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Abstract  

Commencing with "In recent years," the abstract encapsulates the essence of advancements in concrete structure 

analysis and design. It highlights the shift from traditional methods to more sophisticated numerical analysis 

techniques, particularly focusing on the development of an anisotropic damage model for concrete within the 

framework of the internal variable theory of thermodynamics. This model intricately considers the influence of 

microcracks and microvoids on the material's behavior, offering insights into anisotropic damage and changes in 

elastic properties. Validated against experimental data and programmed in FORTRAN, the model emerges as a 

powerful tool for comprehensive structural analysis and design, empowering engineers with a nuanced 

understanding of concrete behavior under varying loading conditions. 

Keywords:concrete structures, nonlinear analysis, anisotropic damage model, internal variable theory, damage 

mechanics, strain space formulation, FORTRAN programming, experimental validation. 

1. Introduction  

Concrete, a versatile and indispensable construction material, owes its widespread use to its remarkable 

properties: high compressive strength, fire resistance, and durability in harsh environments. However, its 

behavior under varying loads, especially plain concrete, exhibits complexity due to its non-isotropic nature and 

heterogeneous composition.The response of concrete to external forces is governed by the growth and 

nucleation of microcracks, leading to nonlinear stress-strain behavior. Traditional analytical methods have been 

supplemented by modern tools like finite element analysis, necessitating the development of realistic 

constitutive models. Continuum damage mechanics has emerged as a promising approach, providing a 

framework to describe concrete's behavior at both macroscopic and microscopic levels.Within this framework, 

microstructural degradation leads to reduced material stiffness, characterized by the propagation and 

coalescence of microcracks. Continuum damage mechanics models, typically formulated within a 

thermodynamic framework, offer insights into concrete's strain-softening response.In our investigation, we 

focus on plain concrete's stress-strain behavior under compressive loading, considering dilatation resulting from 

microcrack formation. Initially isotropic, concrete becomes anisotropic due to the presence of microcracks. The 

strain-based formulation within continuum damage mechanics proves advantageous over stress-based 

formulations, providing clarity in defining loading criteria and capturing strain softening behavior accurately.By 

delving into the realm of continuum damage mechanics, we aim to enhance our understanding of concrete 

behavior and pave the way for more accurate and reliable structural design practices. 

2.Literature review  

2.1 Uniaxial Compression 

This section provides a foundational overview of the mechanical attributes of concrete, laying the groundwork 

for the comprehensive examination of constitutive modeling in subsequent sections. While macroscopic 

behavior is briefly touched upon, readers are encouraged to consult authoritative sources for detailed insights. 

Concrete is herein regarded as a continuum material with initial isotropic properties. Noteworthy is the 

exclusion of factors such as water-cement ratio, aggregate morphology, and cement composition, despite their 

known influence on mechanical performance.Concrete exhibits pronounced nonlinear characteristics in both 
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tension and compression. Specifically, in uniaxial compression, a distinct progression of stages is typically 

observed: 

 

Figure:3.1 Stress-strain behavior of concrete under monotonic and cyclic compressive loading (Bhan and 

Hsu, 1988) 

In uniaxial compression tests, concrete undergoes distinct stages of mechanical behavior, each characterized by 

specific stress-strain responses. Initially, up to approximately 30% of its maximum compressive strength (fc), 

concrete behaves linearly elastically, with micro-cracks remaining inactive. However, beyond this threshold, 

cracking initiates, marking the onset of nonlinear behavior. Between 30% and 50% of fc, stress concentrations at 

crack tips lead to stable propagation of bond cracks, while mortar cracks remain largely unaffected. Within this 

range, crack growth remains stable under constant stress conditions. As the stress level increases further, 

ranging from 50% to 75% of fc, mortar cracks propagate steadily, with some new bond cracks forming 

gradually. Under constant load, cracks continue to grow until reaching their final lengths, exhibiting a stable 

pattern of crack propagation. Beyond approximately 75% of fc, however, cracks widen and propagate more 

rapidly, indicative of unstable crack propagation. The internal energy now surpasses the energy needed for crack 

release, potentially culminating in complete failure of the concrete specimen, even under constant loading 

conditions. It's notable that concrete displays significant strain softening beyond peak stress, resulting in 

deformation localization and a lack of a unique stress-strain relationship. This strain softening behavior, 

observed in both tension and compression, underscores the complex nature of concrete's mechanical response 

and poses challenges in accurately characterizing its behavior. 

2.2 Volume expansion under compressive loading: 

As a concrete specimen undergoes increasing uniaxial compression, its apparent Poisson's ratio deviates 

significantly from its initially established elastic value. This deviation becomes pronounced beyond a critical 

stress level, typically between 75% to 90% of the ultimate uniaxial compressive stress. At this point, known as 

the initiation stress, the concrete's volume begins to increase rather than continuing to decrease, reflecting its 

composite nature. This inelastic behavior has been observed by researchers such as Domingo Sfer et al. and 

Shah and Chandra (1968), and it signifies a notable shift in the mechanical response of the material. 

 

Figure:  3.2  Poisson's ratio vs stress, under uniaxial compression (D. Sfer et al) 
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Figure: 3.3  Typical stress-volumetric stain curve for concrete in uniaxial compression (data from Kupfer 

et al., 1969) 

Cracks in concrete are not strictly parallel to the compressive loading axis; rather, they are inclined at certain 

angles due to irregularities in aggregate shapes. These inclined cracks, known as bond cracks, generate shear 

stress components within the material. These shear stresses induce shear sliding and surface separation along the 

crack faces, ultimately compromising the aggregate-mortar interface. As loading continues, cracks propagate 

along preferred cleavage planes, eventually aligning parallel to the loading axis. 

2.3 Biaxial Compression 

Concrete structural members, such as beams and shells, often experience biaxial stress states due to complex 

external loads, necessitating a thorough understanding of concrete behavior under such conditions. Over the past 

century, numerous experiments have been conducted to elucidate concrete's stress-strain relationships in biaxial 

stress paths. However, most research has focused on biaxial compression, with limited data available for biaxial 

tension and combined compression-tension scenarios.Experimental findings by Kupfer et al. (1969) suggest that 

concrete exhibits similar strengths under uniaxial and biaxial tensile stress paths, independent of stress ratio. 

However, in combined compression and tension, increased tensile stress reduces the compressive strength of 

concrete. In biaxial compression tests, concrete specimens undergo increasing compressive stresses in two 

perpendicular directions, while the third direction remains stress-free. Results indicate that the biaxial strength 

of concrete varies with stress ratio, peaking at a ratio of 0.5. At this ratio, the maximum strength is 

approximately 27% higher than the uniaxial compressive strength (fc) of concrete. Strength and ductility both 

increase to some extent under biaxial compression stress states, with volume expansion occurring near the peak 

load. 

 

Figure: 3.4 Stress- strain relationship of concrete under biaxial compression (Kupfer et al., 1969) 
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2.4 Triaxial Compression 

Behaviour of concrete in triaxial compression tests differs significantly from that observed in uniaxial and two-

way compression. In triaxial compression, concrete undergoes increasing axial compressive load under constant 

confining pressure until failure. Three distinct features are observed based on the level of confinement: quasi-

brittle, plastic softening, and plastic hardening. Under high confining pressure, concrete exhibits enhanced 

strength and ductility, with failure occurring due to crushing rather than splitting.Concrete under pure 

hydrostatic pressure behaves differently from triaxial compression. Crack formation is negligible under 

hydrostatic compression, leading to no damage assumed to occur due to the passive micro-crack field. Shear 

stress governs compaction behavior, with concrete compacting more effectively under shear stress compared to 

hydrostatic pressure. This phenomenon is illustrated by the pressure-volumetric strain curve, where pressure 

required for compaction is lower under shear stress. 

 

Figure: 3.5 Stress-strain curves of concrete in triaxial compression (Balmer, 1949) 

2.5 Constitutive Modelingof Concrete 

Numerous contributions have been made in developing constitutive models to understand the complex behavior 

of concrete. Karsan and Jirsa (1969) proposed an empirical formula correlating residual plastic strain with the 

onset of unloading. Kupfer et al. (1969) studied failure in both uniaxial and biaxial compression, finding similar 

strengths in tension but reduced compressive strength under combined loading. Ortiz (1985) proposed a theory 

of distributed damage and mixture theories for concrete inelasticity. Gopalaratnam and Shah (1985) developed a 

method for tension load-deformation behavior characterization. Yazdani and Karnawat (1996) incorporated 

damage and inelastic flow in a single-flow surface model. Yazdani and Schreyer (1988, 2003) developed an 

anisotropic damage model for concrete, extended to fatigue damage. Shang and Song (2006) investigated plain 

concrete behavior under biaxial compression after freeze-thaw cycles. Khan et al. (2007) proposed an effective 

compliance matrix concept to describe concrete damage. Thapa and Yazdani (2013) formulated a model within 

continuum thermodynamics to capture concrete inelasticity features. 

3.0 General Formulation 

3.1 General formulation for uniaxial compression: 

Regarding the behaviour that is independent of rate and minute deformations, the internal energy per unit 

volume, U, can be taken as; 

𝑈 = 𝑈(𝜀, 𝑠, 𝑘)       (1) 

Where, ε, s and k represent the internal variable parameter, the strain tensor, and the local entropy per unit 

volume, respectively. The parameter ‘k’ defines the damage in the material caused by cracks and micro-cracks. 

Two types of thermodynamic potentials as shown below can be obtained with the application of Legendre 

Transformation: 

𝐴(𝜀, 𝜃, 𝑘) =  𝑈(𝜀, 𝑠, 𝑘) −  𝜃𝑠        (2) 

𝐺(𝜎, 𝜃, 𝑘) = 𝜎: 𝜀 − 𝐴(𝜀, 𝜃, 𝑘)        (3) 
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In this case, A and G stand for the respective Gibbs Free Energy (GFE) and Helmholtz Free Energy (HFE) per 

unit volume. σ is the Cauchy stress tensor and θ is absolute temperature. In this theory, it is assumed that, the 

parameter k alters the elastic properties of brittle materials resulting into elastic and inelastic deformations 

caused by the process of damage only. The development and growth of cracks and micro-cracks affects the 

elastic properties due to which gradual reduction of stiffness of the material takes place (Ortiz 1985, Yazdani 

and Shreyer 2003,Thapa and Yazdani 2013, 2014, Bhandari and Thapa 2013, Shrestha and Thapa 2015, Horii 

and Nemat-Nasser 1983) 

Regarding the behaviour that is independent of rate and minute deformations, the rate form of the Helmholtz 

Free Energy(HFE) per unit volume, A(ε,θ,k) is given by: 

𝐴̇ =
𝜕𝐴

𝜕𝜀
∶  𝜀̇ +  

𝜕𝐴

𝜕𝜃
𝜃̇ + 

𝜕𝐴

𝜕𝑘
𝑘̇       (4) 

Equation (4) is used with the Clausius-Duhem inequality of the form: 

−𝐴̇ − 𝜃̇𝑠 +  𝜎: 𝜀̇ −  
𝑞∆𝜃

𝜃

̇
≥ 0       (5) 

To obtain 

𝑑𝑠 = (𝜎 −
𝜕𝐴

𝜕𝜀
): 𝜀̇ − (𝑠 +

𝜕𝐴

𝜕𝜃
)  𝜃̇ − 

𝜕𝐴

𝜕𝑘
𝑘̇ − 

𝑞∆𝜃

𝜃
 ≥ 0          (6) 

Where, ds, is the dissipation rate, q denotes the heat flux vector. Tensor contraction is represented by the colon 

(:). The rate form of the variable is denoted by the superdot. Assuming that unloading is an elastic process, the 

usual thermodynamic arguments (Coleman and Gurtin 1967) yield the following three essential results: 

(i) The Helmholtz Free Energy acts as a potential for entropy 

𝑠 = −
𝜕𝐴

𝜕𝜃
      (7) 

(ii) The stress tensor , which means the HFE is the potential for the stress tensor for strain-space formulation and  

𝜕𝐴

𝜕𝜀
= 𝜎           (8) 

(iii) The expression for the dissipation inequality is obtained as 

𝑑𝑠 = − 
𝜕𝐴

𝜕𝑘
𝑘̇ − 

𝑞∆𝜃

𝜃
 ≥ 0        (9) 

For isothermal process, ∆θ = 0, and hence equation (9) reduces to 

𝑑𝑠 = − 
𝜕𝐴

𝜕𝑘
𝑘̇  ≥ 0        (10) 

Where 
𝜕𝐴

𝜕𝑘
 signifies the thermodynamic force associated with the conjugate effective flux 𝑘̇. In all procedures 

that are accepted, the disparity that is shown by equation (10) must be satisfied. 

From equation (8), one can express 

𝜕𝐴

𝜕ɛ
= 𝜎 =  𝐸(𝑘): 𝜀        (11) 

where E(k), which is dependent on the degree of microcracking, is the fourth order current stiffness tensor. 

According to several studies, the fourth order elastic compliance tensor evolves with damage rather than being 

constant during the damage process (Ortiz 1985, Thapa and Yazdani 2013, 2014). The material stiffness tensor's 

components can capture induced anisotropic effects due to the dependence of E(k) on the damage parameter. 

Adopting the concept from Thapa and Yazdani (2013), the fourth order stiffness tensor E(k) is decomposed as 

follows: 

𝐸(𝑘) = 𝐸𝑜 + 𝐸𝐷(𝑘)        (12) 
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Where, 𝐸𝑜 is the elastic stiffness tensor for an uncracked concrete and  

𝐸𝐷(𝑘) corresponds to the induced degraded stiffness due to microcracking (damage). 

Assuming that the inelasticity is caused only due to damage, the decoupled theory states that 

𝐴(𝜀, 𝑘) = 𝐴𝑒 (𝜀, 𝑘) + 𝐴𝐷 (𝜀, 𝑘) + 𝐴𝑖 (𝜀, 𝑘)  (13.1) 

Where, Ae, A D and Ai are related to the elastic, elastic damage and inelastic damage process. These different 

processes can be expressed as follows: 

𝐴𝑒 =
1

2
𝜀 ∶ 𝐸𝑂 ∶  𝜀        (13.2) 

𝐴𝐷 =  
1

2
 𝜀 ∶ 𝐸𝐷(𝑘): 𝜀        (13.3) 

𝐴𝑖 = 𝜀: 𝜎𝑖(𝑘)         (13.4) 

Where 𝐸𝑂 and 𝐸𝐷(𝑘) are the fourth order stiffness tensor for uncracked material and degraded stiffness tensor 

due to damage process. 𝜎𝑖is the inelastic (relaxation) stress tensor. 

Combining equation ( 𝜎 =
𝜕𝐴

𝜕𝜀
 ), (12) and (13) yields the following expression for the total stress tensor: 

𝜎 =  
𝜕𝐴

𝜕𝜀
=  𝐸𝑂 ∶  𝜀 + 𝐸𝐷(𝑘): 𝜀 + 𝜎𝑖 =  𝜎𝑒 + 𝜎𝐷 +  𝜎𝑖 =  𝐸(𝑘): 𝜀 +  𝜎𝑖(𝑘)(14) 

Where, 𝐸(𝑘) is the stiffness tensor of secant elastodamage, which is connected to the internal energy by 

𝐸(𝑘) =  𝐸𝑂 +  𝐸𝐷(𝑘) =  
𝜕2𝑈

𝜕𝜀 𝜕𝜀
      (15) 

Where,𝜎𝑒, 𝜎𝐷 and 𝜎𝑖 are the components of the total stress tensor that are related to the decomposition of the 

total strain tensor, namely the elastic, damage, and inelastic damage parts. The relationship between the inelastic 

stress is 

𝜎𝑖 = − 𝐸(𝑘): 𝜀𝑖        (16.1) 

Since elastic unloading is predicated on the inelastic components being fixed. 

From the dissipative inequalities equation (−
𝜕𝐴

𝜕𝑘
. 𝑘̇ ⋝ 0) and equation (13), it follows that 

− 
1

2
 𝜀 ∶ 𝐸̇𝐷(𝑘): 𝜀 ≥ 0                (16.2) 

− 𝜀: 𝜎̇𝑖 ≥ 0                 (16.3) 

Suppose the damage stiffness and inelastic stress tensors are described through the evolution equations: 

𝐸̇𝐷(𝑘) = −𝐾̇𝐿 (𝜀)        (17.1) 

𝜎̇𝑖 =  𝐸̇(𝑘): 𝜀𝑖 + 𝐸(𝑘): 𝜀̇𝑖       (17.2) 

The inelastic strains in brittle materials like concrete are caused by inelastic micro fracturing process. During 

damage, process, the formation of a substantial crack tip process zone and crack surface misfits are the major 

sources of these inelastic deformations. 

To address inelastic deformations in compressive mode of cracking, ε- is considered as a proper strain tensor. 

The deviatoric part of ε- is involved in the inelastic deformation process as the hydrostatic compression does not 

participate in this process. Let R- and R+ be the negative and positive cones of ε-d respectively. The deviatoric 

part of ε- represented by   ε-d   is obtained as follows: 

   𝜀−𝑑 = 𝜀− −  
𝑡𝑟 (𝜀−)

3
        (18) 

By definition of  R-  and R+  , one can express tr(ε-d ) = 0  leading to the condition 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

_______________________________________________________________________ 

1693 

𝑡𝑟(𝑅−) + 𝑡𝑟(𝑅+) = 0        (19) 

R- and R+ are null tensors under pure hydrostatic compression. 

The experimental work of Resnde and Martin (1984) showed that rock under uniaxial compression exhibits 

inelastic volumetric strain and dilation. These types of response features are also evident in frictional material 

like concrete. Concrete specimen loaded about the stress level of 75 to 90% of fꞌc , the lateral strain abruptly 

increases due to widening of the external cracks and the volume expansion (dilatation) takes place (Kupfer et al 

1969; Wee et al 1996). Here fꞌc is defined as the uniaxial compressive strength of concrete. Shah and Chandra 

(1968) reported that the composite nature of concrete is the main reason for this inelastic behavior and volume 

expansion. The reversal of the stress-volumetric strain curve shown in Figure: 3.1 depict the dilatation behavior 

of frictional material such as concrete. 

 

Figure: 3.1  Stress-volumetric strain curve as per Kupfer et al. 

To capture this phenomenon of increase in volume and inelastic volumetric strain in concrete under compressive 

loading, it is necessary to create an evolution law for the inelastic strain tensor rate and included in the 

constitutive relation. As the volume expansion is observed in concrete, tr (𝜀̇𝑖) should be positive scalar (Yazdani 

and Schreyer, 1988). Guided by the Experimental work of Resende and Martin (1984) and Eqauation (19), the 

expression for rate of inelastic strain is formulated as follows: 

𝜀̇𝑖 =
𝐸𝑜

(𝐸𝑜−𝑘)2 𝑘̇ (𝑅− +  𝛼𝑅+)       (20) 

Integrating of equation (20) yields 

𝜀𝑖 =
𝐸𝑜

(𝐸𝑜−𝑘)
𝑘 (𝑅− +  𝛼𝑅+)       (21) 

The scalar coefficient 𝛼 is taken as greater than unity to capture inelastic strains. 𝛼 is established using the 

common uniaxial compression tests on concrete. The inelastic volumetric strain is found to be nill with value of 

 𝛼 = 1, and becomes analogous approach of Van Mises Plasticity theory applied to metals permanent 

deformations  are not predicted by the model for purely hydrostatic compression. 

The rate form of equation (4) is given by 

𝜎̇ = 𝐸̇(𝑘): 𝜀 + 𝐸(𝑘): 𝜀̇ + 𝜎̇𝑖(𝑘)    =  𝜎̇𝑒 + 𝜎̇𝐷 + 𝜎̇𝑖    (22) 

Where 𝜎̇𝑒 is the stress increment when the further growth of microcracks are prevented in the material, 𝜎̇𝐷 is the 

material's microcracks and cracks formed at a slower rate, which reduced the stress, and 𝜎̇𝑖 is the development 

of crack tip process zones and misfits and crack surfaces during damage process. 

Again, integration of equation (14) with respect to 𝜀 yields 

𝐴(𝜀, 𝑘) =
1

2
𝜀: 𝐸(𝑘): 𝜀 + 𝜎𝑖(𝑘) ∶ 𝜀 + 𝐴𝑖(𝑘)     (23) 

Where 𝐴𝑖(𝑘) is the inelastic component of the HFE associated with the surface energy of microcracks 

(Chaboche 1992 and 1993). 
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The formulation is mainly based on the concept of active and passive microcracks introduced by Ortiz (1985) 

and used by Thapa and Yazdani (2013). The nature of the damage is progressive and makes the concrete more 

compliant resulting into the reduction of elastic stiffness and development of inelastic deformation. Although 

concrete in this work is assumed as an isotropic material comprised of single phase continuum, the development 

of microcracks makes it highly anisotropic. The process of development of microcracks in the direction of 

applied loading is identified as active microcracking and there are two modes of active microcracking in 

concrete and they are mode I and mode II (Ortiz 1985, Yazdani and Karnawat 1996, Thapa and Yazdani 

2013,2014). They are explained below: 

Mode I: 

It is also called splitting or cleavage mode of cracking. In this mode, opening of a planner crack takes place in 

the direction of tensile load refer Figure: 3.3. As the loading is reversed, the closing of the same microcracks 

takes place. This mode is symbolically expressed by the inequality𝜀𝑑
𝐼 ⋝ 0 , where 𝜀𝑑

𝐼 represents the strain due 

to crack opening in mode I. This means the total strain in the direction tensile loading increases due to mode I 

cracking. 

 

Figure   : 3.2 Mode II cracking 

 

Figure: 3.3 Mode I cracking 

Mode II 

This refers to compressive mode of cracking; cracks extend in the direction compression loading. These cracks 

are not straight but follow tortuous path and leaves the possibility of crack opening in the lateral direction refer 

Figure   : 3.2. These tortuous extended cracks lying in the average plane of compressive loading contribute to 

the decrease in the overall stiffness of the material. This compressive mode of microcracking opening is 

mathematically expressed as 𝜀𝑑
𝐼𝐼 ≤ 0. 

Mode I damage contributes additional tensile strain due to crack opening in the direction of tensile loading, 

whereas mode II damage gives additional negative strain due to squeezing of the material in the direction of 

compressive loading and the opening of extended cracks in the lateral direction. Mode I always has positive 

eigenvalues of strain tensor stretching. Mode II damage always possesses negative as well as positive 

eigenvalues of strain tensors to ensure both squeezing of the material in the direction of compressive loading 

and cracks, opening in the lateral directions. The strain tensorwhich contains the positive eigenvalues is termed 

the positive cone, whereas the negative eigenvalues of strain tensor are regarded as the negative cone. 
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Figure   : 3.2 shows the compressive mode of cracking in which only one crack is shown for simplification. The 

response tensor formulated is able to capture the behavior of concrete failure in uniaxial compression loading in 

which specimen fail by uniting numbers of cracks formed during loading. 

Equation (10) presents an inequality that needs to be satisfied for all admissible processes. The substitution of 

Eqns (23) and (12) into Eqn (10) yield 

𝑑𝑠 = −
1

2
 𝜀 ∶ 𝐸𝐷̇: 𝜀 − 𝜎̇𝑖(𝑘) ∶ 𝜀 − 𝐴̇𝑖(𝑘) ≥ 0                 (24) 

Damage Surface 

To  proceed  further,  let  the  rate  of  the  reduced  stiffness  tensor  used  in Eqn (24) be represented by the 

subsequent linear damage law that is independent of rate. 

𝐸𝐷̇ = −𝑘̇L(ε)          (25)                                                                       

where,  L(ε)  is  a fourth-class reaction tensor which  determines  the path of the harm in  the material.  

Substitution of Eqn (25) into Eqn (24) yields the dissipation as 

ds = k̇ (
1

2
 𝜀 ∶ 𝐸𝐷̇: 𝜀 + 𝜎̇𝑖(𝑘) ∶ 𝜀 + 𝐴̇𝑖(𝑘))  ≥   0                                                              (26) Since Since damage is 

irreversible,  𝑘̇ > 0 by definition. K is the energy dissipation unit. Moreover, In the absence of any internal 

constraints, the coefficient of 𝑘̇ must be nonnegative, as stated by Ortiz (1985). Consequently, Eqn(26) can be 

written as 

(
1

2
 𝜀 ∶ 𝐸𝐷̇: 𝜀 + 𝜎̇𝑖(𝑘) ∶ 𝜀 + 𝐴̇𝑖(𝑘)) ≥ 0     (27) 

All that has to be done to push the right hand side of Eqn (27) to zero is to add a positive valued function, It is 

now possible to define the damage surface or harm potential. Let's assume that a positive function G2(ε , k) , the 

damage surface ψ takes on the following form 

ψ(ε, k) =  
1

2
ε ∶ L: ε + 𝜎̇𝑖(𝑘) ∶ 𝜀 − 

1

2
p2(ε, k) = 0    (28.1)  

ψ(ε, k) =  
1

2
ε ∶ L: ε + (𝐸̇(𝑘): 𝜀𝑖 + 𝐸(𝑘): 𝜀̇𝑖): ε − 

1

2
p2(ε, k) = 0                             (28.2) 

Where,  

p2(ε, k) =  2(Ak
i + G2(ε, k))       (29)                                                                       

The function  p2(ε, k) is identified as the damage function.  We further note that there  is  no  need  to  

individually  identify  Ak
i   and G2  functions  as  long  as  the  damage function itself  could  be determined. Eqn 

(28.2) effectively completes the general formulation of the proposed model by using the normal Kuhn-Tucker 

loading-unloading criteria (i.e.,  k̇ ≥  0 , ψ ≤ 0 and  k̇ψ = 0). However, in order to completely define a certain 

substance, the details need to be sorted out. Specific  expressions  for  the response  tensor,  L, and particular  

forms  of the  damage  function,  p would  represent different  damage  models  for  this  class  of damage  

mechanics theories.  

3.2 Development of proposed model for concrete in compression: 

The  damage  model  is  proposed  through  the  formulation  of proper  forms  of the response  tensors  and the  

corresponding damage  function. The response tensor should be capable of capturing the anisotropic nature of 

the damage in concrete. There are two cones in the strain tensor: positive and negative in order to achieve these. 

The matching negative and positive eigenvalues of the system are held by the positive and negative cones of the 

strain tensor as 

ε = ε+ + ε−         (30)                                                                      

where  ε+  represents  the  positive  cone of the  strain  tensor and  ε− represents the negative  cone  of the  strain  
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tensor. The formal  mathematical  procedure  for decomposition  of  tensors  is  described in Ortiz (1985)  and  

Ju (1989)  and  will not be repeated  here.   

At the same time,  a large  body  of experimental  tests  on concrete in  tension  and compression  has  left  

researchers  to  identify  two  dominant  and  distinct  crack patterns in  concrete.  The cleavage mode is one (or  

mode I)  cracking  due  to  tensile  loads  and the  other  one  is  the  compression  mode (or  mode II)  cracking  

(Horii  and  Nemat-Nasser 1983).  Mode  I  or tensile  mode solely represents  the  opening  of  cracks  in the  

direction of tensile  load,  whereas  Mode II  represents  the  shear  sliding  of cracks  alongthe  crack lines  

which will lead  to  both the direction in which the cracks are extending of the compressive  load  and  opening  

of  cracks  in  the  lateral  direction.  For  small deformation,  a possible  way  to  include  these  two  modes  of 

damage  is  to  decompose the  rate  of degraded  stiffness  tensor  as follows: 

ĖD(K) = ĖI
D(K) +  ĖII

D(K)       (31)                                                                      

where damage modes I and II are denoted by the subscripts I and II, respectively. Following Eqn (25), one 

obtains 

ĖI
D(K) = −k̇LI  and ĖII

D(K) = −k̇LII     (32)                                                                       

where LI and LII are fourth-order  response tensors for damage in  mode  I  and  II respectively. Guided by the  

experimental results  and  observation for  concrete materials intension  (Gopalaratnam and Shah  1985) where it 

is demonstrated that the majority of damage occurs in the direction of maximal strain, the response tensor,  LI, is 

proposed 

  LI=
(ε+⨂ε+)

(ε+ : ε+)
η         (33)    The parameter 

η is shown here to take into account the cumulative impact of harm brought on via tensile alterations connected 

to various directions,  and is  given by 

η = 1 + β(1 + ϕ1) (1 −
λ

tr ε+)      (34)                                                                      

Where, λ is the maximum eigenvalue ofε+,   ϕ1  is the minimum eigen value of  ε   and  β is the material 

constant to be selected in light of the brittle material's characteristics. On the other hand, a combination of lateral 

fracture opening and crack extension in the direction of applied compressive loads results in mode II cracking. 

Consequently, the response tensors shown below can be used to create the entire response function for mode II 

damage: 

     LII = w (LII
d + LII

h )        (35)                                                                              

where w is a material property that explains how concrete behaves relative to other materials under tension and 

compression. The component LII
h   incorporates the damage due to opening of cracks in the lateral directions. The 

form for LII
h |as therefore proposed here 

LII
h =

(ε+⨂ε+)

(ε+ : ε+)
η        (36)                                                                        

The  experimental  observation  on brittle  solid  such as  concrete  has shown  that no damage  takes  place 

under  purely  hydrostatic  pressure.  The response tensor LII
d  postulated to be: 

LII
d =

(ε̃⨂ε̃)

(ε̃: ε̃)
         (37)                                                                       

Here'  ε̃ = ε− - δi,  δ is  The second order identity tensor is the greatest eigenvalue of ε− and i. The replacement 

of response tensors with specific forms  LIand LII from  Eqns 15 through  19 into  Eqn 9 results in the damage 

surface's ultimate form; 

ψ(ε, k) =
1

2
ε:

(ε+⨂ε+)

(ε+ : ε+)
: ε ηH(λ1) + 

1

2
wH(−λ2)ε: (

(ε̃⨂ε̃)

(ε̃: ε̃)
+

(ε+⨂ε+)

(ε+ : ε+)
η) : ε + (𝐸̇(𝑘): 𝜀𝑖 + 𝐸(𝑘): 𝜀̇𝑖): ε −

 
1

2
p2(ε, k)  = 0       (38)                                                                      

where,  H(.) signifies  the  Heaviside  function,  λ1 = tr(σ+)  and λ2 = tr(σ-)  . 
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𝑃(𝑘) = εu (
k

E0− k
)

1

2
   

w = The material parameter that explains how strong concrete is in tension and compression. 

ε+  represents  the  positive  cone of the  strain  tensor and  ε− symbolises the strain tensor's negative cone. 

ε  is strain tensor.   

𝜀𝑖  is inelastic strain tensor. 

𝜀̇𝑖is rate of inelastic strain tensor. 

E(k)   is fourth order stiffness tensor. 

𝐸̇(k)   is rate of fourth order stiffness tensor.  

4.0 Calculation, Results And Discussion 

4.1 Calculation: 

For the calculations purpose equations derived in previous chapter are used and computation is done in 

FORTRAN. Program codes (as shown in appendix) are developed and different values were obtained. In 

uniaxial compression, curve between axial and lateral strains (ε1and ε2) – stress (σ) and volumetric strain(εv) – 

stress(σ). Curves obtained after computation of the model are compared with experimental results. Materials 

parameters taken for the calculations are as follows: 

Parameters  Values 

E0 30768.7 MPa (4454.02 Ksi)  (Young's modulus) 

Ν 0.2  (Poisson's ratio) 

εu 0.0003  (Strain corresponding to uniaxial tensile strength) 

εc 0.0022  (Strain corresponding to uniaxial compressive strength) 

β 0.75 

W 0.0049 

µ 0.15  (Plastic cracking coefficient) 

ft 2.6 MPa (0.38 Ksi)   Uniaxial tensile strength of concrete 

fc 32.8 MPa (4.757 Ksi)  Uniaxial compressive strength of concrete 

 

4.2 Results: 

Figure 4.1 shows the Damage function variation, p(k), with the scalar damage parameter, k. The following 

figure shows that when there is no damage, k takes the value zero so that p(k) is zero. As, k increases, p(k) also 

increases and the limit is reached for when k approaches the initial value of Young’s modulus. 

 

Figure: 4.1 Variation of damage function p(k) with the damage parameter k 
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The theoretical curve of stress-volumetric strain is shown in Figure 4.2.The theoretical curve is compared 

utilising the Kupfer et al. (1969) data, and the agreement is seen to be satisfactory for strength and ductility. The 

results are normalized relative to the compressive strength in one dimension, fc, and the corresponding strain, εc. 

 

 

Figure: 4.2 Stress-Volumetric strain curve compared with experimental data of Kupfer et al. (1969) 

The theoretical curve for uniaxial compression and proportional load path are shown in Figure: 4.3, where a 

graphic of Kupfer et al. (1969)'s experimental data average values is also included. The results are normalized 

relative to the uniaxial compressive strength,fc, and the corresponding strain εc. For strength and ductility, there is 

a satisfactory agreement between the model and the experiment. 

 

Figure: 4.3 Stress-strain curve of concrete compared with experimental data 

4.3 Limitations of study 

The Proposed model is casted within the following boundaries: 

• The model considers only damage mechanics approach. 

• Assumes initially material is isotropic and becomes anisotropic with the development of cracks. 

• Concrete is considered as continuum and single phase material. 

• Fatigue damage is not considered.  

• Visco-elastic behavior of concrete is not considered. 

• This model works only for uniaxial compression. 

5.0 Conclusion And Recommendations 

The stress-strain relationship elucidated by this model portrays a distinct non-linear trajectory. Initially, the 

curve exhibits linear behavior up to approximately 30% of the maximum compressive strength, after which it 

diverges onto a non-linear path. This transition marks a critical point where the inherent microstructure of 

concrete begins to undergo significant changes in response to increasing stress. As the stress intensifies, the 

concrete initially experiences a reduction in volume. However, beyond a critical stress threshold, a notable 
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phenomenon known as dilatancy occurs, where the volume of the concrete starts to increase rather than 

decrease. This intricate behavior underscores the composite nature of concrete and the complex interplay of its 

constituent materials under varying stress levels.The theoretical underpinning of this model is rooted in the 

Internal Variable Thermodynamic Theory, coupled with damage mechanics employing strain space formulation. 

Within this framework, the model introduces a novel concept of permanent deformation, which mirrors 

observations in various materials undergoing stress. Concrete, regarded here as a single-phase continuum 

material, begins as isotropic but gradually transitions to an anisotropic state as cracks propagate through its 

structure. While the model adeptly characterizes the mechanical response of concrete under uniaxial 

compression, it does not encompass the complexities of fatigue damage or viscoelastic behavior, which are 

pertinent in certain real-world scenarios.Comparative analysis with experimental data obtained from Kupfer et 

al. (1969) reveals a commendable alignment between the model predictions and empirical observations. Critical 

stress, uniaxial compressive strength, and corresponding strains demonstrate a satisfactory agreement between 

the model's outputs and experimental results. However, it's essential to recognize that variations in the 

experimental stress-strain curves can be attributed to diverse testing conditions. Factors such as specimen size, 

strain rate, machine stiffness, loading methodology, and measurement techniques exert significant influence, 

highlighting the need for comprehensive consideration of testing conditions in future iterations of the model. 

5.2 Recommendation for the further study 

Continued advancements and expansions of this model could explore its applicability in multiaxial compression 

scenarios, where concrete structures often encounter complex stress states. Integrating multiaxial compression 

into the model could provide valuable insights into concrete behavior under more realistic loading conditions 

encountered in practical engineering applications. Additionally, incorporating a combined damage-plasticity 

approach into the modeling framework could enhance its predictive capabilities by offering a comprehensive 

representation of the interplay between damage accumulation and plastic deformation, thereby providing a 

nuanced understanding of concrete's response to compressive loading.Furthermore, considering stress space 

formulation could offer valuable insights into the behavior of plain concrete under diverse stress conditions. 

Stress space formulations provide a systematic framework for analyzing material behavior across different stress 

states, enabling a more thorough characterization of concrete's mechanical response. By incorporating stress 

space formulations, the model could capture the complex stress-strain relationships exhibited by concrete under 

varying loading scenarios, thereby improving its accuracy and predictive capabilities.Moreover, extending the 

model to address fatigue-related phenomena would be essential for applications in which concrete structures 

undergo cyclic loading over extended periods. Fatigue can significantly influence the structural integrity and 

durability of concrete elements, making it a critical consideration in engineering design and analysis. By 

integrating fatigue effects into the model, engineers could better evaluate the long-term performance of concrete 

structures and implement appropriate design strategies to mitigate fatigue-related failures. Overall, these 

potential extensions offer promising avenues for advancing the understanding and modeling of plain concrete 

behavior under compressive loading, thereby enhancing the reliability and effectiveness of structural designs in 

practice. 


