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Abstract: Linear stability ofcouple stress fluid saturated porous medium heated from below is studied when the 

fluid and solid phases are not in local thermal equilibrium. The Darcy model which includes couples stress 

parameter and permeability is employed as a momentum equation. The critical Rayleigh number for the onset of 

convection using linear stability analysis is found numerically as a function interphase heat transfer coefficient, 

aspect ratio. It is found that a small interphase heat transfer coefficient has significant effect on the stability of 

the system.  The effect of porosity modified conductivity ratio, diffusivity ratio,couple stress parameter, 

interphase heat transfer coefficient on the stability of the system is investigated. 
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 Introduction 

Fluids with suspended particles are a working medium in many an industrial application. The fluids most often 

do not subscribe to a Newtonian description and the advent of micro momentum field theories in such a 

situation threw open new fields of application, such as polymeric suspensions, animal blood, liquid crystals 

which have very small sized suspended particles of different shapes has been reported in last few years. These 

particles may change shape, may shrink and expand, and moreover, they may execute rotation independent of 

the rotation and movement of the fluid. Most practical problems involving these types of working fluids are 

non-isothermal and these thermally responding fluids have uncovered new application areas. Convection is a 

dominant and important mode of heat transport in many such applications. 

Sharma and Sharma (2004) have studied the Rayleigh-Benard convection in a couple stress fluid saturated 

porous layer. The effect of thermal and gravity modulation on the onset of thermal convection in a Boussinesq 

couple stress fluid has been studied by Malashetty and Basavaraja (2005) using linear theory. They have used a 

regular perturbation method to obtain the correction Rayleigh number and wave number, which characterize the 

stability of the system. They found that the couple stress parameter has a significant effect on the regulation of 

convection.    

In modeling a fluid-saturated porous medium most of the investigations performed assumed a state of local 

thermal equilibrium (LTE) between the fluid and the solid phase at any point in the medium. This is a common 

practice for most of the studies where the temperature gradient at any location between the two phases is 

assumed to be negligible. For many practical applications, involving high-speed flows or large temperature 

differences between the fluid and solid phases, the assumption of local thermal equilibrium is inadequate and it 

is important to take account of the thermal non-equilibrium effects. Due to applications of porous media theory 

in drying, freezing of foods and other mundane materials and applications in everyday technology such as 
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microwave heating, rapid heat transfer from computer chips via use of porous metal foams and their use in heat 

pipes, it is believed that local thermal non-equilibrium theory will play a major role in future developments.  

Recently, attention has been given to the LTNE model in the study of convection heat transfer in porous media. 

Much of this work has been reviewed in recent books by Ingham and Pop (1998) and Nield and Bejan (2006) 

Criteria for heat and mass transfer models in metal hydride packed beds has been investigated by Kuznetsov and 

Vafai (1995) and effects of non-equilibrium were suggested to be more significant at high Reynolds number and 

for high porosity. Kuznetsov (1996) studied a perturbation solution for a thermal non-equilibrium fluid flow 

through a three-dimensional sensible storage packed bed. Vafai and Amiri (1998) give detailed information 

about the work on thermal non-equilibrium effects of fluid flow through a porous packed bed. The review of 

Kuznetsov (1998) gives detailed information about the works on thermal non-equilibrium effects on internal 

forced convection flows.  

Nield and Bejan (2006) have discussed a two-field model for energy equation. Instead of having a single energy 

equation, which describes the common temperature of the saturated porous media, two equations are used for 

fluid and solid phases separately. In two-field model, the energy equations are coupled by the terms, which 

account for the heat lost to or gained from the other phase. Rees and co-workers (Rees and Pop,2005, 2000 

Banu and Rees, 2002) in a series of studies have investigated thermal non-equilibrium (LTNE) effect on free 

convective flows in a porous medium.  

In this chapter we study the onset of convection in a couple-stress fluid saturated porous layer heated from 

below with emphasis on how the condition for the onset of convection is modified when the solid and fluid 

phase are not in local thermal equilibrium (LTNE). When non-equilibrium effects are included in the problem 

the linear analysis is slightly modified and it is still possible to proceed analytically to find the condition for the 

onset of convection. We have also carried out the asymptotic analysis for very small and very large values of the 

inter phase heat transfer coefficient. This work is more general in the sense that we recover their results in the 

limit as the couple-stress parameter  C  tends to zero. 

  

Mathematical Formulation 

We consider a couple-stress fluid saturated porous layer of depth d, which is heated from below and cooled from 

above. The lower surface is held at a temperature
1T , while the upper surface is at uT . We assume that the solid 

and fluid phases of the medium are not in local thermal equilibrium and use a two-field model for temperatures. 

It is assumed that at the bounding surfaces the solid and fluid phases have identical temperatures. The basic 

governing equations are  
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We confine ourselves to two-dimensional motions. Further, the boundaries are assumed to be free-free and 

isothermal.  

 Basic State 

The basic state is assumed to be quiescent and we superimpose a small perturbation on it. Eqs.(9.1)–(9.5) are 

now made dimensionless using following transformations 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024)  

___________________________________________________________________________ 

2309 

        

* * * * *

2

*
1 1

,

, , .

( , ) ( , ) , ( , ) ( , ) ,
( ) ( )

( )
( ) ( )

f f

f f

f
u u s u uf

f

k k
x y d x y u v u v p p

c d c K

c d
T T T T T T T T t t

k

 

 


 

= = =

= − + = − + =

                    (6)       

We eliminate the pressure from the momentum transport equation (9.2) and arrive at the vorticity transport 

equation. The non-dimensional form of the vorticity and the heat transport equations are obtained in the form 
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where  is the stream function, which is related to u and v  by 
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 is the two dimensional Laplacian operator and J is the Jacobean. The asterisks have been 

removed for simplicity. 

The non-dimensional groups that appear in the above equations are  
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 In Eq.(9.10), Ra  is the Darcy-Rayleigh number which expresses the balance between buoyancy and 

viscous forces,   is the porosity modified conductivity ratio, H  is the non-dimensional inter phase heat transfer 

coefficient,   is the diffusivity ratio, Da  is the Darcy number , Pr is the Prandtl number and C  is the couple 

stress parameter. 

We note that, the fluid and solid phases are not in thermal equilibrium, the use of appropriate boundary 

conditions for the temperature fields may pose a difficulty. However we assume that the phases have equal 

temperatures at the bounding surfaces. Therefore Eqs.(9.7)-(9.9) are solved for stress–free isothermal 

boundaries and hence the boundary conditions are 

     

2

2
0 on 0 and 1y

y





= = =


,        (11) 

        0 on 0 and 1y = = = .        (12) 

 Linear Stability Theory. 

We assume that the equilibrium state is subjected to infinitesimal perturbations. To study the linear theory we 

use the linearized version of Eqs.(9.7)–(9.9). The principle of exchange of stabilities may be proved easily so 

that the onset of convection is stationary.  
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 We seek the solutions to the linearized equations in the form 

                   1 sin cosA y ax = ,                     (13) 

                    2 sin sinA y ax = ,          (14) 

                    3 sin sinA y ax = ,          (15) 

where a is the horizontal wave number and the A’s are constants. Substitution of Eq.(13) –(15) into the 

linearized version of the Eqs.(9.7)–(9.9) yields the following matrix equation 
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For non-trivial solution, the determinant of the Co-efficient matrix must be zero.  
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The value of Rayleigh number Ra given in Equation (9.17) can be minimized with respect to the wavenumber a 

by setting  0
Ra

a


=


 and solving the resulting equation. However, in the present case it is highly impossible to 

obtain a straight-forward closed form expression for the minimizing value of a. therefore, we use Newton-

Raphson iteration scheme to obtain the minimum values of Ra and a as function of H and  . 

 

 Asymptotic Analysis: 

      Case 1:  For very small values of H 

When H is very small the critical value of the Rayleigh number Ra  is slightly above the critical value for the 

LTE case. Accordingly we expand Ra  given by Eq.(17) in a power series in H as  
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To minimize Ra up to O(H2) we set 0Ra a  =  and obtain an expression of the form 
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We also expand a  in power series of H as  

            
2
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where 
0

a is the critical wave number for the LTE case and is given by the expression 
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Substituting Eq.(21) into Eq.(20) and rearranging the terms and then equating the coefficients of same powers of  

H will allow us to find 
1

a and 
2

a . Thus we obtain  

1
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2 4 4
1 0C C a  = + − , 

2 4 2 2 2 2 3
2 0 0 0 1 0 1(2 2 ) (60 12 36 ) 8C C a a C a a C a a   = + + + + + , 

5 3 2 3
0 0 012 4 12C a a C C a = + + . 

With these values of a0 , a1 and a2 , Eq.(20) gives the critical wavenumber and consequently using this in (18) 

one can obtain the critical Rayleigh number for small H. 

 

Case 2:  For very large values of H 

 

For large values H, the critical Rayleigh number takes the form 
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We minimize this with respect to a in a similar way as we did in the small H case and obtain the following 

expression  
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Similarly we expand a  in the form  
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2
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where a0 is given by Eq.(9.21) and a1,   a2 are to be found. 

Substituting Eq.(9.26) into Eq.(9.25) and equating the coefficients of like powers of H we can find 
1

a  and 
2

a  

and are given by 
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Again with these values of a0 , a1 and a2 , we compute the critical wavenumber ac from Eq.(26) and finally using 

this value of the ac , one can obtain the critical Rayleigh number Rac from Eq.(26) for  large H. The 

expression for the critical Rayleigh number 
c

Ra  and the critical wavenumber 
c

a  for both small H  and large 

H  are evaluated for fixed value of 2C =  and comparison of these values with the exact values obtained 

earlier are given in Table 1 & 2. It is important to note that an excellent agreement between these two results are 

found when H  is small. On the other hand reasonably good agreement is found when H  is large. 

166

Table 1. Compar ison of Exact and Asymptotic solutions for small values of H

log10H ac(E) ac(A) Rac(E) Rac(A)

 =1

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

2.25708

2.25711

2.25719

2.25745

2.25828

2.26085

2.26857

2.28935

2.33033

2.25708

2.25711

2.25719

2.25745

2.25829

2.26092

2.26940

2.30999

3.81790

701.703

701.736

701.837

702.157

703.168

706.344

716.186

745.444

823.002

701.703

701.736

701.837

702.157

703.168

706.344

716.180

745.336

825.578

 = 0.01

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

2.25708

2.25711

2.25719

2.25745

2.25829

2.26090

2.26905

2.29363

2.36144

2.25708

2.25711

2.25719

2.25745

2.25829

2.26092

2.26925

2.29564

2.38311

701.703

701.736

701.837

702.158

703.171

706.375

716.487

748.293

847.380

701.703

701.736

701.837

702.158

703.171

706.375

716.487

748.300

848.079
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Conclusions 

The stability of a horizontal couple stress fluid saturated   porous layer heated from below when the solid and 

fluid phases are not in local thermal equilibrium is examined analytically. Darcy model is used for the 

momentum equation and a two-field model is used for energy equation each representing the solid and fluid 

phases separately. The condition for the onset of convection is obtained analytically.  

The effect of increasing conductivity ratio   is to decrease the critical Rayleigh number and hence the effect of 

increasing   is to destabilize the system. The effect is more pronounced for very small  . The critical Rayleigh 

number is independent of   for very small H while for large H, it decreases with increasing  . 

It is found that the critical wave number ca approaches a common limit as 0→H  and →H  in the 

Newtonian limit while it approaches two different limits, one as 0→H  and another as →H  in the non-

Newtonian regime. We found an excellent agreement between the exact solutions and the solutions obtained 

from asymptotic analysis. We find that the results of the LTE case are recovered in the large H limit and the 

results of Darcy regime are recovered in the small limit C . 
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