on air dry 

basis (Fig. 9a2), Volatile Matter on air dry basis in % (VMad  %) (Fig. 9b1), Volatile Matter (VMad %) ratio on air 

dry basis (Fig. 9b2), Ash on air dry basis in % (Aad  %)  (Fig. 9c1), Fixed Carbon (FCad %) to Ash (Aad %) ratio on 

air dry basis (Fig. 9c2), Vitrinite Reflectance (Ro,max %) (Fig. 9d) & Temperature (T oC) (Fig. 9e) have been plotted, 

which are respectively shown below: 

 

Fig. 9a1 (Langmuir Volume (VL) Vs Moisture (M)) 

 

Fig. 9a2 (Langmuir Volume (VL) Vs Fixed Carbon (FC)/Moisture (M) 
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Fig. 9b1 (Langmuir Volume (VL) Vs Volatile Matter  (VM)) 

 

 

Fig. 9b2 (Langmuir Volume (VL) Vs Fixed Carbon (FC)/Volatile Matter (VM)) 

 

 

Fig. 9c1 (Langmuir Volume (VL) Vs Ash(A)) 
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Fig. 9c2 (Langmuir Volume (VL) Vs Fixed Carbon (FC)/Ash (A)) 

 

Fig. 9d (Langmuir Volume (VL) Vs Vitrinite Reflectance (Ro,max)) 

 

Fig. 9e (Langmuir Volume (VL) Vs Temperature (T)) 
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• as Volatile Matter (VMad %) increases Langmuir Volume constant (VL) value decreases (Fig. 9b1),  
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• as ratio of Fixed carbon (FCad %) to Ash (Aad %) increases Langmuir Volume constant (VL) value is 

mostly constant (Fig. 9c2),  

• as Vitrinite Reflectance (Ro,max %) increases Langmuir Volume constant (VL) value increases (Fig. 9d),   
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• as Temperature (T oC) increases Langmuir Volume constant (VL) value is almost constant (Fig. 9e). So, 

Langmuir Volume constant (VL) is temperature independent. 

Above plotted different graphs shows that Langmuir Pressure constant (PL) increases as Moisture (Mad %), 

Volatile Matter (VMad %), Ash (Aad %) & Temperature (T oC) increases, while PL decreases as Vitrinite 

Reflectance (Ro,max %)   increases. Langmuir Volume constant (VL) increases as Vitrinite Reflectance (Ro,max %) 

increases, while VL decreases as Moisture (Mad %)  & Volatile Matter (VMad %) increases. Langmuir Volume 

constant (VL) is independent from Temperature (T oC).  So it can be concluded that Langmuir Volume Constant 

(VL) depends on properties of sorbent only while Langmuir Pressure constant (PL) depends on properties of 

sorbent and physical condition of sorption system. 

5. Discussion 

This study shows that GA prediction model and GA-ANN prediction model both are predicting the Langmuir 

constants (PL &VL) with greater level of accuracy than other earlier provided prediction model. GA-ANN 

prediction model least error in prediction. So GA-ANN model can be used for prediction with greater level of 

accuracy and confidence.  

The correlation study of Langmuir constants with influencing parameters revealed the behavioral dependency of 

Langmuir constants on influencing parameters. Langmuir Pressure constant (PL) is increases as temperature 

increases while Langmuir Volume Constant (VL) is independent of temperature. Langmuir Constant PL depends 

on coal quality parameters (sorbent properties) as well as temperature (physical condition of sorption system) both 

while Langmuir Constant VL depends only on coal quality parameters (sorbent properties) and independent of 

temperature (physical condition of sorption system). Moisture and Ash content have negative impact on sorption 

of gas. 
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Annexure-I 

Sl. 
No. 

Experimentally Measured Data Set on Air dry basis (ad) 

Location of 
considered 

Coal Sample 

Literature 
Reference  Moisture 

(%)(ad) 

Volatile 
Matter               
(%)(ad) 

Fixed 

Carbon 

(%)(ad) 

Ash                         

(%)(ad) 
Ro,max 
(%) 

Temper-
ature (0C) 

Measured Langmuir  
Constt. for CH4  

Pressure 
Constt.                 

(PL) (Mpa) 

Volume 
Constt. (VL) 
(sm3/t) daf 

1 10.00 31.10 45.60 13.30 1.04 36 3.01 19.66 

Main Basin 
of Singrauli 
Coal Filed, 

India 

Experime- 
ntal Data 

Set 
estimate 

by 
Researcher 

2 4.70 19.90 25.70 49.70 1.57 37 2.11 22.41 

3 7.10 30.70 47.00 15.20 1.06 38 2.67 19.90 

4 8.40 30.10 42.80 18.70 1.08 39 3.16 20.38 

5 8.00 29.20 45.60 17.20 1.12 39 2.98 20.28 

6 6.83 31.13 40.40 21.63 1.04 34 2.54 19.88 

7 6.78 20.53 59.86 12.84 1.53 35 2.80 22.74 

8 3.90 27.30 34.00 34.80 1.20 35 2.12 21.35 

9 6.70 27.30 47.50 18.50 1.20 37 3.03 21.43 

10 7.33 29.69 40.04 22.95 1.10 37 2.50 19.25 

11 6.35 37.32 41.86 14.48 0.83 33 2.80 19.92 

12 7.04 41.17 17.69 34.10 0.71 34 2.77 18.77 

13 7.12 26.23 37.19 29.47 1.24 34 2.85 21.48 

14 5.70 21.90 35.90 36.50 1.46 34 2.63 22.89 

15 3.73 40.76 19.19 36.33 0.72 34 1.86 18.25 

16 6.20 14.26 49.91 29.63 1.96 34 2.95 26.01 

17 7.17 31.11 39.07 22.65 1.04 35 2.51 19.55 

18 7.10 15.04 55.19 22.68 1.90 35 2.79 24.27 

19 7.00 28.50 42.60 21.90 1.15 37 3.12 21.58 

20 12.70 26.57 40.04 20.69 1.23 37 3.51 20.60 
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21 1.28 34.32 55.52 8.88 1.02 30 3.01 15.46 Shanxi, China [28]  

22 1.05 11.82 76.99 10.14 2.26 20 0.36 20.66 

Gucheng, 
China 

[8] 

23 1.05 11.82 76.99 10.14 2.26 30 0.36 20.37 

24 1.05 11.82 76.99 10.14 2.26 40 0.36 20.04 

25 1.05 11.82 76.99 10.14 2.26 50 0.35 19.65 

26 1.05 11.82 76.99 10.14 2.26 60 0.34 19.08 

27 1.05 11.82 76.99 10.14 2.26 70 0.34 18.80 

28 1.05 11.82 76.99 10.14 2.26 80 0.34 18.48 

29 1.05 11.82 76.99 10.14 2.26 90 0.34 18.05 

30 1.08 14.02 76.21 8.69 2.02 20 0.31 21.51 

Gaohe, 

China 

31 1.08 14.02 76.21 8.69 2.02 30 0.31 21.23 

32 1.08 14.02 76.21 8.69 2.02 40 0.31 20.92 

33 1.08 14.02 76.21 8.69 2.02 50 0.31 20.70 

34 1.08 14.02 76.21 8.69 2.02 60 0.30 20.33 

35 1.08 14.02 76.21 8.69 2.02 70 0.30 20.04 

36 1.08 14.02 76.21 8.69 2.02 80 0.30 19.84 

37 1.08 14.02 76.21 8.69 2.02 90 0.30 19.61 

38 8.10 40.31 46.39 5.20 0.57 30 9.14 17.89 
Yangpoqua

m, China 

[20] 

39 8.10 40.31 46.39 5.20 0.57 50 11.00 15.34 

40 8.10 40.31 46.39 5.20 0.57 70 10.05 11.10 

41 7.20 30.46 51.94 10.40 0.84 30 7.42 23.09 
Wangtian, 

China 
42 7.20 30.46 51.94 10.40 0.84 50 9.47 23.04 

43 7.20 30.46 51.94 10.40 0.84 70 9.89 14.81 

44 6.40 22.96 59.24 11.40 1.17 30 5.15 22.47 
Nanyu, 

China 
45 6.40 22.96 59.24 11.40 1.17 50 4.61 18.76 

46 6.40 22.96 59.24 11.40 1.17 70 4.66 15.60 

47 2.90 16.57 67.43 13.10 1.58 30 4.48 23.64 
Shungliu, 

China 
48 2.90 16.57 67.43 13.10 1.58 50 4.97 22.12 

49 2.90 16.57 67.43 13.10 1.58 70 4.33 13.62 

50 4.20 5.34 75.66 14.80 2.87 30 4.41 46.95 
Chengzhuan

g, China 
51 4.20 5.34 75.66 14.80 2.87 50 5.26 45.45 

52 4.20 5.34 75.66 14.80 2.87 70 9.81 48.54 

53 7.80 30.99 50.09 11.12 0.74 45 2.67 39.65 

Itly 

[29] 

54 7.80 30.99 50.09 11.12 0.74 33 2.10 40.54 

55 7.80 30.99 50.09 11.12 0.74 60 3.18 37.41 

56 5.32 40.25 45.72 8.71 0.7 45 1.71 36.51 

57 1.00 28.8 53.50 16.70 0.85 45 2.91 33.15 
Switezeland 

58 0.80 26.7 44.20 28.30 0.90 45 3.22 28.00 

59 1.63 25.29 56.12 12.66 0.80 55 2.39 25.31 

Australia 60 1.63 25.29 56.12 12.66 0.80 45 2.20 25.98 

61 0.39 17.65 64.16 17.80 1.34 45 2.81 40.32 
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62 2.98 28.31 55.93 12.78 1.15 30 2.86 24.94 

Jharia, India [30] 

63 2.01 27.72 50.60 19.67 1.18 30 3.75 26.88 

64 2.61 33.86 52.61 10.92 0.94 30 2.49 22.99 

65 1.45 27.01 41.53 30.01 1.21 30 2.92 22.94 

66 1.28 29.34 51.12 18.26 1.11 30 2.70 23.36 

67 7.00 38.00 45.00 10.00 0.64 30 2.70 33.00 

Jharia, India [31]  

68 4.00 40.00 44.00 12.00 0.62 30 3.08 24.00 

69 7.00 41.00 37.00 15.00 0.64 30 7.35 36.00 

70 4.00 40.00 39.00 17.00 0.61 30 2.55 23.00 

71 1.20 36.00 34.80 28.00 0.96 30 1.89 16.00 

72 2.30 41.50 34.20 22.00 1.01 30 1.32 12.00 

73 1.10 35.00 33.90 30.00 0.96 30 3.61 23.00 

74 2.20 38.00 32.80 27.00 1.06 30 1.85 13.00 

75 1.40 34.00 33.60 31.00 1.94 30 1.10 22.00 

76 1.80 32.00 18.20 48.00 1.30 30 1.06 22.00 

77 1.20 45.00 33.80 20.00 1.29 30 2.03 24.00 

78 1.60 36.50 37.90 24.00 1.22 30 1.82 27.00 

79 6.00 35.00 25.00 34.00 1.11 30 2.41 28.00 

80 0.50 38.00 39.50 22.00 0.97 30 1.75 22.00 
 


