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Abstract: Suspension systems in cars is very important for comfort driving and safety of passengers. 

Automobile industries design various suspension systems depending on the type of vehicle. Quarter-car models 

have been in use for years to study car dynamics. The objective of this article is to study the dynamics of 

evolution of a quarter-car model with each suspension system subjected to linear damping. The equation of 

motion of the system is described with a single degree of freedom. Stability criteria of steady states discussed 

analytically for the dimensionless equation in detail. Numerical simulation was performed to explore bifurcation 

phenomena and to obtain various regular and chaotic attractors. Lyapunov exponents, for chaotic and regular 

motions, calculated and presented through graphics. Numerical calculations extended to obtain Poincaré 

surfaces of sections and Poincaré maps which are significant to analyze evolutionary motion and clear indicators 

of regularity and chaos. 
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Introduction 

Suspension system in cars is very important ingredient for automobiles for comfort safety and comfort driving 

of the vehicle. The automobile industries design various suspension systems depending on the type of vehicle. 

Quarter-car models, with variant design of suspension system, are in use for years to study the car dynamics. 

Such vehicle models have applications in problems related to ride dynamics. The quarter car model comprises of 

a car body (sprung mass) attached to four wheels. Each suspension system is presumptively equipped with an 

active linear spring, linear 3force actuator, and linear viscous damper. Wide description of quarter car model is 

given in recent articles (Agrawal et al. 2013 [1]; Al-Mutar and Abdalla 2015 [2]; Viswanath & Allam, 2016 [3]; 

Verros et al., 2000 [4]; Gobbi and Mastinu, 2001[5]; Von Wagner, 2004 [6]; Turkay and Akcay, 2005 [7]; 

Verros et al., 2005 [8]; Litak et al., 2007a, b, c [9], [10], [11]; Li et al., 2004 [12]). These pioneer articles 

relating to vehicle vibrations due to a rough road profile are of significant interest. These motivate researchers to 

investigate more on dynamics of such models and to obtain every possibility of appearance of regular and 

chaotic responses.  

Regular and chaotic motions of a dynamical system can be identified by various tools such as phase plots, power 

spectrums, time series curves etc. But confirm identification of such motion given by Lyapunov exponents, 

(LCEs), which actually provides a measure of chaos and regularity. For LCE <  0 a motion is regular and that 

for chaos LCE > 0. Thus, Lyapunov exponents are perfect indicator of regularity and chaos (Benettin et al., 

1980 [13]; Bryant et al., 1990 [14]; Grassberger and Procaccia, 1983a, b [15], [16]; Saha et al., 2014 [17]; 

Sandri 1996 [18]; Kumra, Neha [19]; Saha, L. M., Das, M. K. 2021) [20]. 

The objective of the present article is to perform extended investigations on the dynamics of evolution of a 

quarter car model and to discuss various aspects of regular and chaotic motion. We analyze such observed 

motions analytically as well as numerically. The quarter-car model presented here is subject to linear damping 

and the equation of motion is described by a second order equation with a single degree of freedom. The 

equilibrium points, (fixed points), of the model obtained and their stability criteria have been established. In the 

processes of numerical simulation work, we obtained plots of regular and chaotic attractors for set of different 
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parameter values. Also, Poincaré surfaces of sections and Poincare maps are drawn for different cases and plots 

of Lyapunov exponents obtained for proper identification of regular and chaotic motion within certain ranges of 

a particular parameter. In the final conclusion, we summarized the investigated results. 

2. Description of Quarter Car Model: Equilibrium solutions 

Following earlier descriptions, (Agrawal et al. 2013 [1]; Al-Mutar and Abdalla 2015[2]; Viswanath & Allam, 

2016 [3]; Verros et al., 2000 [4]; Gobbi and Mastinu, 2001 [5]; Von Wagner, 2004 [6]; Turkay and Akcay, 2005 

[7]; Verros et al., 2005) [8], a brief description presented in this section for the proposed quarter-car model. The 

load imposed to a car when moving forward and describes the reaction of this car when a torque is imposed on 

one of its tractive forces. The effects of different forces opposed to the vehicle displacement are given by (i) the 

aerodynamic drag, (ii) the anti-rolling resistance and (iii) the slope resistance. Kinematic excitation with 

nonlinear damping and stiffness is shown in figure 1. 

                              
Figure 1: Description of Quarter-car model. 

 

The equation of motion of the quarter-car model with a single degree of freedom, (Litak et al., 2007a), is  

 

 𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑘1(𝑥 − 𝑥0) + 𝑚𝑔 +  𝐹ℎ (
𝑑

𝑑𝑡
(𝑥 − 𝑥0), (𝑥 − 𝑥0)) = 0.     (1) 

In this instance  𝐹ℎ denoted an additional hysteretic suspension damping and stiffness force, is given by 

 𝐹ℎ (
𝑑

𝑑𝑡
(𝑥 − 𝑥0), (𝑥 − 𝑥0)) = 𝑘2 (𝑥 − 𝑥0)3 + 𝑐1  

𝑑

𝑑𝑡
 (𝑥 − 𝑥0) + 𝑐2 (

𝑑

𝑑𝑡
 (𝑥 − 𝑥0))

3

   

            (2)

 and  

 𝑥0 = 𝐴 𝑠𝑖𝑛(𝛺 𝑡)            (3) 

  

Put a relative displacement as  

  

 𝑦 = 𝑥 − 𝑥0             (4) 

then Equations (1) – (4) implies equation 

 
𝑑2𝑦

𝑑𝑡2 + 𝜔2𝑦 + 𝐵1 𝑦3 + 𝐵2
𝑑𝑦

𝑑𝑡
+ 𝐵3 (

𝑑𝑦

𝑑𝑡
)

3

= −𝑔 + 𝐴𝛺2𝑠𝑖𝑛𝛺𝑡      (5) 

 

where 𝜔2 =
𝑘1

𝑚
 ,  𝐵1 =

𝑘2

𝑚
 , 𝐵2 =

𝑐1

𝑚
 , 𝐵3 =

𝑐2

𝑚
 .  
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Parameter estimation of equation (5), already provided by Li et al. 2004, [12] as 

 

    𝑘1 = 160000 𝑁/𝑚 , 𝑘2 = −300000 𝑁/𝑚3, 𝑚 = 240 𝑘𝑔,  𝑐1 = −250 𝑁𝑠/𝑚 ,  

   𝑐2 = 25 𝑁𝑠
3/𝑚3.  

 

Introducing without dimension form with time scale re-scaled 𝜏 = 𝜔𝑡 , we make changes 

 

 𝑘 =
𝐵1

𝜔2 =
𝑘2

𝑘1
 , 𝛼 =

𝐵2

𝜔
=

𝑐1

√𝑘1𝑚
 , 𝛽 = 𝐵3𝜔 = 𝑐2√

𝑘1

𝑚3 , 𝑔′ =
𝑔

𝜔2  and 𝛺′ =
𝛺

𝜔
 ,   

  

Then, writing 𝛺′as 𝛺 and replacing variable y by x, equation (5) takes the dimensionless form   

 

 𝑥̈ + 𝑥 + 𝑘𝑥3 + 𝛼𝑥̇ + 𝛽𝑥̇3 = −𝑔′ + 𝐴 𝛺2𝑠𝑖𝑛𝛺𝜏       (6) 

 

Where, over dots indicating derivatives with respect to dimension time 𝜏.   

 Homogeneous part of equation (6) is 

 

 𝑥̈ + 𝑥 + 𝑘𝑥3 + 𝛼𝑥̇ + 𝛽𝑥̇3 = 0          (7) 

 

Let us re-write equation (7) as  

 

  
𝑑𝑥

𝑑𝑡
= 𝑦 ≡ 𝑓(𝑦, 𝑢) 

 

 
𝑑𝑦

𝑑𝑡
= −𝑥 − 𝑘𝑥3 − 𝛼𝑦 − 𝛽𝑦3 ≡ 𝑔(𝑥, 𝑦) .         (8) 

 

The equilibrium points of this system given by 

  

 (0, 0) and (±√−
1

𝑘
 , 0).  

Corresponding Jacobian matrix is  

 

 𝐽 = (

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑦

) = (
0 1

−1 − 3𝑘𝑥2 −𝛼 − 3𝛽𝑦2)      (9) 

 

(𝑖) Eigenvalues corresponding to equilibrium point  (0, 0) given by  

 

 𝜆1,2 =
−𝛼±√𝛼2−4

2
 . 

 

Thus, stability of (0, 0) depends on values of 𝛼 and is stable if 𝛼 ≥ 0 and unstable if 𝛼 < 0.  

 

(𝑖𝑖) Eigenvalues corresponding to equilibriums  (±√−
1

𝑘
 , 0) given by  

 𝜆1,2 =
−𝛼±√𝛼2+8

2
 . 

 

Thus, both the points of equilibriums are unstable saddle. 

Dynamic, regular and chaotic, evolution of the quarter car model depends on the display of orbits initiating 

nearby an equilibrium point. In this regard criteria of stability are very significant. 
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𝟑. Numerical Simulations 

𝟑. 𝟏 Bifurcations and Attractors 

Fixing parameters as  α = −0.04034, β = 3.68957, g = 0.014715, k = −1.875 and A = 0.5 of equation (6) 

and varying parameter Ω, set of regular and chaotic attractors obtained, figure 2. As Ω increases from value 0.5, 

system bifurcates and orbits of periods 1, 2, 4, 3, 6 and then chaotic orbits visible here. 

 
Figure 2: Regular and chaotic attractors obtained for different values of 𝛀. Values of other parameters 

are  𝛂 = −𝟎. 𝟎𝟒𝟎𝟑𝟒, 𝛃 = 𝟑. 𝟔𝟖𝟗𝟓𝟕, 𝐠 = 𝟎. 𝟎𝟏𝟒𝟕𝟏𝟓, 𝐤 = −𝟏. 𝟖𝟕𝟓 𝐚𝐧𝐝 𝐀 = 𝟎. 𝟓. 

 

 
Figure 3: Attractors obtained for different values of 𝐀. values of other parameters are 𝛂 =

−𝟎. 𝟎𝟒𝟎𝟑𝟒, 𝛃 = 𝟑. 𝟔𝟖𝟗𝟓𝟕, 𝐤 = −𝟏. 𝟖𝟕𝟓, 𝐠 = 𝟎. 𝟎𝟏𝟒𝟕𝟏𝟓 𝐚𝐧𝐝 𝛀 = 𝟎. 𝟓. 
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Figure 4: Attractors obtained for different values of 𝛂. Values of other parameter values are as  𝑨 =

𝟎. 𝟓𝟓, 𝐤 = −𝟏. 𝟖𝟕𝟓, 𝛃 = 𝟑. 𝟔𝟖𝟗𝟓𝟕, 𝐠 = 𝟎. 𝟎𝟏𝟒𝟕𝟏𝟓 𝐚𝐧𝐝 𝛀 = 𝟎. 𝟒𝟓. 

 

𝟑. 𝟐 Lyapunov Exponents 

Lyapunov exponents for three chaotic cases are calculated and displayed in figure 5.  
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Figure 5: Plots of Lyapunov exponents (left figures) and time series for three chaotic cases. Parameters 

values are 𝛂 = −𝟎. 𝟎𝟒𝟎𝟑𝟒, 𝛃 = 𝟑. 𝟔𝟖𝟗𝟓𝟕, 𝐠 = 𝟎. 𝟎𝟏𝟒𝟕𝟏𝟓, 𝐤 = −𝟏. 𝟖𝟕𝟓 and for case (a) 𝑨 = 𝟎. 𝟓, 𝜴 =

𝟎. 𝟕𝟖, 𝛂 = −𝟎. 𝟎𝟒𝟎𝟑𝟒; case (b) 𝑨 = 𝟎. 𝟏𝟓, 𝜴 = 𝟎. 𝟓, 𝛂 = −𝟎. 𝐬𝟎𝟒𝟎𝟑𝟒; case (c) 𝐀 = 𝟎. 𝟓𝟓, 𝛀 = 𝟎. 𝟒𝟓, 𝛂 =

−𝟎. 𝟐𝟓. 

𝟑. 𝟑 Poincaré Map  

The Poincaré surfaces of sections and Poincaré map, named on the French mathematician Henri Poincaré, are 

the transversal intersection of an n-dimensional state space with an (n-1)-dimensional subspace. These maps are 

known as the perfect indicators of regular and chaotic evolutions of a dynamical system. The state space of these 

maps can be compared to the state space of the original continuous dynamical systems, which are discrete 

dynamical systems with one fewer dimension. A discrete dynamical system with a state space that is one 

dimension smaller than the initial continuous dynamical system can be viewed as such a map. In case of three-

dimensional orbit such a map is transversal intersection by a plane. On Poincaré map, for a one periodic orbit 

only one point appears, for a two periodic orbit only two points appear, for an 𝑛 −periodic orbit 𝑛 points appear 

and for quasi-periodic orbit, a dotted closed curve appears. For chaotic motion, one observes randomly 

distributed points on Poincaré map.  

For three chaotic cases of evolution of quarter-car system, equation (8), Poincaré surfaces of sections and their 

corresponding Poincaré maps obtained and presented shown in Figure 6. 
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Figure 6: Poincaré surfaces of sections and Poincaré maps obtained for three cases of chaotic motion. 

Parameters values are 𝛂 = −𝟎. 𝟎𝟒𝟎𝟑𝟒, 𝛃 = 𝟑. 𝟔𝟖𝟗𝟓𝟕, 𝐠 = 𝟎. 𝟎𝟏𝟒𝟕𝟏𝟓, 𝐤 = −𝟏. 𝟖𝟕𝟓  and case (a) 𝑨 =

𝟎. 𝟓, 𝜴 = 𝟎. 𝟕𝟖, 𝛂 = −𝟎. 𝟎𝟒𝟎𝟑𝟒; case (b) 𝑨 = 𝟎. 𝟏𝟓, 𝜴 = 𝟎. 𝟓, 𝛂 = −𝟎. 𝟎𝟒𝟎𝟑𝟒; case (c) 𝑨 = 𝟎. 𝟓𝟓, 𝜴 =

𝟎. 𝟒𝟓, 𝛂 = −𝟎. 𝟐𝟓. 

𝟒. Conclusion 

Results obtained on evolutionary dynamics on evolution of a quarter-car system are significant.   Stability of 

equilibrium solutions for governing non-dimensional of equation (6) discussed which provides behavior of 

evolution as parameter of the system changes. The sets of regular and chaotic attractors drawn by varying 

parameters 𝛺, 𝐴 and 𝛼 are shown through figures 2 to 4. The value of other parameters was kept fixed while 

changing a particular parameter. Numerical simulations with proper codes applied to calculate Lyapunov 

exponents (LCEs) for three different chaotic cases as shown in figure 5. To have more clarity of motions, 

(regular or chaotic), Poincaré surfaces of sections and Poincaré maps are drawn and presented in figure 6. These 

two are perfect indicatiors for identification of regular and chaotic motions. All numerical simulation work was 

performed by using Mathematica.  

The problem may be more interesting if it is described with the suspension system subject to nonlinear damping 

instead of linear damping. In order to control chaos in the quarter-car model as well as in other nonlinear 

models, one must adopt an appropriate chaos control strategy.  
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