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Abstract:- The Covid19 pandemic continues to be a global crisis, resulting in tragic loss of millions of lives. This 

has spurred researchers to explore deep learn-ing (DL) techniques for Covid 19 diagnosis, aiming to assist medical 

pro-fessionals in the screening process offering valuable second opinions to clinicians. To that end, we introduce 

a novel DL architectural design for Covid 19 detection, which combines the strengths of vision transformers 

(ViTs) for capturing long range dependencies with Efficient Net's (EffNet) fine-grained classification capabilities. 

Built upon the EffNet‑B0 backbone, the ViT-based model with the ViT-B/16 configuration extracts global con-

text and long-distance feature information from input images, yielding powerful feature representations. 94.78 % 

is the accuracy achieved with our proposed model, demonstrating its effectiveness following experimental 

verification. The efficacy of our model has been empirically substantiated in comparison to state-of-the-art 

(SOTA) approaches. Despite its initial fo-cus on natural language processing (NLP), our substantial accuracy 

demon-strates that the ViT model exhibits promising performance and holds great potential for broader 

applications in computer vision (CV) tasks. 
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1. Introduction 

Since December 2019, there has been a sudden surge in coronavirus disease 2019 (Covid 19), rapidly spreading 

worldwide and leading to a widespread outbreak. As of August 6, 2023, the worldwide count registers more than 

769 million confirmed cases and over 6.9 million reported deaths. Rapid tests were created to identify Covid 19 

in a short timeframe of 30 minutes. Individuals residing in distant regions and grappling with the illness face 

significant hurdles due to the high cost and limited availability of these tools. The procedures received substantial 

criticism because of their elevated likelihood of producing false-negative results. [1]. Recent theoretical progress 

has highlighted that within clinical diagnosis, Real-time reverse transcriptase-polymerase chain reaction (RT-

PCR) is widely recognized as the gold standard for diagnosing and confirming cases of Covid 19 in clinical 

settings [2]. However, in addition to RT-PCR, a comprehensive diagnosis of Covid 19 ideally should incorporate 

the evaluation of chest Xrays (CXR) or computed tomography (CT) results in patients. Acquiring these images is 

quick and inexpensive, and radiologists can examine them to look for visible signs of the infection [3]. CXR or 

CT scans frequently display comparable characteristics in individuals exhibiting Covid 19 symptoms, showing 

bilateral peripheral consolidation in their lung images [4]. Medical imaging has been a dependable method for 

non-invasive medical diagnosis from the beginning [5]. In the rapidly progressing field of computer science today, 

applications employing DL techniques have become more widespread, impacting various facets of our daily lives. 

In the fight against Covid 19, numerous DL methods have surfaced to aid in diagnosis, making a substantial 

contribution to the medical response. Lately, ViT have emerged as a noteworthy advancement in the field of 

computer CV, marking a transfer of the algorithm used in NLP to the CV domain. This shift challenges the 

supremacy of Convolutional Neural Networks (CNNs) and profoundly impacts CV researchers. In subsequent 

periods, researchers have applied the ViT structure to explore a diverse array of applications. For instance, the U-

transformer framework has shown remarkable effectiveness in complex organ segmentation tasks [6], building on 
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the advancements introduced by the ViT structure. Additionally, RTMIC [7] is an innovative framework capable 

of automatically generating captions for CXR images and providing medical diagnoses. Inspired by these 

developments, our proposed novel DL model, achieves improved accuracy and performance in Covid 19 detection 

by drawing the strengths of ViT for capturing intricate long-range dependencies and EffNet's exceptional fine-

grained classification capabilities. 

The subsequent sections of this work are organized as follows: Section 2 conducts a survey of pertinent literature, 

reviewing previous studies in the field. Section 3 delin-eates the dataset used and the preliminaries integral to our 

proposed model. The as-sessment of the presented model, along with a comparative analysis against contem-

porary SOTA techniques, is explored in Section 4. Finally, Section 5 concludes the work by examining the 

potential future directions of our novel framework. 

2. Related works 

In the past few decades, the CV community has witnessed a substantial growth and progress, primarily propelled 

by the rise of DL. Several robust networks [8], [9], [10], [11], [12] have demonstrated exceptional success in 

extensive image classification tasks over the past few decades [13]. To automate the diagnosis of Covid 19, 

researchers in [14] utilized the EffNet B4 framework for transfer learning. They introduced a global average 

pooling 2D layer to address overfitting and decrease the overall parameter count. Over the past decades, numerous 

robust networks  [8], [9], [10], [11], [12] have achieved notable success in large-scale image classification tasks 

[13]. In a related context, the authors in [15] utilized an ensemble approach by incorporating widely used 

pretrained CNN models such as InceptionV3 [16], MobileNetV2 [17], ResNet101 [18], NASNet [19], and 

Xception [20]. These models undergo fine-tuning on the CXR images database, and the final layer representations 

from each model are combined. Subsequently, these concatenated representations are inputted into a multi-layer 

perceptron (MLP) for the accurate diagnosis of Covid 19. Apart from the previously discussed architectural 

improvements, there have been noteworthy efforts [21], [22], [23] dedicated to optimizing overparameterized 

deep neural networks (DNNs), with a specific focus on achieving a balance between accuracy and efficiency. As 

an example, MobileNets [17], [24] and EffNets [25] are notable instances that utilized techniques from neural 

architecture search (NAS) and have showcased impressive performance. While prior research on CNN models 

has yielded positive outcomes, several unresolved issues persist. A significant limitation lies in the prevalent use 

of pre-trained models developed for RGB image datasets, which are unsuitable for single-channel images. 

Additionally, the substantial computational cost associated with these models, necessitating millions of fine-

tuning operations for numerous parameters, renders them impractical for devices with limited resources [26]. The 

remarkable success of transformers in advancing NLP [27], [28] has led to a surge of efforts [29], [30], [31], [32], 

[33], [34], [35], [36], [37], [38], [39] to smoothly incorporate architectures inspired by transformers into the 

domain of visual tasks. This resulted in the creation of a range of ViT models designed for different CV tasks, 

such as low-level vision tasks, object detection [40], classification [41], image retrieval [42]. In a recent 

investigation [41], it is asserted by the researchers that the use of CNNs is no longer mandatory in CV. They 

substantiate their argument by employing transformers directly on image sequences. A new training approach 

presented in DeiT [30] extends the ViT to enhance data efficiency through direct training on the ImageNet-1K 

dataset. Authors in [39], introduced an innovative extension to the ViT design by integrating a pyramid structure. 

This pyramid structure facilitates the creation of multi-scale feature maps, offering advantages in addressing tasks 

that require dense predictions at the pixel level. 

 

 
Fig. 1. Sample images from dataset 
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Fig. 2. Proposed architecture 

Table 1. EfficientNet B0 architecture 

Stage Operator Resolution Channel Layer 

1 Conv3x3  224x224 32 1 

2 MBConv1,3x3  112x112 16 1 

3 MBConv6,3x3 112x112 24 2 

4 MBConv6,5x5 56x56 40 2 

5 MBConv6,3x3 28x28 80 3 

6 MBConv6,5x5 14x14 112 3 

7 MBConv6,5x5 14x14 192 4 

8 MBConv6,3x3 7x7 320 1 

9 Conv1x1 with pooling & FC 7x7 1280 1 

Table 2. Parameter's values set for ViT. 

Parameter Value 

Encoder stride 16 

Number of transformer layers 12 

Number of attention heads for each layer 12 

Activation function Gelu 

Hidden size 768 

Dimensions of MLP output 3072 

Dropout ratio for the attention probabilities 0.1 

Initializer range 0.02 

3. Materials and Methods 

3.1. Dataset 

The dataset utilized in this work is a large public Covid 19 (SARS-CoV-2) lung CT scan dataset, containing total 

of 8,439 CT scans which consists of 7,495 positive cases indicating Covid 19 infection and 944 negative cases 

representing normal and non-Covid 19 conditions. The data is provided in the form of 512×512px PNG images 
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and has been sourced from actual patients in radiology centers within teaching hospitals in Tehran, Iran. A few 

sample images from the dataset utilized are shown in Figure 1. 

3.2. Preliminaries 

Here, we provide a concise overview of the fundamental elements that constitute the framework of our proposed 

hybrid model. The ViT and EffNet serve as the core structures of our hybrid model and contribute to its overall 

performance. 

ViT 

A ViT [41] is a DNN that uses the transformer framework, incorporating an attention mechanism from NLP [27], 

to efficiently analyze patterns in visual data. Inspired by the success of transformers in NLP, ViTs utilize self-

attention mechanisms on image patches or tokens. This enables them to capture both local and large-scale 

dependencies, improving the modeling of global information in images. Unlike the original transformer with both 

encoder and decoder, ViT is optimized as an encoder-only architecture for processing visual data, particularly in 

tasks like image classification, where the input image is divided into fixed-size patches for linear sequence 

processing. The image's extracted patches serve as a sequential input for the transformer. These patches are 

flattened and transformed into a latent vector of 𝐷 dimensions to generate patch embeddings. A trainable 

embedding is integrated into the sequence of embedded patches within the ViT mode. The last state of the 

transformer layer associated with this class token, succinctly conveys classification information from the image. 

The resulting sequence, incorporating patch embeddings and positional embeddings, is then inputted to the 

encoder. The classification head is represented by an MLP during pre-training and replaced by a linear layer in 

fine-tuning. The ViT's transformer encoder (TE) consists of interleaved multi-headed self-attention (MSA) and 

MLP blocks, with skip connections after each block.  

EffNet 

EffNets have attracted attention for their efficacy in image classification, utilizing a novel CNN scaling technique 

introduced in [25]. This technique uniformly scales the width, resolution, and depth of CNNs to enhance 

performance. The EffNet family comprises eight models, with EffNet-B0 as the baseline for subsequent models 

(B1 to B7). Designed by a NAS for a balance between accuracy and efficiency, EffNet-B0 employs compound 

scaling across width, depth, and resolution. When dealing with higher-resolution images, increasing the network 

depth aids in capturing larger receptive fields that encompass more pixels in larger images. Table 1 above 

represents the architecture of EfficientNet-B0. The MBConv block represents an Inverted Residual Block, 

originally featured in MobileNetV2, enhanced with a Squeeze and Excitation optimization technique. This 

synchronization optimizes the network for effective handling of various image resolutions, leading to improved 

performance [25].  

3.3. Methodology 

To facilitate better understanding, we have broken down our hybrid model into three separate components, each 

precisely explained below and the the proposed architecture has been depicted in Figure 2. 

ViT ImageProcessor 

 

In preprocessing pipeline, the ViT imageprocessor component from the transformer’s library, applies various 

operations on input images to transform them into a format that can be fed into the transformer architecture. The 

images are resized to a uniform size of 224 X 224 pixels to ensure consistent dimensions across all the images in 

the set.  Then, the images are converted from PIL format to PyTorch tensors using the transforms. This operation 

converts the image data into a tensor representation, which can be processed by the neural network. The 

transformed images are then utilized for further processing. 

ViT feature extractor 

Our work explores the potential of ViTs as feature extractors, starting with the ViT-B/16 variant in the first stage. 

This variant, with a base architecture featuring a 16x16 patch size and a 224x224 input image size, involves 
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dividing images into patches, converting them into a flat format, generating low-dimensional linear embeddings, 

adding positional embeddings, inputting the sequence into a transformer encoder (TE), and obtaining feature 

vectors as output. These features capture visual information for the final binary classification task of CT images. 

A concise summary of these steps is presented below. 

EffNet-B0 integration 

During the third stage, the output of the TE is linked to the input of EffNet B0. This connection facilitates the 

transfer of the learned, comprehensive feature representations from the ViT to the EffNet. EffNet then conducts 

feature extraction to capture local details and fine-grained features. The model gains a comprehensive image 

understanding by merging ViT and EffNet strengths, utilizing both global and local information to enhance 

classification performance. Inspired by [16], EffNet employs a compound scaling technique utilizing a compound 

coefficient ∅, systematically adjusting layer depth, dimensions, and input resolution.  

 

width: ∅
     (1) 

depth: ∅     (2) 

resolution: 𝜒∅       (3) 

s.t.  ∙ 1.5 ∙ 𝜒2 ≈ 2.5,   ≥ 1,  ≥ 1, 𝜒 ≥ 1  

 

The constants , , and 𝜒 determined through grid search, govern the allocation of resources for scaling depth, 

width, and resolution. Intuitively, the compound coefficient ∅  dictates the extent of resource allocation for model 

scaling, allowing for both increases (∅ ≥ 1) and decreases (∅ ≤ -1) In this study, we employed the B0 variant of 

the EffNet architecture, pre-trained on a distinct ImageNet classification problem with 1000 classes. To tailor the 

output size for binary classification, we freeze the pre-trained EffNet layer weights. The fully connected layer 

(FCL) is removed, and a new linear layer with an input size of 1280 (EffNet output) and an output size of 2 

(indicating Covid19 or non-Covid19) is added. Classification yields a probability vector for each class. Following 

EffNet-B0 model outputs, cross-entropy loss is calculated to measure the difference between predicted outputs 

and actual labels, and gradients are computed for model parameter adjustments. The gradients, obtained through 

backpropagation, are employed to update the model's parameters, facilitating their learning and adjustment. 

Backpropagation propagates the gradients from the loss function backward through the model, aiming to minimize 

the overall loss. 

 

Fig. 3. Confusion matrix 
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Table 3. Experimental Results. 

Evaluation Metrics Result 

Sensitivity 0.9541 

Precision 0.9099 

F1 score 0.95 

Accuracy 94.78 % 

 

Table 4. Comparative analysis with SOTA using transformers as base. 

Method Modality Overall Accuracy 

ViT base [43] CT 76.6 % 

ViT base [44] CT 78.8 % 

ViT base [45] CT 87.26 % 

ResNet50+ViT-base [46] CXR 88.9 % 

Dense transformer (Swim transformer 

base) [46] 
CXR 

91.8 % 

Data-efficient image transformers [47] CXR 92 % 

Proposed model CT 94.78 % 

 

Table 5. Comparative analysis with SOTA using EffNet as base. 

Method Modality Overall Accuracy 

Voting based EffNet [48] CT 87.6 % 

EffNet- B4[49] CT 89.7 % 

EffNet- B3 [50] CXR 93 % 

EffNet- B3 [51] CXR 93.9 % 

Proposed model CT 94.78 % 

 

4. Experimental Results 

4.1. Implementation Details 

The configuration of the device employed to train and assess the model comprises an Apple M1 chip running at 

3.2GHz with 8GB of RAM. The execution of our novel model utilizes the PyTorch framework and integrates 

essential PyTorch libraries, including the PyTorchVision library on Jupyter Notebook. In this study, we chose to 

integrate the ViT-B16 architecture into our hybrid model. The configuration of its architecture is outlined as 

follows: The model parameters are set using a pre-trained model on ImageNet-21k, and subsequently, fine-tuning 

is performed on ImageNet-2012. The Shuffle parameter is configured as true to randomize the sample order during 
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training, and the number of workers parameter is set to 4. This facilitates the efficient utilization of computational 

resources by distributing the data loading across multiple subprocesses. The parallel processing capability enables 

the ViT model to efficiently handle data loading and preprocessing in the background while concurrently 

performing model computations. For effective processing of training data, a batch size of 16 was utilized. 

Comprehensive architectural details, as shown in Table 2, encompass all other aspects of the ViT model. The 

second component of our hybrid model incorporates EffNet-B0. The CrossEntropyLoss function is chosen as the 

loss function, evaluating loss by comparing predicted class probabilities with true class labels. Additionally, the 

Adam optimizer is employed for optimizing model parameters. To ensure adequate model convergence and 

capture underlying data patterns, we conducted training for a total of 10 epochs. Dataset partitioning involved a 

random approach, assigning 80 percent of total images to the training set and the remaining images to the test set. 

4.2. Results  

The results obtained from the application of our model are shown in Table 3. Figure 3. illustrates the confusion 

matrix, providing a visual representation of the model's classification performance. Furthermore, we performed a 

comparative analysis between our proposed method and various SOTA techniques for Covid 19 detection 

incorporating the implementation of architectures based on transformers as well as with SOTA employing EffNet 

based networks. While variations in datasets may limit direct performance comparisons, our study showcases the 

relative improvement achieved by combining ViTs and EffNets. We surpassed existing research that relied solely 

on either pure ViT or EffNets for the same problem statement. This finding underscores the potential of our 

approach and offers valuable insights, indicating the most promising results among the listed techniques in terms 

of performance. It suggests that a hybrid network, effectively integrating transformers and CNNs, can leverage 

the strengths of both models, outperforming pure CNNs and pure transformers in the task of Covid 19 image 

classification. The comparison of our results with the existing studies that have employed transformer-based 

networks and EffNet based architectures for diagnosing Covid 19 has been demonstrated in Table 4 and Table 5 

respectively. 

5. Conclusion and Future work 

A novel model has been introduced in this work for the automated prognosis of Covid 19 through the analysis of 

CT images. The dataset utilized comprises 8439 CT scan images.  The noteworthy result underscores the 

capability to employ the ViT architecture for diverse CV applications. We have empirically demonstrated the 

effec-tiveness of our novel model in comparison to SOTA approaches, evaluated through a variety of metrics. In 

our future endeavors, we aim to evaluate the model's perfor-mance on CXR images also and expand the 

assessment to encompass larger datasets. We aim to attain even greater levels of precision through ongoing 

research and optimization efforts. 

Data Availability 

The dataset substantiating the findings in this study is openly accessible at: 

https://www.kaggle.com/datasets/mehradaria/covid19-lung-ct-scans 
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