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Abstract: In today's healthcare industry, it is essential to continuously monitor cardiac parameters and Heart 

Rate Variability (HRV), necessitating systems that function effectively around the clock. Therefore, the 

emergence of the Internet of Medical Things (IoMT) technology provides a useful approach by employing 

various kinds of sensors for remote monitoring and analysis. This study presents a passive optical Fiber Bragg 

Gratings (FBG) sensor as a promising new technology for continuous monitoring of HRV and vital sign 

parameters. It also incorporates machine learning techniques to forecast heart conditions, improving the efficacy 

of remote monitoring systems. 

Method: The study methodology utilizes an in-depth structural analysis approach employing finite element 

analysis to examine a specialized FBG sensor. This fabricated sensor demonstrates its ability to record cardiac 

signals in real-time. The key cardiac parameters such as Root Mean Square of Successive Differences 

(RMSSD), Heart Rate (HR), Standard Deviation of Normal-to-Normal (SDNN) intervals, percentage of 

successive NN intervals differing by more than 50 ms (pNN50), and real-time Body Temperature are extracted 

from the acquired FBG signal using sophisticated signal processing algorithms. Integrating machine learning 

models like the Radial Basic Function Neural Network (RBF) and Partial Least Square Regression (PLSR) 

offers valuable insights for early detection and management of heart disease. 

Findings: The outcomes of various HRV parameters, including SDNN, HR, the percentage of consecutive NN 

intervals that are more than 50 ms apart, and RMSSD, obtained from the proposed FBG-based sensing system 

compared to a Standard Heart Variability monitor, result below 10% error. Moreover, among the RBF and 

PLSR models, RBF stands out for its significant success, delivering clinically acceptable metrics such as R-

squared error and RMSE. 

Novelty: Due to its passive nature, the FBG sensor can be vulnerable to various hazardous environments such as 

electromagnetic radiation and corrosive atmospheres. However, FBG sensors transmit signals through optical 

fibers; they can be employed for remote sensing in challenging conditions where conventional electrical sensors 

might fail. This approach is also innovative due to the fusion of state-of-the-art FBG sensors with an IoT-based 

decision support system, enabling seamless 24/7 continuous monitoring of cardiac parameters and HRV in real-

time scenarios. 
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1. Introduction: 

In today's healthcare landscape, continuous monitoring of vital signs and HRV is imperative for patient care [1]. 

With the increasing prevalence of cardiovascular diseases, there is a growing demand for innovative solutions 

that can offer real-time insights into cardiac health [2]. Leveraging various sensors, IoMT facilitates the 

collection of vital physiological information, including respiration rate and HRV parameters, in real-time [3]. 

However, the accuracy and reliability of remote monitoring systems heavily depend on the quality of sensor 

data. Motion artifacts and noise often disrupt sensor signals, necessitating robust preprocessing techniques to 

ensure data integrity [3]. Furthermore, the convergence of FBG sensors with IoMT-based by harnessing 

machine learning algorithms, these systems can analyze sensor data and provide actionable insights to 

healthcare professionals. This paper discusses the integration of FBG vibration sensors into a decision support 

system, outlining a cutting-edge strategy for real-time monitoring of cardiac parameters. FBG sensors offer 

precision and immunity to electromagnetic interference, making them an ideal choice for monitoring cardiac 
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conditions in harsh environment [4]. This article disperses findings on an eight-fold higher ratio of signal to 

noise observed within the pulse wave signal from FBG optical sensor made with plastic optical fiber in 

comparison to those made with silica optical fiber [10]. The monitoring of respiration rate, PCG, and ACG 

using a cloth-based setup is showcased [11]. Incorporating FBG sensor data into decision support systems 

enables healthcare organizations to leverage advanced analytics for detecting cardiac patterns and optimizing 

healthcare service. To enhance preprocessing techniques, evaluate the cost-effectiveness of integrating FBG 

sensors into decision support systems for continuous real-time cardiac parameter monitoring, this study 

scrutinizes the objectives, methodologies, outcomes, and innovations associated with incorporating FBG 

vibration sensors into a DSS. From the preceding discussions, the research gaps and avenues for further 

exploration emerge as follow: 

a) Approaches for Alleviating Artifacts and Other Influential Factors: The study highlights the influence 

of environmental noise, fiber coupling, and motion artifacts on FBG sensor signals, and introduces a robust 

preprocessing technique to mitigate these effects. However, further research is focused to enhance and 

refine the preprocessing approach to effectively manage a broader range of noisy signatures, to ensure data 

integrity, enhance diagnostic capabilities, and facilitate early intervention. 

b) Evaluation and analysis of sensor data: The study employs a range of machine learning algorithms to 

analyze and interpret sensor data. Exploring algorithms to identify the most efficient and effective methods 

for detecting different cardiac rhythms and provides the healthcare service at earliest. 

c) Integration with Healthcare Sector: Incorporating cardiac monitoring data from IoMT devices and FBG 

sensors, Electronic Health Records (EHR) can accelerate comprehensive health management and streamline 

record-keeping. It would be useful to investigate ways that monitoring systems and EHR platforms could 

work together effortlessly. 

d) Real-World Implementation and Scalability: The study presents a practical approach through an 

experimental case study; however, a research gap exists in evaluating the scalability and real-world 

implementation of the proposed integrated FBG sensor-DSS system across a range of healthcare setups. 

Decision support system represents a significant advancement in cardiac monitoring. Assessing the system's 

performance in diverse operational conditions and different healthcare sectors will validate its effectiveness 

and practicality on a larger scale. 

Here, this study advances real-time healthcare solutions by facilitating data collection and transmission, 

enabling continuous monitoring through biocompatible FBG sensors. It harnesses Machine Learning algorithms 

for analytics, detecting anomalies and diagnosing heart conditions. Integrating DSS assists healthcare providers 

in making informed decisions based on analyzed data and predefined rules, as depicted in Figure 1. This 

transformative approach, driven by FBGs, enhances healthcare infrastructure, offering effective solutions even 

in demanding circumstances. 

 
Figure 1: Block schematic of the suggested FBG sensor-based IOMT-based cardiac monitoring system 

This article introduces a methodology to implement an integrated IoT-enabled cardiac monitoring system using 

FBG sensors. The article is organized into ten sections to emphasize FBG sensing-based IoMT healthcare 

systems for monitoring cardiac parameters. It begins with a discussion of the work's scope, followed by a 
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comprehensive literature review. The methodology is covered in the fourth section, along with its limitations. 

The goals of the method are highlighted in the sixth section, and the working principle of the FBG sensor is 

detailed in the seventh section. The experimental setup is described in the eighth section, followed by the 

presentation of experimental results and discussions. Finally, the last section summarizes the conclusions of the 

proposed work, outlines prospects, and provides references. 

2. Scope of the Work 

The study offers a thorough explanation of the way FBG vibration sensors can be integrated into a DSS and 

outlines a cutting-edge technique for monitoring heart parameters in real-time situations. This proactive strategy 

maximizes healthcare service, identifies various cardiac rhythms, and provides early disease identification, 

which help practitioners to save lives. By enabling the seamless transmission of sensor data to healthcare 

professionals, the use of FBG vibration sensors, IoMT, and advanced algorithms of machine learning holds the 

promise of facilitating remote patient monitoring and addressing the limitations of the traditional healthcare 

business. The proposed research work encompasses two main scopes: 

• Continuous Remote Cardiac Monitoring: The research demonstrates that FBG sensors, renowned for their 

precision and immune to electromagnetic interference, effectively and continuously monitor a range of 

cardiac and vital sign parameters. Integrated with IoMT, they enable seamless data transmission to 

healthcare practitioners, facilitating remote patient monitoring and improving healthcare service 

accessibility regardless of the patient's location. 

• Advanced Decision Support System for Early Detection of Health Conditions: This study highlights the 

feasibility of personalized healthcare interventions based on individual patient data through the real-time 

integration of FBG sensors with IoMT and DSS. With the use of machine learning algorithms within DSS 

to analyze the data gathered from FBG sensors, medical professionals can detect potential cardiac 

abnormalities and abnormal cardiac patterns early on. This enables timely intervention and management of 

cardiac conditions, resulting in better patient outcomes. This FBG-based sensing system with cutting-

edge technology can be deployed effectively to meet the evolving needs of the healthcare industry. 

 

3. Literature Review 

This literature survey highlights various studies exploring advancements in FBG sensor technology, IoT, ML, 

and their applications in healthcare industry. Notably, to monitor cardiovascular pulse parameters in real-time, 

Shi et al. (2023) [3] present a small, incredibly accurate force-sensitive flexure (FBG) sensor with a sensitivity 

of 1547.3 pm/N. This sensor effectively translates longitudinal pulse input. At the same time, F. De Tommasi 

et al. (2023) [4] investigate the use of 13-FBG array mattresses with FBG sensors for non-invasive 

cardiorespiratory monitoring, which indicated promising accuracy in continuous heart rate calculations under 

various circumstances. Additionally, X. Wang et al. (2022) [5] showcase FBG sensor resilience, providing a 

body temperature monitoring vest with waterproof, resistive to electromagnetic waves FBG sensors, suitable 

for scenarios such as MRIs and ultrasounds. Moreover, Ladrova et al.  (2022) [6] investigate MRI 

incorporating FBG sensors for cardiovascular monitoring, addressing challenges like signal delays. Further, M. 

Krej et al. introduced a mat of sensors with nine arrays of FBG sensors, positioned orthogonally within a 

single-mode fiber, placed on a flexible Plexiglas board for heart rate data collection from multiple locations 

(2021) [7]. Also employ decimation and bandpass filters for preprocessing the acquired BCG signal. In (2020) 

[8], Xin Cheng builds a Polymer Optical Fiber Bragg Grating (POFBG) sensor using UV laser light pulse 

exclusively on ZEONEX-based POFS, demonstrating the sensor's ability to distinguish exhalation and 

inhalation during human breathing holds. The sensor additionally employs a deep-learning Temporal 

Convolution Network (TCN) for heart rate detection. According to Shouhei Koyama and Hiroaki Ishizawa, an 

FBG sensor is placed near a person's wrist radial artery, and the recorded signal is filtered to compute 

respiratory rate (RR) and heart rate (HR) using the Complete Ensemble empirical Mode Decomposition with 

Adaptive Noise (CEEMDAN) method (2019) [9]   Y. Haseda et al. (2019) [10] show that silica and plastic 

optical fibers are utilized in the FBG sensor fabrication, with the signal filtered between 0.5 and 5.0 Hz, and 

PLSR(Partial Least Square Regression) techniques employed in compute pulse waves and blood pressure 

readings, revealing an eight-fold rise in the signal-to-noise ratio in the FBG sensor's pulse wave signal made of 

plastic optical fiber compared to silica optical fiber. Also, Ogawa et al. propose a cloth-based setup for 

monitoring respiration signals, PCG, and ACG (2018) [11]. Moreover, setups by Nedoma et al. (2018) [12] and 
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Sadek et al. (2015) [113] focus on biocompatible setups for HR and BCG signal detection. Furthermore, Zhu et 

al. (2014) [14] present FBG configurations for HR measurement using cepstrum analysis. Collectively, these 

studies offer insights into real-time healthcare monitoring systems utilizing sensor technologies illustrated in 

Table 1.  

Table 1: Relevant literature and limitations of proposed methodologies 

Study 
Utilizing techniques for parameter 

extraction 
Limitations 

Shi et al. (2023) [3]. 
Compact six-bar parallel mechanism 

of FBG sensor for HR monitoring. 

Insufficient discussion about IoMT-

based FBG sensors. 

F. De Tommasi et al. 

(2023) [4]. 

FBG sensors show promising heart 

rate accuracy. 

Limited discussion on the scalability 

and adaptability of the system. 

  

X. Wang et al. (2022) 

[5] 

FBG sensors show body temperature 

against various conditions 

. 

Limited information on cost-

effectiveness. 

Ladrova et al.  (2022) 

[6]   

Monitoring cardiorespiratory 

parameters during MRI, addressing 

challenges like signal delays. 

 

 

. 

Scalability and long-term performance 

not discussed 

M. Krej et al. (2021) [7] 

Decimation and bandpass filters are 

used for preprocessing and detects   

HR. 

The study may not provide insights into 

dependability and the durability over a 

longer period of sensors. 

Xin Cheg et al. (2020) 

[8]. 

Distinguish the exhalation and 

inhalation of the human respiration 

process while breath holds. 

Fewer data on model generalization. 

S. Koyama and H. 

Ishizawa (2019) [9]. 

 Measurement of HR and RR is 

accomplished using the CEEMDAN 

(Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise) 

method. 

Fewer data on model generalization.  

 

Although the literature analysis offers a thorough understanding of FBG sensor technologies and cardiac 

parameter monitoring, there is a glaring research gap regarding integrating FBG sensors with machine learning-

driven DSS. This integration can potentially furnish healthcare professionals with actionable insights and 

decision support derived from real-time FBG sensor data. Furthermore, additional research is needed to explore 

novel applications and developments in the integration of cutting-edge technologies into FBG sensors, with an 

emphasis on scalability, accuracy, and practical deployment. These technologies include the Internet of Things 

(IoT), advances in polymer engineering, Data Analytics, Digital Signal Processing, and DSS. By providing 

practical concepts for improved healthcare services system strategies in healthcare Industry 4.0, closing these 

gaps will make progress the healthcare industry. 

4. Methodology 

The methodology addresses sensor placement, data collection, analysis, interpretation, and decision-making are   

systematically done by this technique, which is illustrated in Figure 2.  
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Figure 2: The systematic approach of the Methodology 

In the integration of FBG sensors for cardiac monitoring, several key steps are undertaken. Initially, 

requirements are analyzed to identify suitable medical equipment and establish data collection parameters. FBG 

sensors are then meticulously installed on chosen cardiac monitoring devices, considering factors like sensor 

positioning and attachment techniques to ensure precision. A real-time data collection system is developed to 

gather cardiac data from the installed FBG sensors, utilizing optical interrogators to track wavelength shifts and 

correlate them with cardiac dynamics. Reliable data transfer to a centralized database or cloud platform for 

analysis and storage has been established. Preprocessing schemes are applied to normalize and align sensor data, 

enhancing accuracy for subsequent analysis. Subsequently, a decision support system is built; incorporating 

FBG sensor data for cardiac anomaly identification and early disease detection. Advanced algorithms, including 

machine learning methods, are implemented for in-depth cardiac data analysis, anomaly detection, and 

prediction modeling. By prioritizing monitoring tasks according to the likelihood and severity of anomalies, the 

system aims to improve access to healthcare services. A user-friendly interface is developed to provide medical 

personnel with real-time sensor data visualization, anomaly alerts, and predictive insights. To ensure system 

performance and dependability under varied circumstances, thorough testing and validation procedures have 

been carried out. Finally, a comprehensive case study is conducted in a cardiac monitoring setting to validate the 

system's ability to identify irregularities and forecast events over a specified timeframe. 

5. Limitation of Methodology 

Remote monitoring of IoMT-based FBG sensing schemes faces inherent limitations due to challenges in 

achieving distributed sensing of cardiac and respiratory parameters in continuous real-time monitoring 

environments like specialized ICUs. Calibration and signal processing of FBG sensor elements pose further 

obstacles, exacerbated by difficulties in ensuring reliable data transfer to DSS amidst signal loss or 

electromagnetic interference. Computational complexity and reliance on EHR for predictive model development 

add additional layers of complexity, highlighting the need to address these challenges to optimize performance 

in practical healthcare settings. 
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6. Objective of Proposed Method 

This innovative approach introduces an advanced cardiac monitoring system for the healthcare industry by 

integrating FBG vibration sensors into a decision support system. The primary objective is to establish a 

framework for early detection of potential cardiac abnormalities and irregular patterns, enabling real-time 

decision-making through the utilization of high-precision data collected by FBG sensors. The research 

endeavors to develop a robust DSS capable of generating relevant alerts during medical emergencies by 

effectively managing intricate cardiac data. Evaluation will involve assessing precision, validity, sensitivity, and 

the system's capacity to deliver timely alerts and support early detection of heart disease. 

7. Working Principle of Fiber Brag Grating Sensor (FBG) 

FBG technology stands out among optical fiber sensors for its straightforward manufacturing process and 

significant efficacy based on light reflection principles. In generating FBGs, the fiber core's longitudinal 

refractive index undergoes regular modulation, relying on the theory of diffraction gratings [4]. Grating refers to 

the periodic alteration of the optical fiber core's refractive index. As broadband light traverses the grating 

surface along the longitudinal axis, some light reflects while the remainder continues through the fiber. The 

amalgamation of reflected light produces a single, narrow reflected beam meeting the Bragg condition [4]. 

Consequently, this periodic configuration functions as a precise wavelength filter. External influences, such as 

strain and temperature, affect the FBG, causing fluctuations in refractive index and pitch periodicity directly 

linked to changes in Bragg wavelength, which is explained in equation 1. 

(1) 

Where  represents the optical fiber effective inner refractive index,   stands for the grating period, which 

determines distance between two neighbouring grating planes, and, and  denotes the Bragg peak wavelength 

[15]. The working principle of FBG is explained and represented in Figure 3.  

 
Figure 3: Basic operational principle of FBG 

Equation 2 extends on this concept elucidating the dependence of peak wavelength shift λ_B, on both applied 

temperature (∆T) and strain (ε). 

 (2) 

Equations 3 and 4 encapsulate the effect of strain on the peak Bragg wavelength, with temperature held constant 

   (3)    

           (4) 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024)  

___________________________________________________________________________ 

2432 

Equation 5 presents the change in peak Bragg wavelength, influenced by the coefficient of optical strain in the 

fiber Pe which is expressed as a function of optical strain components Pij, Poisson's ratio (Ѵ), and the refractive 

index (ŋeff).   

     (5) 

Equation 6 elucidates the impact of temperature variations on the peak Bragg wavelength when strain is 

maintained at zero.  

 
   (6) 

 

Equation 7 defines the change in peak Bragg wavelength, influenced by coefficients α and β, which are 

determined by derivatives of   refractive index and pitch, correlating with temperature variations.  

   (7) 

Equations 8, 9, and 10 unveil the combined influence of the thermal expansion coefficient (α) and the thermo-

optic coefficient (β) on the sensor's response to temperature fluctuations, demonstrating their cumulative effect. 

          (8) 

   (9) 

     (10) 

These formulas can be used by scientists and engineers to create precise and efficient FBG sensors for a wide 

range of applications, including cardiovascular monitoring and other disciplines. 

8. FBG Experimental Setup 

The sensor component is manufactured in a controlled laboratory environment using PDMS. Within PDMS, the 

FBG optical sensor is integrated to form the sensor unit. A High-speed FBG interrogator Ibsen IMON 512 and 

SLED illumination are utilized for interfacing. Swift cardiac waveform recording is facilitated by a dedicated 

PC with specific hardware. The connection between the interrogator unit and PC is enabled by a Gigabit switch. 

Data gathering is coordinated via the LabVIEW platform, using an exclusive DLL library. The entire laboratory 

setup is depicted in Figure 4. The proposed method targets dynamic strain patterns, capturing cardiac 

activities.FBG sensing, embedded in a wearable chest belt, detects mechanical stress from heart activity. This 

enables detection and measurement of various cardiac activities. Consequently, fluctuations in sensor output 

directly correlate with cardiac events. The resulting stress influences the FBG's period. The approach is tailored 

for leveraging FBG-based vital-sign sensors. It focuses on capturing heart sounds and other motion artifacts. 

Thus, it provides a comprehensive method for monitoring cardiac activity.   

                    

 

Figure 4: Experimental setup of the FBG Interrogator 

In a laboratory environment, we conducted a thorough experimental investigation involving three healthy 

participants and one subject with arrhythmias, aged between 30 and 60 years, including two males and two 
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females. By sampling the FBG at an impressive rate of 1000 times per second within the wavelength range of 

1550 to 1560mm, with a resolution of 1 pm, we achieved a comprehensive understanding of cardiac dynamics. 

Nevertheless, the cardiac signals obtained are vulnerable to various artifacts such as motion disturbances, 

environmental noise, and coupling effects. 

9. Results and Discussions 

The FBG-based sensor captured real-time cardiac signals, though susceptible to interferences like motion 

disturbances, environmental noise, and coupling effects. These interferences overlay the genuine cardiac 

signature with low-amplitude, high-frequency baseline noise. Figures 5 and 6 depict the raw signals captured 

from four subjects.  

 

Figure 5: Cardiac Raw Signal of Subject 1 and Subject 2 

 

Figure 6: Cardiac Raw Signal of Subject 3 and Subject 4 

 

To address noise, identifying noise frequencies within the signal is crucial. Spectrograms provide insight into 

frequency elements over time, aiding in pattern recognition. Utilizing Fast Fourier Transformation (FFT) 

precisely locates these frequencies for further processing; Figures 7-8 depict FFT representations of the 

unprocessed cardiac signal. 

 
Figure 7: Spectrogram of Subject 1 and Subject 2 

 

 
Figure 8: Spectrogram of Subject 3 and Subject 4 

 

In initial FBG signal, noise frequencies below 10 Hz and above 140 Hz are present. Addressing this, a 

straightforward method involves applying a moving average filter, smoothing abrupt fluctuations and high-

frequency noise. Additionally, a custom-designed Infinite Impulse Response (IIR) bandpass filter selectively 

preserves the essential cardiac frequency range while effectively removing undesired low and high-frequency 

components, as demonstrated in Figures 9 and 10. 
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Figure 9: Signal filtration for subjects 1 and 2. 

 

Figure 10: Signal filtration for subjects 3 and 4. 

 

Group delay, linked to the phase response of a filter, measures the amount of time it requires for the frequency 

elements to pass through the filter. When filtering signals, especially complex signals, addressing the subtleties 

of group delay is essential; variations can distort filtered signals. When designing or choosing noise reduction 

filters, mindful consideration of group delay is vital to preserve temporal signal information, as depicted in 

Figures 11. 

 

Figure 11: Group delay of Subject 1 

After the filtration process, a specialized peak detection algorithm becomes essential. It detects precisely the 

peaks corresponding to individual heartbeats in the 1545.7–1545.9 nm output wavelength location of the FBG 

sensor. The peaks are essential indicators for evaluating HRV standards such as HR, SDNN, and RMSSD. 

Visual representations in Figures 12 to 15 illustrate the peaks extracted from the filtered FBG signal. 

 

Figure 12: Subject 1's Peak Signal 

 

         Figure 13: Subject 2's Peak Signal 

. 
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           Figure 14: Subject 3's Peak Signal 

 

 

           Figure 15: Subject 4's Peak Signal 

 

Furthermore, HRV specifications including HR, RMSSD, SDNN, and pNN50 for a normal person is presented 

in Tables 2.  

Table 2: HRV Measurements for a Normal Individual 

Cardiac Parameters  Age Range Cardiac Condition Range of Parameters  

Mean Heart Rate [15] 30.0-65.0 No 

Disease 

Minimum=55 beats/ minute 

Maximum=105 beats/minute 

Standard Deviation of 

Normal-to-Normal 

intervals [16] 

30.0-65.0 No 

Disease 

Minimum=20.4miliseconds 

Maximum=51.4milisseconds 

Root Mean Square of 

Successive 

Differences [16] 

30.0-65.0 

 

No Disease Minimum=11.7miliseconds 

Maximum=42.9miliseconds 

Proportion of 

consecutive NN 

intervals differing by 

more than 50 ms [15] 

30.0-65.0 No Disease Minimum=3%Maximum=23% 

The parameters   and   denote the maximum and minimum wavelength shifts, respectively, 

representing the deviation from the base wavelength of the FBG sensor. These notations are formally defined in 

Equation 11 and Equation 12. 

= -   (11) 

 = -   (12) 

 Here,  represents the maximum wavelength in the FBG signal post-filtering stage, and  denotes the 

minimum wavelength in the FBG signal post-filtering stage. Moreover, statistical parameters like Maximum 

Height, Minimum Height, Mean, and Sigma of the signal are calculated to enrich the analysis, as outlined in 

Table 3. 
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Table 3: Different Statistical Parameters of Cardiac signal of subjects in the experiment 

Subjects (nm)  (nm) Mean(nm) Sigma 

1 1552.4094 1551.8596 1552.1028 0.0534 

2 1552.4094 1551.8596 1552.1028 0.0534 

3 1552.4064 1552.2677 1552.3316 0.0136 

4 1552.4060 1552.3571 1552.3819 0.0050 

 

Table 4 shows the health condition of the subjects involved in the experimental study. 

Table 4: Subjects involved in the experiment for Health condition Status 

Subjects Age Sex Subject Health Status 

1 42 M Normal Person 

2 40 F Normal Person  

3 42 F Normal Person 

4 41 M Arrhythmia 

In the experimental study, Table 5 displays the recorded HRV parameters of subjects captured by both the FBG 

sensor and the Standard HRV monitor. 

Table 5: Subjects involved in the experiment with recorded Cardiac Parameters by FBG sensor and 

Standard HRV monitor 

Subjects HRV parameters recorded by FBG 

Sensor 

HRV parameters recorded by 

Standard HRV monitor 

Percentage 

of Error 

HR 

(bps) 

SDNN 

(ms) 

RMSSD 

(ms) 

pNN50 

(%) 

HR 

(bps) 

SDNN 

(ms) 

RMSSD 

(ms) 

pNN50 

(%) 

 1 60.52 37.34 22.42 3.25 65.50 40.32 24.20 3.50 7% 

2 61.25 37.5 30.75  3.75 65.50 40.22 33.0 4.00 6% 

3 63.01 37.14 30.59 4.75 66.15 39.35 32.2 5.00 5% 

4 52.25 36.29 28.5 4.2 55.00 38.2 30.1 4.5 5% 
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Figure 16.  Cardiac disease estimation using PLSR and RBF 

Table 6 shows the evaluation of errors using machine learning models subjects involved in the experimental 

study.  

Table 6: Evaluation of machine learning models based on error 

Models Membership 

function/ 

Activation 

Function 

Training Data Set Testing Data Set 

RMSE R-

squared   

RMSE R-

squared   

The Radial 

Basic 

Function 

Neural 

Network 

(RBF) 

Product of two 

sigmoidal 

membership 

functions 

0.000282 0.999 0.000278 0.999 

Gaussian 

combination 

membership 

function 

0.000283 0.998 0.000274 0.997 

This function 

uses a sigmoidal 

membership 

function to 

compute fuzzy 

membership 

values. 

0.000280 0.997 0.000276 0.997 
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Partial 

Least 

Square 

Regression 

(PLSR) 

 

 0.53852 0.911207 0.53860 0.911227 

Furthermore, the diverse models possess the capability to extract complex patterns and correlations from 

processed data, improving comprehension of cardiac dynamics, anomaly detection, and proactive healthcare 

management. The evaluation of the pre-processing pipeline's effectiveness employs two crucial performance 

metrics to ensure accurate insights: Root Mean Square (RMS) error and R-squared (R²) error. The dataset is split 

into 50% for training and 50% for testing to ensure robustness. Radial Basic Function Neural Network (RBF) 

shows outstanding performance, with low RMSE values (0.000280 to 0.000283) and high R-squared values 

(0.997 to 0.999) in both datasets. Conversely, Partial Least Square Regression (PLSR) with Gaussian activation 

function exhibits moderate performance, with RMSE values around 0.53852 in training and 0.53860 in testing, 

along with corresponding R-squared values of about 0.911207 and 0.911227. However, PLSR's accuracy and 

predictive power are notably lower compared to RBF neural network. The figure 16 shows a comparative 

analysis on the performance of the proposed prediction models (PLSR and RBF). Table 7 illustrates the 

performance evaluation of various models. 

Table 7: Evaluation of machine learning models based on error 

Models Performance Analysis Model Selectivity 

The Radial Basic Function 

Neural Network (RBF) 

 

• Low RMSE values 

Training 

dataset=0.000280 to 

0.000283. 

Testing 

dataset=0.000274 to 

0.000278. 

• High R-squared values  

Training data set=0.996 

to 0.999. 

Testing data set=0.997 

to 0.999.  

 

• High accuracy and 

predictive capability. 

• It consistently attains 

the lowest RMSE and 

highest R-squared 

values across different 

membership 

functions/activation 

functions. 

Partial Least Square 

Regression (PLSR) 

 

• RMSE values 

Training 

dataset=0.53852   

Testing dataset=0.53860    

• R-squared values 

Training 

dataset=0.911207 

Testing 

dataset=0.911227. 

 

• Moderate performance 

compared to the RBF 

neural network. 
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10. Conclusion 

This study demonstrates the successful implementation of IoMT-based FBG sensing technology, with Machine 

Learning (ML) playing a crucial role in its architecture. Extensive Finite Element Analysis is conducted to 

design the FBG sensing element, incorporating detailed structural analysis to enhance sensitivity using PDMS 

polymer. The FBG sensing system facilitates the detection of cardiac patterns and anomalies, enabling early 

disease detection and optimizing healthcare service delivery to save lives. It offers real-time cardiac monitoring 

through a comprehensive methodology integrating sensor deployment, data analysis, and user interface design. 

Leveraging the IoMT framework and cloud computing, it enables real-time tracking of various cardiovascular 

parameters for multiple patients, facilitating remote monitoring and early disease diagnosis. 

Limitations: Although there is great potential for incorporating FBG vibration sensors into IoMT-based 

decision support systems, there are many challenges to overcome, including high cost of sensor deployment, the 

complexity of developing algorithms, as well as potential data security issues. The efficacy of the technique is 

dependent upon the precision of sensor calibration and the availability of previous data. Further, additional study 

is needed to determine the long-term dependability and longevity of FBG sensors for continuous cardiac 

monitoring, which raises challenges regarding their capacity to work consistently over long periods. 

Future scopes: Future efforts could prioritize enhancing signal processing algorithms for improved precision in 

deriving essential cardiac parameters from FBG sensors. Additionally, conducting comprehensive and 

prolonged reliability studies to enhance healthcare operations' resilience and adaptability, exploring AI-driven 

decision support systems, and establishing standard procedures to guarantee uniformity and comparability 

across different research initiatives and medicinal applications would be beneficial. 
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