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Abstract:-  Linear Programming (LP) is concerned with the determination of a maximum or a minimum point of 

a linear function of several variables, which has to satisfy a number of linear constraints. Linear Programming has 

found its major application in the oil and chemical industry, refinery production planning, transportation planning 

and integrated planning problems. Since, the computational efficiency of the simplex method depends on the 

number of constraints and a very small number of constraints are involved to determine the solution of LP 

problem, Preprocessing is a very important step in solving linear programming problems. In this paper, a new 

algorithm is proposed for selecting a set of constraint(s) to solve the LP Problems based on the weighted average 

of each constraint. The algorithm is coded by using a computer programming language python. The procedure, 

computational results and performance analysis of the proposed algorithm are presented in this paper. 

Keywords: Linear Programming, Weighted Average of Constraint, Intercept Matrix. 

 

1. Introduction 

Linear programming is one of the active research areas in optimization and it has solved different practical 

optimization problems that arise in industry, commerce and management for many years.  It involves the “planning 

of activities” to obtain an optimal result. Linear programming, (also called linear optimization) is a method to 

achieve the best outcome (such as maximum profit or minimum cost) in a mathematical model whose 

requirements are represented by linear relationships.  It is a special case of mathematical programming.  It is 

designed for models with linear objective and constraint functions. 

George Dantzig (1947) developed a Simplex algorithm for finding optimal solutions of the problems that can be 

expressed using as a linear equations and inequalities.  In this iterative procedure, computational effort depends 

on the number of constraints.  Many researchers have proposed different methods for solving linear programming 

problems to reduce the computational efforts.  For example, Yoshihiro Yamamoto (2010) has developed an 

algorithm for solving a linear programming problem which is an extended version and the proposed algorithm 

highly depends on a new criterion of optimality.  Effanga and Isaac (2011) presented a technique for solving linear 

programming problem using feasible region contraction algorithm, which is centered on finding a feasible interior 

point each time the feasible region is contracted.  Rodirgo (2012) proposed algorithm that has solved with two 

components, which are initialization stage (non – iterative) and a main cycle (iterative).  In this algorithm, it began 

from an interior point and carried out an orthogonal projection by using parametric straight lines and it moving 

on interior point and boundary of the polyhedron which defines the feasible region until it reaches the extreme 

optimal point. Paulraj and Sumathi (2012) have proposed a new approach in selecting the most restrictive 

constraints and it compared with Ioslovich procedure.  Saliha et al (2018) have proposed pivot Adaptive Method 

to compute the new support feasible solution and it has introduced a matrix which is defined by using a concept 

of simplex pivoting rule.  In this variant, the pivoting rules in order to avoid computing the inverse of the basis 

matrix at each iteration.  Syed Inayatullah et al (2019) has developed a generalization of simplex pivots for free 

variables and they handle any general linear programming problem in its original variable space and introduce a 

new rules for entering and leaving variables. 

In this paper, a new algorithm is proposed to select the constraints for determining the solution of the following 

LPP.  
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Maximize 𝑧 = 𝐶1𝑥1 + 𝐶2𝑥2 + ⋯ + 𝐶𝑛𝑥𝑛 

Subject to ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ (≥)𝑏𝑖
𝑛
𝑗=1  and 𝑥𝑗 ≥ 0 

𝑖 = 1,2, … 𝑚 and 𝑗 = 1,2, … , 𝑛.  Assume 𝑚 > 𝑛. 

2. Proposed Algorithm 

A New approach suggested to select the constraints for determining the optimal solution of LPP is introduced in 

this section. The steps of the proposed algorithm are as follows: 

 

Step 1:  Let 𝐼 = {1,2, … , 𝑚} be the index set of constraints and Let 𝐽 = {1,2, … , 𝑛} be the index set of decision 

              variables. Set 𝐼𝑐 = ∅ , where ∅ is an empty set. 

Step 2:  Calculate the intercept matrix 𝜃𝑗𝑖 =
𝑏𝑖

𝑎𝑖𝑗
, 𝑎𝑖𝑗 > 0 

Step 3:  Compute the weighted average 𝜆𝑖 =
𝑏𝑖

∑ 𝑎𝑖𝑗
𝑛
𝑗=1

 of the 𝑖𝑡ℎ constraint and  

the objective function value 𝑧(𝜆𝑖) = ∑ 𝑐𝑗𝜆𝑖
𝑛
𝑗=1  at 𝜆𝑖. 

Step 4:   Let 𝑙 = 𝑎𝑟𝑔𝑖∈𝐼(𝑚𝑖𝑛(𝑧(𝜆𝑖))). 

Step 5:   Set 𝐼 = 𝐼 − {𝑙}. 

Step 6:   Let 𝜃𝑝𝑙 = min
𝑗∈𝐽

{𝜃𝑗𝑙}. 

Step 7:   If 𝑝 ∈ 𝐽, 𝐼𝑐 = 𝐼𝑐 ∪ {𝑙} and 𝐽 = 𝐽 − {𝑝}  go to step 4.  Otherwise go to step 4. 

Step 8:  If either𝐽 = ∅ or  𝑛(𝐼) + 𝑛(𝐼𝑐) = 𝑚, then optimize the objective function, subject to the constraints 

              corresponding to index values in 𝐼𝑐  (relaxed problem). Otherwise go to step 4.  

Step 9:  If the Optimal solution of the relaxed problem satisfies the remaining constraints, then STOP.    

              Otherwise add most violated constraint to the relaxed problem and solve by using the post optimality  

              analysis. 

 

3. Illustrative of the Method 

The proposed method is illustrated with some examples. 

 

Example1 

 Maximize 𝑧 = 13𝑥1 + 11𝑥2 

              Subject to 4𝑥1 + 5𝑥2 ≤ 1500 

                            5𝑥1 + 3𝑥2 ≤ 1575 

                              𝑥1 + 2𝑥2 ≤ 420 

                                    𝑥1, 𝑥2 ≥ 0 

Solution: 

 

 𝐼 = {1,2,3}, 𝐽 = {1,2}, Set 𝐼𝑐 = ∅ 

Intercept matrix 𝜃𝑗𝑖 = (
375 315 420
300 525 210

) 

 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖 
𝜆𝑖

𝑧(𝜆𝑖)
(

1 2 3
166.67 196.88 140
4000 4725 3360

) 

 

Iteration 1: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(4000,4725,3360) = 3360 = 𝑧(𝜆3).  Hence 𝑙 = 3, 𝐼 = 𝐼 − {𝑙} = {1,2} 

𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃13, 𝜃23) = 210 = 𝜃23. 

Hence 𝑝 = 2, 𝐼𝑐 = {3} and 𝐽 = 𝐽 − {𝑝} = {1} ≠ ∅ 

Iteration 2: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(4000,4725) = 4000 = 𝑧(𝜆1).  Hence 𝑙 = 1, 𝐼 = 𝐼 − {𝑙} = {2} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃11, 𝜃21) = 300 = 𝜃21 

Hence 𝑝 = 2, 𝐼𝑐 = {3} 
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Iteration 3: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(4725) = 4725 = 𝑧(𝜆2).  Hence 𝑙 = 2 

 𝐼 = 𝐼 − {𝑙} = {1} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃12, 𝜃22) = 315 = 𝜃12 

Hence 𝑝 = 1, 𝐼𝑐 = {2,3} and 𝐽 = 𝐽 − {𝑝} = ∅. 
 

Since J = ∅ , then the constraints corresponding to index values in 𝐼𝑐 = {2,3} are selected 

Therefore, the Relaxed LPP is 

 Maximize 𝑧 = 13𝑥1 + 11𝑥2 

 Subject to  5𝑥1 + 3𝑥2 ≤ 1575 

                     𝑥1 + 2𝑥2 ≤ 420 

                             𝑥1, 𝑥2 ≥ 0 

The optimal solution of the relaxed LP problem (with selected constraints) is  

Max 𝑧 = 4335,  𝑥1 = 270, 𝑥2 = 75 .  It satisfies the remaining Constraint. 

Hence, the solution of the LP problem is 𝑥1 = 270, 𝑥2 = 75 and Max 𝑧 = 4335. 

 

Example 2: 

 

Maximize 𝑧 = 40𝑥1 + 35𝑥2 + 30𝑥3 

Subject to 2𝑥1 + 3𝑥2 + 5𝑥3 ≤ 120 

                 4𝑥1 + 3𝑥2 + 𝑥3 ≤ 160 

                 5𝑥1 + 2𝑥2 + 4𝑥3 ≤ 100 

                 2𝑥1 + 4𝑥2 + 𝑥3 ≤ 40 

                       𝑥1, 𝑥2, 𝑥3 ≥ 0 

 

Solution: 

 

 𝐼 = {1,2,3,4}, 𝐽 = {1,2,3} 

Set 𝐼𝑐 = ∅ 

Intercept matrix 𝜃𝑗𝑖 = (
60 40 20 20
40 53.33 50 10
24 160 25 40

) 

 

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖
𝜆𝑖

𝑧(𝜆𝑖)
(

1 2 3       4
12 20 9.09 5.714

1260 2100 954.55 599.97

) 

 

Iteration 1: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(1260,2100,954.55,599.97) = 599.97 = 𝑧(𝜆4). Hence 𝑙 = 4, 𝐼 = 𝐼 − {𝑙} = {1,2,3} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃14, 𝜃24, 𝜃34) = 10 = 𝜃24 

Hence 𝑝 = 2, 𝐼𝑐 = {4} and 𝐽 = 𝐽 − {𝑝} = {1,3} ≠ ∅. 
 

Iteration 2: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(1260,2100,954.55) = 954.55 = 𝑧(𝜆3). Hence 𝑙 = 3, 𝐼 = 𝐼 − {𝑙} = {1,2} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃13, 𝜃23, 𝜃33) = 20 = 𝜃13 

Hence 𝑝 = 1, 𝐼𝑐 = {3,4} and 𝐽 = 𝐽 − {𝑝} = {2} ≠ ∅. 
 

Iteration 3: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(1260,2100) = 1260 = 𝑧(𝜆1). Hence 𝑙 = 1, 𝐼 = 𝐼 − {𝑙} = {2} 

  𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃11, 𝜃21, 𝜃31) = 24 = 𝜃31 

Hence 𝑝 = 3, 𝐼𝑐 = {1,3,4} and 𝐽 = 𝐽 − {𝑝} = ∅. 
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Since J = ∅ , the constraints corresponding to index values in 𝐼𝑐 = {1,3,4} are selected 

Relaxed LPP: 

Maximize 𝑧 = 40𝑥1 + 35𝑥2 + 30𝑥3 

Subject to 2𝑥1 + 3𝑥2 + 5𝑥3 ≤ 120 

                 5𝑥1 + 2𝑥2 + 4𝑥3 ≤ 100 

                 2𝑥1 + 4𝑥2 + 𝑥3 ≤ 40 

                     𝑥1, 𝑥2, 𝑥3 ≥ 0 

The optimal solution of the relaxed LP problem (with selected constraints) is  

Max 𝑧 = 832.79, 𝑥1 = 1.64, 𝑥2 = 3.93, 𝑥3 = 20.98 . It satisfies the remaining Constraint. 

Therefore, the solution of the LP problem is 𝑥1 = 1.64, 𝑥2 = 3.93, 𝑥3 = 20.98 

and Max 𝑧 = 832.79. 

 

Example 3:(  constraints coefficients are Randomly generated) 

 

Maximize 𝑧 = 1𝑥1 + 1𝑥2 + 1𝑥3 

Subject to 36𝑥1 + 0𝑥2 + 21𝑥3 ≤ 38 

                 29𝑥1 + 76𝑥2 + 58𝑥3 ≤ 38 

                 48𝑥1 + 48𝑥2 + 90𝑥3 ≤ 38 

                 24𝑥1 + 58𝑥2 + 84𝑥3 ≤ 38 

                    2𝑥1 + 35𝑥2 + 26𝑥3 ≤ 38 

                  66𝑥1 + 44𝑥2 + 4𝑥3 ≤ 38 

                          𝑥1, 𝑥2, 𝑥3 ≥ 0 

 

Solution: 

 

 𝐼 = {1,2,3,4,5,6}, 𝐽 = {1,2,3} 

Set 𝐼𝑐 = ∅ 

Intercept matrix 𝜃𝑗𝑖 = (
1.0556 1.3103 0.7917

− 0.5 0.7917
1.8095 0.6552 0.4222

     1.5833 19 0.5758
    0.6552 1.0857 0.8631
    0.4524 1.4615 9.5

) 

 

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖
𝜆𝑖

𝑧(𝜆𝑖)
(

1 2 3
0.6667 0.2331 0.2043

2 0.6994 0.6129

     4 5 6
    0.2289 0.6032 0.3333
    0.6867 1.8095 1

) 

 

Iteration 1: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(2,0.6994,0.6129,0.6867,1.8095,1) = 0.6129 = 𝑧(𝜆3) .Hence 𝑙 = 3 

 𝐼 = 𝐼 − {𝑙} = {1,2,4,5,6} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃13, 𝜃23, 𝜃33) = 0.4222 = 𝜃33 

Hence 𝑝 = 3, 𝐼𝑐 = {3} and 𝐽 = 𝐽 − {𝑝} = {1,2} ≠ ∅. 
 

Iteration 2: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(2,0.6994,0.6867,1.8095,1) = 0.6867 = 𝑧(𝜆4). Hence 𝑙 = 4 

 𝐼 = 𝐼 − {𝑙} = {1,2,5,6} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃14, 𝜃24, 𝜃34) = 0.4524 = 𝜃34 

Hence  𝑝 = 3, 𝐼𝑐 = {3} 

 

Iteration 3: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(2,0.6994,1.8095,1) = 0.6994 = 𝑧(𝜆2). Hence 𝑙 = 2 

 𝐼 = 𝐼 − {𝑙} = {1,4,5,6} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃12, 𝜃22, 𝜃32) = 0.5 = 𝜃22 

Hence 𝑝 = 2, 𝐼𝑐 = {2,3} and 𝐽 = 𝐽 − {𝑝} = {1} ≠ ∅ 
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Iteration 4: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(2,1.8095,1) = 1 = 𝑧(𝜆6). Hence 𝑙 = 6 

 𝐼 = 𝐼 − {𝑙} = {1,4,5} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃16, 𝜃26, 𝜃36) = 0.5758 = 𝜃16 

Hence 𝑝 = 1, 𝐼𝑐 = {2,3,6}  and𝐽 = 𝐽 − {𝑝} = ∅,  

 

Since 𝐽 = ∅ ,  the constraints corresponding to index values in 𝐼𝑐 = {2,3,6} are selected 

Maximize 𝑧 = 1𝑥1 + 1𝑥2 + 1𝑥3 

Subject to 29𝑥1 + 76𝑥2 + 58𝑥3 ≤ 38 

                  48𝑥1 + 48𝑥2 + 90𝑥3 ≤ 38 

                  66𝑥1 + 44𝑥2 + 4𝑥3 ≤ 38 

                        𝑥1, 𝑥2, 𝑥3 ≥ 0  

The optimal solution of the  above LP problem (with selected constraints) is  

Max 𝑧 = 0.74, 𝑥1 = 0.36, 𝑥2 = 0.32, 𝑥3 = 0.06.  It satisfies the remaining constraints. 

Therefore, the solution of the problem is 𝑥1 = 0.36, 𝑥2 = 0.32, 𝑥3 = 0.06 and Max 𝑧 = 0.74 

 

Example 4: ( All the coefficients are generated randomly ) 

 

Maximize 𝑧 = 93.30𝑥1 + 73.50𝑥2 + 26.17𝑥3 + 79.35𝑥3 

Subject to 39.41𝑥1 + 90.80𝑥2 + 60.44𝑥3 + 21.96𝑥4 ≤ 62.78 

88.14𝑥1 + 12.25𝑥2 + 66.13𝑥3 + 74.42𝑥4 ≤ 45.92 

51.22𝑥1 + 47.13𝑥2 + 59.83𝑥3 + 87.59𝑥4 ≤ 60.12 

7.528𝑥1 + 49.31𝑥2 + 52.80𝑥3 + 47.27𝑥4 ≤ 73.67 

20.34𝑥1 + 55.57𝑥2 + 85.33𝑥3 + 44.51𝑥4 ≤ 64.43 

47.50𝑥1 + 77.63𝑥2 + 43.34𝑥3 + 2.488𝑥4 ≤ 29.97 

33.58𝑥1 + 89.24𝑥2 + 99.74𝑥3 + 15.24𝑥4 ≤ 62.43 

𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 

Solution: 

 

 𝐼 = {1,2,3,4,5,6,7}, J = {1,2,3,4} 

Set 𝐼𝑐 = ∅ 

Intercept matrix 𝜃𝑗𝑖 = (

1.5930 0.5209 1.1738
0.6914 3.7486 1.2756
1.0387
2.859

0.6944
0.6170

1.0048
0.6864

    9.7861 3.1676   0.6309   
    1.4940 1.1594   0.3861  

1.3953
1.5585

0.7551
1.4475

0.6915
12.046

1.8591
0.6996
0.6259
4.0965

) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖
𝜆𝑖

𝑧(𝜆𝑖)
(

1 2 3
0.2953 0.1906 0.2446

80.4113 51.9006 66.615

4 5 6
      0.4695 0.3131 0.1753
      127.86 85.276 47.739

7
       0.2625
        71.493

) 

 

Iteration 1: 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(80.4113,51.9006,66.615,127.86,85.276,47.739,71.493) = 47.739 = 𝑧(𝜆6) 

Hence 𝑙 = 6 

 𝐼 = 𝐼 − {𝑙} = {1,2,3,4,5,7} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃16, 𝜃26, 𝜃36, 𝜃46) = 0.3861 = 𝜃26 

Hence 𝑝 = 2, 𝐼𝑐 = {6} and 𝐽 = 𝐽 − {𝑝} = {1,3,4} ≠ ∅ 

Iteration 2: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(80.4113,51.9006,66.615,127.86,85.276,71.493) = 51.9006 = 𝑧(𝜆2). 

Hence 𝑙 = 2 

 𝐼 = 𝐼 − {𝑙} = {1,3,4,5,7} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃12, 𝜃22, 𝜃32, 𝜃42) = 0.5209 = 𝜃12 

Hence 𝑝 = 1, 𝐼𝑐 = {2,6} and 𝐽 = 𝐽 − {𝑝} = {3,4} ≠ ∅ 

 

Iteration 3: 

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

__________________________________________________________________________________ 

1913 

 min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(80.4113,66.615,127.86,85.276,71.493) = 66.615 = 𝑧(𝜆3). 

Hence 𝑙 = 3 

 𝐼 = 𝐼 − {𝑙} = {1,4,5,7} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃13, 𝜃23, 𝜃33, 𝜃43) = 0.6864 = 𝜃43 

Hence 𝑝 = 4, 𝐼𝑐 = {2,3,6} and 𝐽 = 𝐽 − {𝑝} = {3} ≠ ∅ 

 

Iteration 4: 

 

  min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(80.4113,127.86,85.276,71.493) = 71.493 = 𝑧(𝜆7) 

Hence 𝑙 = 7 

 𝐼 = 𝐼 − {𝑙} = {1,4,5} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃17, 𝜃27, 𝜃37, 𝜃47) = 0.6259 = 𝜃37 

Hence 𝑝 = 3, 𝐼𝑐 = {2,3,6,7} and 𝐽 = 𝐽 − {𝑝} = ∅ 

 

Since J = ∅ ,  the constraints corresponding to index values in 𝐼𝑐 = {2,3,6,7} are selected 

Relaxed LPP: 

Maximize 𝑧 = 93.30𝑥1 + 73.50𝑥2 + 26.17𝑥3 + 79.35𝑥3 

Subject to 88.14𝑥1 + 12.25𝑥2 + 66.13𝑥3 + 74.42𝑥4 ≤ 45.92 

                 51.22𝑥1 + 47.13𝑥2 + 59.83𝑥3 + 87.59𝑥4 ≤ 60.12 

                 47.50𝑥1 + 77.63𝑥2 + 43.34𝑥3 + 2.488𝑥4 ≤ 29.97 

                  33.58𝑥1 + 89.24𝑥2 + 99.74𝑥3 + 15.24𝑥4 ≤ 62.43 

                                         𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 

The optimal solution of the relaxed LP problem (with selected constraints) is  

Max 𝑧 = 68.24, 𝑥1 = 0.08, 𝑥2 = 0.32, 𝑥3 = 0, 𝑥4 = 0.47.  It satisfies remaining constraints. 

Therefore, the solution of the problem is 𝑥1 = 0.08, 𝑥2 = 0.32, 𝑥3 = 0, 𝑥4 = 0.47 

and Max 𝑧 = 68.24. 
 

Example 5: 

 

Maximize 𝑧 = 20𝑥1 + 10𝑥2 + 15𝑥3 

Subject to 3𝑥1 + 2𝑥2 + 5𝑥3 ≤ 55 

                 2𝑥1 + 𝑥2 + 𝑥3 ≤ 26 

                   𝑥1 + 𝑥2 + 3𝑥3 ≤ 30 

                 5𝑥1 + 2𝑥2 + 4𝑥3 ≤ 57 

                       𝑥1, 𝑥2, 𝑥3 ≥ 0 

Solution: 

 𝐼 = {1,2,3,4}, 𝐽 = {1,2,3} 

Set 𝐼𝑐 = ∅ 

Intercept matrix 𝜃𝑗𝑖 = (
18.3 13 30 11.4
27.5 26 30 28.5
11 26 10 14.25

) 

 

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖
𝜆𝑖

𝑧(𝜆𝑖)
(

1 2 3        4
5.5 6.5 6 5.182

247.5 292.5 270 233.18

) 

 

Iteration 1: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(247.5,292.5,270,233.18) = 233.18 = 𝑧(𝜆4).  Hence 𝑙 = 4 

 𝐼 = 𝐼 − {𝑙} = {1,2,3} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃14, 𝜃24, 𝜃34) = 11.4 = 𝜃14 

Hence 𝑝 = 1, 𝐼𝑐 = {4} and 𝐽 = 𝐽 − {𝑝} = {2,3} ≠ ∅. 
 

Iteration 2: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(247.5,292.5,270) = 247.5 = 𝑧(𝜆1). Hence 𝑙 = 1 
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 𝐼 = 𝐼 − {𝑙} = {2,3} 

  𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃11, 𝜃21, 𝜃31) = 11 = 𝜃31 

Hence 𝑝 = 3, 𝐼𝑐 = {1,4} and 𝐽 = 𝐽 − {𝑝} = {2} ≠ ∅. 
 

Iteration 3: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = min(292.5,270) = 270 = 𝑧(𝜆3). Hence 𝑙 = 3 

 𝐼 = 𝐼 − {𝑙} = {2} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃13, 𝜃23, 𝜃33) = 10 = 𝜃33 

Hence 𝑝 = 3, 𝐼𝑐 = {1,4} 

 

Iteration 4: 

 

min
𝑖∈𝐼

{𝑧(𝜆𝑖)} = 292.5 = 𝑧(𝜆2). Hence 𝑙 = 2 

 𝐼 = 𝐼 − {𝑙} = {3} 

 𝜃𝑝𝑙 = min(𝜃𝑗𝑙) = min(𝜃12, 𝜃22, 𝜃32) = 13 = 𝜃12 

Hence 𝑝 = 1, 𝐼𝑐 = {1,4} 

Since  𝑛(𝐼) + 𝑛(𝐼𝑐) = 4 = 𝑚,  the constraints corresponding to index values in 𝐼𝑐 = {1,4} are selected 

Maximize 𝑧 = 20𝑥1 + 10𝑥2 + 15𝑥3 

Subject to 3𝑥1 + 2𝑥2 + 5𝑥3 ≤ 55 

                  5𝑥1 + 2𝑥2 + 4𝑥3 ≤ 57 

                      𝑥1, 𝑥2, 𝑥3 ≥ 0 

The optimal solution of the  above  LP problem (with selected constraints) is  

Max 𝑧 = 280, 𝑥1 = 1, 𝑥2 = 26, 𝑥3 = 0. It does not satisfy  all the remaining constraints. 

Therefore, Add  a most violated constraint to the relaxed LPP and solve by  apply the post optimal analysis 

technique. 

 The optimal solution is 𝑧 = 268, 𝑥1 = 1.80, 𝑥2 = 20.80, 𝑥3 = 1.60.  It satisfies the all the remaining constraints.  

Hence, the solution of the problem is 𝑥1 = 1.80, 𝑥2 = 20.80, 𝑥3 = 1.60  with  

Max 𝑧 = 268. 
 

4. Computational Results 

Result 1: 

The proposed algorithm was applied for solving the various sizes of LP problems. 

 

Table 1: Computational results for Small size LP problems 

 

 

 

Problem No. 

Size of the Problem No. of multiplications/divisions 

n m With all constraints With selected 

constraints 

1 2 3 87 63 

2 2 10 380 78 

3 3 6 409 123 

4 4 5 245 221 

5 4 15 1485 203 

6 5 7 446 345 

7 5 8 547 219 

8 5 10 790 144 

9 15 18 4263 2624 

10 20 25 10313 3101 
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Figure 1: Performance analysis for small size LP problems 

 
 

Result 2: 

 

The proposed algorithm was applied for solving the randomly generated LP Problems. The LP Problems are 

randomly generated in two types. 

 

(i) The problem can be generated with 𝑐𝑗 = 1, 𝑗 = 1,2, … , 𝑛 and the values of bi,  

𝑎𝑖𝑗  are generated uniformly within the interval (0,100) for 𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑛 and  

 

(ii) Generated LP Problems by using the LP random problem generator software available in the website 

 http://web.tecnico.ulisboa.pt/~mcasquilho/compute/or/Fx-LP-generator.php 

 

Table 2: Computational results for Type (i) and (ii) of Random Generator LP problems 

 

 

Figure 2: Performance analysis for Random Generator LP Problems 
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Problem 

No. 

Type of 

Random 

Generator LP 

problems 

Size of the Problem No. of  multiplications/divisions 

 

n 

  

m 

With all constraints With selected 

constraints 

1 (ii) 2 4 85 62 

2  (i) 2 5 192 68 

3  (ii) 3 9 245 134 

4 (i) 4 7 196 131 

5 (ii) 4 16 538 243 

6 (i) 5 7 393 286 

7 (ii) 5 25 687 392 

8 (i) 6 12 954 550 

http://web.tecnico.ulisboa.pt/~mcasquilho/compute/or/Fx-LP-generator.php
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Result 3: 

 

Table 3: Computational results for Netlib problems. 

                 

 

 

 

 

 

 

 

 

 

 

Figure 3: Performance analysis for Netlib Problems 

 

                            
 

5. Conclusion 

A new algorithm has been proposed for solving the linear programming problem with minimal computational 

efforts.  This algorithm is helpful to reduce the problem size and the computational efforts when solving the linear 

programming problems. 
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