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Abstract: Linear stability ofcouple stress fluid saturated porous medium heated from below is studied when the
fluid and solid phases are not in local thermal equilibrium. The Darcy model which includes couples stress
parameter and permeability is employed as a momentum equation. The critical Rayleigh number for the onset of
convection using linear stability analysis is found numerically as a function interphase heat transfer coefficient,
aspect ratio. It is found that a small interphase heat transfer coefficient has significant effect on the stability of
the system. The effect of porosity modified conductivity ratio, diffusivity ratio,couple stress parameter,
interphase heat transfer coefficient on the stability of the system is investigated.
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Introduction

Fluids with suspended particles are a working medium in many an industrial application. The fluids most often
do not subscribe to a Newtonian description and the advent of micro momentum field theories in such a
situation threw open new fields of application, such as polymeric suspensions, animal blood, liquid crystals
which have very small sized suspended particles of different shapes has been reported in last few years. These
particles may change shape, may shrink and expand, and moreover, they may execute rotation independent of
the rotation and movement of the fluid. Most practical problems involving these types of working fluids are
non-isothermal and these thermally responding fluids have uncovered new application areas. Convection is a
dominant and important mode of heat transport in many such applications.

Sharma and Sharma (2004) have studied the Rayleigh-Benard convection in a couple stress fluid saturated
porous layer. The effect of thermal and gravity modulation on the onset of thermal convection in a Boussinesq
couple stress fluid has been studied by Malashetty and Basavaraja (2005) using linear theory. They have used a
regular perturbation method to obtain the correction Rayleigh number and wave number, which characterize the
stability of the system. They found that the couple stress parameter has a significant effect on the regulation of
convection.

In modeling a fluid-saturated porous medium most of the investigations performed assumed a state of local
thermal equilibrium (LTE) between the fluid and the solid phase at any point in the medium. This is a common
practice for most of the studies where the temperature gradient at any location between the two phases is
assumed to be negligible. For many practical applications, involving high-speed flows or large temperature
differences between the fluid and solid phases, the assumption of local thermal equilibrium is inadequate and it
is important to take account of the thermal non-equilibrium effects. Due to applications of porous media theory
in drying, freezing of foods and other mundane materials and applications in everyday technology such as
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microwave heating, rapid heat transfer from computer chips via use of porous metal foams and their use in heat
pipes, it is believed that local thermal non-equilibrium theory will play a major role in future developments.
Recently, attention has been given to the LTNE model in the study of convection heat transfer in porous media.
Much of this work has been reviewed in recent books by Ingham and Pop (1998) and Nield and Bejan (2006)
Criteria for heat and mass transfer models in metal hydride packed beds has been investigated by Kuznetsov and
Vafai (1995) and effects of non-equilibrium were suggested to be more significant at high Reynolds number and
for high porosity. Kuznetsov (1996) studied a perturbation solution for a thermal non-equilibrium fluid flow
through a three-dimensional sensible storage packed bed. Vafai and Amiri (1998) give detailed information
about the work on thermal non-equilibrium effects of fluid flow through a porous packed bed. The review of
Kuznetsov (1998) gives detailed information about the works on thermal non-equilibrium effects on internal
forced convection flows.

Nield and Bejan (2006) have discussed a two-field model for energy equation. Instead of having a single energy
equation, which describes the common temperature of the saturated porous media, two equations are used for
fluid and solid phases separately. In two-field model, the energy equations are coupled by the terms, which
account for the heat lost to or gained from the other phase. Rees and co-workers (Rees and Pop,2005, 2000
Banu and Rees, 2002) in a series of studies have investigated thermal non-equilibrium (LTNE) effect on free
convective flows in a porous medium.

In this chapter we study the onset of convection in a couple-stress fluid saturated porous layer heated from
below with emphasis on how the condition for the onset of convection is modified when the solid and fluid
phase are not in local thermal equilibrium (LTNE). When non-equilibrium effects are included in the problem
the linear analysis is slightly modified and it is still possible to proceed analytically to find the condition for the
onset of convection. We have also carried out the asymptotic analysis for very small and very large values of the
inter phase heat transfer coefficient. This work is more general in the sense that we recover their results in the

limit as the couple-stress parameter C tends to zero.

Mathematical Formulation
We consider a couple-stress fluid saturated porous layer of depth d, which is heated from below and cooled from

above. The lower surface is held at a temperatureTl, while the upper surface is at T, . We assume that the solid

and fluid phases of the medium are not in local thermal equilibrium and use a two-field model for temperatures.
It is assumed that at the bounding surfaces the solid and fluid phases have identical temperatures. The basic
governing equations are

Vg=0, ()
10 1 1
P, _—q+—2q.Vq =-Vp——(u, —u#.V)q+p,9, @
s ot ¢ K
oT, 5
e(pc), EJF (pC), q.VT, =&k, VT, +h(T,-T,), (3)
orT
(1—&)(pc) - AL-&)KVT —h(T -T), )
pf :po[l_lB(Tf _Tu)]' (5)
We confine ourselves to two-dimensional motions. Further, the boundaries are assumed to be free-free and
isothermal.
Basic State

The basic state is assumed to be quiescent and we superimpose a small perturbation on it. Egs.(9.1)—(9.5) are
now made dimensionless using following transformations
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We eliminate the pressure from the momentum transport equation (9.2) and arrive at the vorticity transport
equation. The non-dimensional form of the vorticity and the heat transport equations are obtained in the form

B2 22 32 |- Ra 2L —-CvA )y, G
Pr | ot OX
3.0 - VPO + H(g-0). ®
0
a@—f:V2¢+yH(0—¢), )
where i/ is the stream function, which is related to U and V by
Lo v oy
oy OX
0? 0°
\%& EF + W is the two dimensional Laplacian operator and J is the Jacobean. The asterisks have been
X

removed for simplicity.
The non-dimensional groups that appear in the above equations are

PO TOKA ek hd?

Ra ) - ! -,
£ Ui Ky - &)k ek
(10)
k C
a:(PC)s _f:K_f' C= /uez, Pr:m, Da=£2,
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In Eq.(9.10), Ra is the Darcy-Rayleigh number which expresses the balance between buoyancy and
viscous forces, y is the porosity modified conductivity ratio, H is the non-dimensional inter phase heat transfer

coefficient, «r is the diffusivity ratio, Da is the Darcy number , Pr is the Prandtl number and C is the couple
stress parameter.

We note that, the fluid and solid phases are not in thermal equilibrium, the use of appropriate boundary
conditions for the temperature fields may pose a difficulty. However we assume that the phases have equal
temperatures at the bounding surfaces. Therefore EQs.(9.7)-(9.9) are solved for stress—free isothermal
boundaries and hence the boundary conditions are

2
zzy_f:o on y=0 and 1, (11)
0=¢=0 on y=0and 1. (12)

Linear Stability Theory.

We assume that the equilibrium state is subjected to infinitesimal perturbations. To study the linear theory we
use the linearized version of Eqs.(9.7)—(9.9). The principle of exchange of stabilities may be proved easily so
that the onset of convection is stationary.
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We seek the solutions to the linearized equations in the form

w = A sinzycosax, (13)
0= A,sinzysinax, (14)
¢ = Ajsinzysinax, (15)

where a is the horizontal wave number and the A’s are constants. Substitution of Eq.(13) —(15) into the
linearized version of the Eqs.(9.7)—(9.9) yields the following matrix equation

(7> +a®)[C(x* +a%)+1] aRa 0 A 0
a (@%+7%+H) —-H A =10 (s
0 yH —(a2+7z2+7/H) A 0
For non-trivial solution, the determinant of the Co-efficient matrix must be zero.
2 212 2 233
Ra = (= +f )-+C(ﬂ :a ) 1+—3——2}———- . (7)
a a a“+z°+yH

The value of Rayleigh number Ra given in Equation (9.17) can be minimized with respect to the wavenumber a
ORa

by setting 6_ =0 and solving the resulting equation. However, in the present case it is highly impossible to
a

obtain a straight-forward closed form expression for the minimizing value of a. therefore, we use Newton-
Raphson iteration scheme to obtain the minimum values of Ra and a as function of Hand y .

Asymptotic Analysis:
Case 1: For very small values of H
When H is very small the critical value of the Rayleigh number Ra is slightly above the critical value for the

LTE case. Accordingly we expand Ra given by Eq.(17) in a power series in H as

2 2 2 2

Ra:((ﬂuaz)z +C(ﬂ2+az)3j+ [<ﬁz+az)+cwz+az)2]H
a a a a

2 2

2 2
— i+M 7/H2+“_ .
a a

(18)
To minimize Ra up to O(H?) we set ORa/da = 0 and obtain an expression of the form

(4Ca® +(2+6Cr?)a* —(2z* +2C %)+ (2Ca* —22° —2C z*)H

. (19)
+(2+2Cz°)H“y =0.
We also expand a in power series of H as
a=a,+aH+a,H*+ .., (20)

where @, is the critical wave number for the LTE case and is given by the expression
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a? - ~(C 7% +1)++(C 7% +1) (9C % +1)

4C
Substituting Eq.(21) into Eq.(20) and rearranging the terms and then equating the coefficients of same powers of

(21)

H will allow us to find @ and @, . Thus we obtain

—— 22)
A

a, = & , (23)
A

where

A =r*+Cr*-Ca,,
A, = (2+2C %)y +(60C a," +12a,” +36C a,’z*)a,* +8C a,°a,,
A =12Ca,’ +4a,°C +12C n°a,".

With these values of ag , a1 and az , EQ.(20) gives the critical wavenumber and consequently using this in (18)
one can obtain the critical Rayleigh number for small H.

Case 2: For very large values of H

For large values H, the critical Rayleigh number takes the form
2, 42)2 2, .2\3 2, .2 2, 42)2
o, |+ o () ][m_(;z ) o (Pl o) 24)

a2 aZ ¥ }/2 }/3

We minimize this with respect to a in a similar way as we did in the small H case and obtain the following
expression

(8Ca'™ +6(5C 7° +1)a® +4(10C z* + 472)a® + 2(10C z° + 62*)a* — 27° —2C z'%)H
—(6yCa® +4y(C 72 +3Cx%y)a® + 2y7%(3+2C 2)a* —2yx° A+ C 22))H ™
+4C (7/2 + ;/3)a6 +2(1+3C 7r2)(7/2 + ;/3)a4 _rt-cr%=o0.

(25)
Similarly we expand a in the form
& &
a =a,+t—+——+..., (26)
H H

where ao is given by Eq.(9.21) and a1, a, are to be found.
Substituting Eq.(9.26) into Eq.(9.25) and equating the coefficients of like powers of H we can find @ and a,

and are given by

al =—, (27)

=, (28)

where
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A; =6C yag +4y(Cz% +3C yﬂz)ag +2y(37% +6C 7z4)a61 — 2y (" +C %),

A} = ((48C ya} +24y(C z° +3C yz°)ag +8y(37° +6C z*)ad)a, — ((8C a3’ + 6(5C z° +1)aj

+4(10C 7* + 47%)ad +2(10C z° + 67*)ag —22° — 2C 7'%) — (60C (* + *)ag
+12(1+3C 73 (y* + y¥)ad)al

A'=24C (y* + y*)ag +8(1+3C z°)(»* + *)a] .

Again with these values of ag , a; and a2, we compute the critical wavenumber ac from Eq.(26) and finally using

this value of the a; , one can obtain the critical Rayleigh number Ra; from Eq.(26) for

The

expression for the critical Rayleigh number Ra and the critical wavenumber a_ for both small H and large

H are evaluated for fixed value of C=2 and comparison of these values with the exact values obtained

earlier are given in Table 1 & 2. It is important to note that an excellent agreement between these two results are

found when H is small. On the other hand reasonably good agreement is found when H is large.

Table 1. Comparison of Exact and Asymptotic solutions for small values of H

logioH ac(E) ac(A) Rac(E) Rac(A)
vy=1
-3.5 2.25708 2.25708 701.703 701.703
-3.0 2.25711 2.25711 701.736 701.736
-2.5 2.25719 2.25719 701.837 701.837
-2.0 2.25745 2.25745 702.157 702.157
-1.5 2.25828 2.25829 703.168 703.168
-1.0 2.26085 2.26092 706.344 706.344
-0.5 2.26857 2.26940 716.186 716.180
0.0 2.28935 2.30999 745.444 745.336
0.5 2.33033 3.81790 823.002 825.578
vy=0.01
35 2.25708 2.25708 701.703 701.703
-3.0 2.25711 2.25711 701.736 701.736
25 2.25719 2.25719 701.837 701.837
-2.0 2.25745 2.25745 702.158 702.158
15 2.25829 2.25829 703.171 703.171
-1.0 2.26090 2.26092 706.375 706.375
-0.5 2.26905 2.26925 716.487 716.487
0.0 2.29363 2.29564 748.293 748.300
0.5 2.36144 2.38311 847.380 848.079
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Conclusions

The stability of a horizontal couple stress fluid saturated porous layer heated from below when the solid and
fluid phases are not in local thermal equilibrium is examined analytically. Darcy model is used for the
momentum equation and a two-field model is used for energy equation each representing the solid and fluid
phases separately. The condition for the onset of convection is obtained analytically.

The effect of increasing conductivity ratio v is to decrease the critical Rayleigh number and hence the effect of

increasingy is to destabilize the system. The effect is more pronounced for very small y . The critical Rayleigh
number is independent of y for very small H while for large H, it decreases with increasing vy .

It is found that the critical wave number a;approaches a common limitas H — 0 and H — oo in the

Newtonian limit while it approaches two different limits, one as H — O and another as H —> oo in the non-
Newtonian regime. We found an excellent agreement between the exact solutions and the solutions obtained
from asymptotic analysis. We find that the results of the LTE case are recovered in the large H limit and the
results of Darcy regime are recovered in the small limit C .
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