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1. Introduction 

Agriculture has been a pivotal development in the progression of human civilization, enabling urban living by 

facilitating surplus food generation through crop cultivation. However, agricultural productivity and financial 

performance have often been hampered by diseases affecting crops, leading to significant challenges in large-

scale agricultural operations and human sustenance [1]. Moreover, environmental factors and climate variations 

in tropical and temperate regions have further exacerbated these challenges, posing significant threats to crop 

production [2], [3]. 

Timely detection of plant diseases is paramount for ensuring healthy food production and plays a crucial role in 

ecological research on plant dynamics. Farmers often face difficulties in accurately diagnosing plant diseases due 

to their subtle manifestations [4]. According to a report by the Foreign Agricultural Service of the United States 

Department of Agriculture (USDA), rice cultivation covered approximately 163.99 million hectares in 2020 and 

2021, yielding an average of 4.57 metric tons per hectare and a total production of 502.10 million metric tons. 
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Abstract:- This research focuses on the timely identification of plant diseases, crucial for efficient crop disease 

management to mitigate yield loss. The study introduces a methodology for classifying diseases in rice leaves 

utilizing four distinct deep learning models and a dataset comprising 2658 images of both healthy and diseased 

rice leaves. The compared models include LeafNet, Modified LeafNet, MobileNetV2, and Xception. 

Modifications to LeafNet's architectural parameters were implemented in the Modified LeafNet model, while 

transfer learning techniques were applied to pretrained MobileNetV2 and Xception models. Optimal training 

hyperparameters were determined by considering various factors such as batch size, data augmentation, 

learning rate, and optimizers. Notably, the Modified LeafNet model demonstrated the highest accuracies, 

achieving 97.44% and 87.76% for the validation and testing datasets, respectively. Comparatively, LeafNet 

achieved 88.92% and 71.84%, Xception achieved 88.64% and 71.95%, and MobileNetV2 achieved 82.10% 

and 67.68% for validation and test accuracies on the same datasets, respectively. This research significantly 

contributes to the advancement of automated disease classification systems for rice leaves, thereby enhancing 

agricultural productivity and sustainability. 
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However, there was a 2.16% decline in production compared to previous years [5]. This decline in rice production 

can be attributed to various diseases affecting crop growth and productivity, with pathogens such as bacteria, 

fungi, and viruses being major contributors [6]. Common rice diseases include brown spot, hispa, and leaf blast 

[7]. Implementing effective disease management strategies, including crop rotation, utilizing resistant varieties, 

and timely fungicide application, is crucial for minimizing the adverse effects of these diseases on rice production 

[8]. 

Chemical pesticides serve as a common method for controlling rice diseases [9], typically applied to paddy fields 

to eliminate or inhibit the growth of pathogens like bacteria, fungi, and viruses responsible for diseases. These 

chemicals are administered as foliar sprays, seed treatments, or soil drenches, depending on the disease type and 

stage [8]. While chemical pesticides can effectively manage rice diseases, they also pose potential environmental 

and health risks [10]. 

Early identification and diagnosis of rice diseases are vital for effective disease management. Timely recognition 

of the disease and its severity allows farmers to implement measures to contain its spread and minimize yield 

losses. Moreover, early diagnosis enables the adoption of targeted and less hazardous control methods, such as 

cultural practices or the use of less toxic pesticides. Rapid and accurate diagnosis involves a combination of visual 

inspection, laboratory tests, and diagnostic tools like molecular assays [11]. Modern diagnostic tools, including 

remote sensing and machine learning-based algorithms, also facilitate early detection of rice diseases [12]. 

Convolutional neural networks (CNNs) are adept at performing convolutional operations on input data, offering 

a robust system architecture capable of addressing complex problems. Comprising input layers, alternating 

convolutional and pooling layers, fully-connected layers, and an output layer, CNN models leverage autonomous 

learning and feature extraction capabilities to automatically extract image features for classification and 

identification [13]. Convolutional layers facilitate feature extraction, with the extracted features forwarded to the 

fully-connected layer for classification. CNN stands out as one of the most utilized deep learning architectures, 

boasting significant model capacity and the ability to handle complex information [13], [14]. 

In recent years, computer vision techniques have become prevalent in detection and classification tasks [15]. 

These techniques involve employing image processing algorithms to analyze digital plant images and detect signs 

of disease [16]. Computer vision aids in detecting diseases at early stages, often before symptoms are visible to 

the naked eye. Common computer vision techniques for plant disease detection include: 

1. Image Segmentation: Dividing images into distinct regions or segments with similar characteristics enables the 

identification and isolation of specific plant parts, such as leaves, for further analysis [17]. 

2. Feature Extraction: Extracting pertinent information from images, including texture, color, and shape, facilitates 

the classification of images as healthy or diseased [18]. 

Machine learning (ML) algorithms, such as support vector machines, offer a valuable approach for classifying 

images based on extracted features. These algorithms leverage labeled datasets of healthy and diseased plant 

images for training and can subsequently classify new plant images [19]. 

Transfer learning, a technique in deep learning, utilizes convolutional neural networks (CNNs) pretrained for 

specific tasks as the foundation for models intended for related tasks. Pretrained networks, initialized with weights 

learned from large labeled datasets like ImageNet, can significantly reduce the training time and effort compared 

to starting from scratch. Notably, models like VGGNet, ResNet, Inception V4, DenseNets, and SqueezeNet, 

initially trained for plant disease classification, heavily rely on transfer learning [20], [21]. 

Our study focused on classifying diseases in rice leaves, employing the LeafNet model—a CNN-based network 

proposed by Barré et al. [22]—as the base model. LeafNet is specifically designed to analyze images of plant 

leaves and classify them into different species. 

In this study, we enhanced the LeafNet model's ability to classify rice diseases using rice leaf images through 

modifications. We compared the performance of the modified model based on critical parameters such as batch 

size, learning rate, precision, recall, F1-score, and accuracy. Two optimizers, Adaptive Moment Estimation 
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(Adam) and Root Mean Square Propagation (RMSprop), were utilized for error minimization. Additionally, we 

incorporated two pretrained models—Xception and MobileNetV2—for comparison. Xception, known for its 

complex architecture, and MobileNetV2, recognized for its lightweight design, were both subjected to transfer 

learning using rice leaf images. These pretrained models, initially trained on ImageNet, had their convolutional 

layers frozen, while the fully-connected layers were trained using the rice leaf image dataset. Hyperparameters 

were fine-tuned, and the models' performance was evaluated. 

The main contributions of this paper are as follows: 

(a) Modified LeafNet Model: We developed a convolutional neural network capable of accurately classifying rice 

leaf diseases from images. Compared to the LeafNet model, our modified version exhibited higher classification 

accuracy (both in validation and testing) on the rice leaf disease dataset. 

(b) Transfer Learning: We leveraged state-of-the-art models known for superior performance in classification 

tasks. Xception and MobileNetV2 were utilized in this study, with transfer learning applied to these models by 

freezing their convolutional layers and employing pretrained weights. 

(c) Explainable Artificial Intelligence (AI): To provide insights into the model's decision-making process, we 

utilized the intermediate class activation map technique to visualize the pixels that exerted the most influence on 

the model's predictions for specific classes. 

2. Objectives 

The objective of this study is to conduct a comparative analysis of three different models for precise classification 

of rice leaf diseases. Transfer learning, LeafNet, and a modified version of LeafNet will be evaluated to determine 

their effectiveness in accurately identifying various diseases affecting rice plants based on leaf images. The aim 

is to assess the performance, robustness, and efficiency of each model in this specific task, considering factors 

such as classification accuracy, computational resources required, and suitability for practical deployment in 

agricultural settings. This analysis will provide insights into selecting the most suitable approach for disease 

diagnosis in rice plants using machine learning techniques. 

3. Methods 

The proposed framework for disease classification from rice leaf images is depicted in Fig. 1. The primary 

objective of this study is to categorize rice leaf diseases into four classes: brown spot, leaf blast, hispa, and healthy. 

The key stages of our methodology include dataset preparation, data preprocessing (including augmentation of 

leaf images), model training, and model evaluation based on disease classification in the provided images. 

FIGURE 1. Overview of the methodology used in this study. 
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A. DATA COLLECTION 

In this investigation, a collection of rice leaf images was employed to classify rice leaf diseases, comprising four 

categories: brown spot, leaf blast, hispa, and healthy. A total of 2658 labeled images were obtained from publicly 

accessible datasets accessible via the Kaggle platform [36], [37]. Subsequently, the dataset was divided into 

training, validation, and testing subsets. 

The training and validation subsets were utilized during the model training process, while the testing subset 

remained unseen to the model. Model assessment was conducted using the validation and testing subsets. Table 1 

provides an overview of the dataset utilized in this study. Additionally, Figure 2 displays sample images 

representing each class within the dataset. It's worth noting that the leaf images were originally in JPEG format 

upon retrieval from the Kaggle platform. 

TABLE 1. Data splitting details. 

 

 

  
 

FIGURE 2. Samples of images obtained from the Kaggle platform. 

B. IMAGE PROCESSING 

The initial step in data preprocessing involved zooming in on the images to enhance the visibility of spots or 

infected regions on the rice leaves, as depicted in Fig. 3, which illustrates images from the original dataset 

alongside their zoomed-in versions. Following this, the preprocessed images underwent rescaling and resizing. 

During rescaling, the pixel values of the images were adjusted by multiplying them by a factor of 1/255, ensuring 

that each pixel value fell within the range of 0 to 1. This normalization process aimed to standardize the dataset 

to a consistent scale. 

Addressing real-world challenges in rice leaf disease detection is crucial, particularly given the diversity of 

imaging conditions that can introduce variability and potential artifacts into images. To mitigate this, we employed 

data augmentation techniques to enhance the robustness and real-world applicability of our models. This involved 

applying various augmentation techniques to the training images, including rotation by 30 degrees, horizontal and 
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vertical flipping, adjusting the height and width within a range of 80% to 120%, and modifying the brightness 

within a range of 80% to 120%. 

Rigorous validation and testing procedures were conducted to evaluate the models' ability to handle potential 

artifacts or alterations introduced during the preprocessing phase. These preprocessing techniques can be 

integrated into the system to facilitate the automated processing of real-world unprocessed images before their 

utilization in disease classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. Examples of original (left) and preprocessed (right) images used in this study. 

C. LEAFNET ARCHITECTURE 

In this study, we adopted the LeafNet architecture proposed by Barré et al. [22] as the foundational model. The 

LeafNet model consists of 11 convolutional layers followed by three fully-connected layers. The architecture of 

the LeafNet model is illustrated in Fig. 4. During training, the LeafNet model processed inputs of size 256×256 

and utilized a max pooling filter of size 3×3. Each convolutional layer employed varying kernel filters, with the 

first two layers utilizing a filter shape of 9×9, the subsequent two layers using a filter shape of 5×5, and the 

remaining layers employing a kernel filter shape of 3×3. The fully-connected layers of the model comprised two 

dense layers, each consisting of 2048 neurons, followed by an output layer with a Softmax activation function. 

Notably, the output layer was configured to classify inputs into four classes, unlike the original LeafNet model, 

which was designed to classify inputs into 185 classes. 

D. Modified Leafnet Architecture 

To enhance the classification of rice leaf diseases, we proposed a modified version of the LeafNet model. The 

architecture and parameters of each layer in the Modified LeafNet model are detailed in Table 2, and the schematic 

representation of the Modified LeafNet model is depicted in Fig. 5. 

Several modifications were made to the original LeafNet model architecture to improve its performance. Notably, 

we standardized the kernel size to 3×3 across all convolutional layers, whereas the original model employed kernel 

sizes of 9×9, 5×5, and 3×3. Additionally, we utilized a 3×3 max-pooling layer, whereas the original LeafNet 
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model employed a 2×2 max-pooling layer. These alterations were essential for achieving enhanced results tailored 

to our specific application. In the Modified LeafNet model, the output layer comprised four neurons representing 

four distinct classes, unlike the original LeafNet model, which featured 185 neurons representing 185 different 

classes. These adjustments contributed to improved model performance by effectively extracting crucial features 

for better classification. 

Table 3 provides an overview of the input parameters for all models evaluated in this study, while Table 4 offers 

a comprehensive summary of these models. The process flow structure is outlined in Table 5, elucidating the steps 

involved in data preprocessing, model construction, hyperparameter tuning, and model evaluation. 

Hyperparameter tuning was conducted using a grid search method to optimize parameters such as batch size, 

learning rate, and optimizers. Upon training the model for a specified number of epochs, we saved the best weights 

in the HDF5 format based on the minimum loss value observed in the validation data. These trained weights were 

subsequently utilized for classifying rice leaf images on a local machine. 

E. Transfer Learning With Pretrained Models 

In this study, we employed the Xception and MobileNetV2 models to showcase and compare the distinctions 

between complex and lightweight models. Both models are deep convolutional neural networks with differing 

input sizes and architectures. The Xception model had an input size of 299×299×3, while MobileNetV2 had an 

input size of 224×224×3. For consistency, we standardized the input size to 224×224×3 in this study. Both models 

had undergone extensive training on the ImageNet dataset for the classification of 1000 categories. These 

pretrained models can be readily imported with their weights using the Keras Application Programming Interface 

(API). 

Transfer learning was implemented on the MobileNetV2 and Xception models by loading the weights obtained 

from their prior training on the ImageNet dataset and subsequently freezing the convolutional layers. For the 

Xception model, the convolutional layers were frozen from block1_conv1 (Conv2D) to block14_sepconv2_act 

(Activation), while for MobileNetV2, the freezing spanned from Conv1 (Conv2D) to out_relu (ReLU) layers. The 

original fully-connected layers were replaced with Flatten and Dense layers. The Flatten layer converted the 

feature map obtained from the max-pooling layer into a format compatible with Dense layers, which were 

responsible for classifying the input. Subsequently, the rice leaf dataset was utilized to train new fully-connected 

layers for classification. 

Table 6 delineates the final layers of the Xception and MobileNetV2 models. Leveraging pretrained models from 

extensive datasets via transfer learning facilitated the extraction of valuable features without the need for an 

extensive amount of training data. This not only reduced the computational resources required for training but 

also led to improved performance, as pretrained models typically acquired a rich set of features during their initial 

training phase. 

Furthermore, transfer learning enables the reuse of meticulously crafted architectures like Xception and 

MobileNetV2, mitigating the necessity for labor-intensive model design and experimentation. This approach 

capitalizes on training with large-scale datasets, amplifying the models' capacity to extract meaningful features 

and enhancing overall performance. 

 

FIGURE 4. Architecture of the original LeafNet model [22]. 
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TABLE 2. Model summary of the modified LeafNet model. 

 

 

 

 

 

 
 

 
 

 

 

 

 
 

 

  
 

F. Visualizing Intermediate Class Activation Maps 

In CNN models, visualizing intermediate class activations during training provides deeper insights into the feature 

extraction process, especially for image-based datasets. These activations represent the output of different layers 

in the network, with feature maps generated by convolutional and pooling layers. The purpose of visualizing these 

activations is to understand how the network decomposes an input image using learned filters. 

The Intermediate Class Activation Map (ICAM) serves as a visual aid to interpret the decision-making process of 

CNN models. It showcases the extracted features of important regions in an input image that contribute to the 

final prediction. By visualizing these regions, one can understand which features the model focuses on and 

whether they are relevant for making accurate predictions. 

To generate an ICAM, the model is modified to produce intermediate activations of specific layers during the 

forward pass. These activations are then utilized to compute a weighted sum of activations from the last 

convolutional layer, resulting in a heatmap representation. The weights for this sum are determined by computing 

the gradient of the model's output concerning the activation of the last convolutional layer. The resulting heatmap 

highlights the regions in the input image that significantly influence the model's prediction. 

Table 7 presents the ICAM for both the LeafNet and modified LeafNet models, illustrating the feature extraction 

process undertaken by these models. The original image contained affected areas with pale yellow dots indicating 

leaf blast disease. Subsequent columns display the extracted pixels from both models. While the LeafNet model 

failed to extract the affected pixels, as seen in column conv2d_8, the Modified LeafNet model successfully 

captured the most influential pixels. These extracted features, as revealed by ICAM, demonstrate the modified 
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LeafNet's ability to focus on the most significant and informative pixels, laying the groundwork for accurate 

classification. 

g. model hyperparameters 

The performance of the models is influenced by various hyperparameters, including the optimizer, learning rate, 

metrics, batch size, and epochs. The models minimize the loss function using the Adam or RMSprop optimizer, 

with learning rates set to 0.001 or 0.0001. The batch size, referring to the number of images fed into the model at 

a time, was varied between 16 and 32 to assess model performance. Table 8 provides a summary of the 

hyperparameters used in the study. 

 

FIGURE 5. Architecture of the Modified LeafNet model. 

TABLE 3. Models’ parameters used in this study. 
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TABLE 4. Summary of the models. 

 

TABLE 5. Process flow used in this study. 

 

 

 

 

 

 

 

 

 

 

4. Results 

The experiments in this study were conducted utilizing Google Colab, employing Python version 3.8, TensorFlow 

version 2.9.2, and Keras version 2.9.0. The hardware infrastructure employed was an NVIDIA Tesla T4 GPU 

with driver version 460.32.03. 

PERFORMANCE EVALUATION 

The evaluation of the LeafNet, Modified LeafNet, MobileNetV2, and Xception models was conducted using both 

the testing and validation datasets. The Adam optimizer was utilized with a learning rate set to 0.0001. To compare 

the performance of each model effectively, key evaluation metrics including recall, precision, F1-score, and 

accuracy were computed. These metrics were derived using equations (1), (2), (3), and (4). 

Performance metrics such as True Positive (TP), True Negative (TN), False Positive (FP), and False Negative 

(FN) were obtained from 4×4 confusion matrices. The confusion matrix with the corresponding terms for each 

case is presented in Table 9. 

TABLE 6. Summary of last layers in the pretrained models. 
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 INTERPRETATION OF CONFUSION MATRIX 

Interpreting a 4×4 confusion matrix can be challenging due to the variation in terms like True Positive (TP) and 

True Negative (TN) for each class. Table 10 provides the breakdown of TP and TN samples for each class, 

facilitating a clearer understanding. 

Furthermore, False Positive (FP) and False Negative (FN) are crucial components of the confusion matrix, 

indicating misclassifications. Table 11 presents the FP and FN samples for each class, aiding in the assessment of 

model performance. 

 ACCURACY 

Accuracy quantifies the model's overall ability to correctly classify both TP and TN instances across all classes. 

It is calculated using Equation (1): 

      Accuracy= TP+TN     ×100%                   

                                FP+TP+TN+FN 

PRECISION 

Precision measures the ratio of correctly predicted positive samples (TP) to all positively predicted samples for a 

given class. It is computed using Equation (2): 

Precision=    TP 

  TP+FP 

RECALL 

Recall, also known as sensitivity, assesses the model's ability to correctly identify positive samples (TP) out of all 

actual positive samples for a particular class. It is calculated using Equation (3): 

Recall= TP 

                   FN+TP 

F1-SCORE 

The F1-score is a vital metric that differs from accuracy as it considers both precision and recall. While accuracy 

measures the ratio of correctly predicted samples to all samples, the F1-score provides a balanced measure of the 

model's performance in terms of precision and recall. It is calculated as the harmonic mean of precision and recall, 

as shown in Equation (4): 

F1-score=    2× Precision×Recall 

                      Precision+Recall 

5. Discussion 

The training performance of the models was visualized through training and validation curves spanning 400 

epochs. Figures 6 and 7 depict the curves for the Modified LeafNet, LeafNet, Xception, and MobileNetV2 models, 

illustrating their performance under the Adam optimizer with a learning rate of 0.0001 and a batch size of 32. The 

curves indicated satisfactory performance without signs of overfitting or underfitting. 
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Confusion matrices and classification reports for the LeafNet and Modified LeafNet models on the testing dataset 

are presented in Figure 8. The Modified LeafNet model exhibited superior accuracy on the testing dataset, 

outperforming the LeafNet model with an accuracy of 97.44% on the validation dataset and 87.76% on the testing 

dataset. Notably, both models showed the most misclassified cases in the leaf blast class. 

A comparison of classification accuracies between the Xception and MobileNetV2 models for rice leaf diseases 

is shown in Figure 9, which includes confusion matrices, classification reports, and accuracy, precision, recall, 

and F1-score metrics for each model. The Xception model performed well with a batch size of 32, while 

MobileNetV2 performed better with a batch size of 16. Models with complex architectures, like Xception, 

benefitted from larger batch sizes, accelerating the training process. Conversely, the simpler architecture of 

MobileNetV2 required a smaller batch size for effective learning. 

Figure 10 displays the validation accuracies achieved by the models, with the Modified LeafNet model attaining 

the highest accuracy of 97.44% for rice leaf disease classification. However, the LeafNet, MobileNetV2, and 

Xception models also demonstrated commendable performance, achieving accuracies of 88.92%, 88.64%, and 

82.10%, respectively. 

TABLE 7. Intermediate class activation map (ICAM). 

 

 

 
 

TABLE 8. Hyperparameters used in this study. TABLE 11. False positive and false 

negative for four classes. 
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TABLE 9. Confusion matrix for four classes. 

 

 
     

 

 

TABLE 10. True positive and true negative for four classes. 

 

 

 

 

 

 

 

 

 

FIGURE 6. Training and validation curves.  

(a) LeafNet. (b) Modified LeafNet. 

Additionally, the models underwent evaluation on the test dataset, which remained unseen during the model 

training and validation phases. This allowed for an accurate assessment of their real-world performance. As 

depicted in Figure 10, the Modified LeafNet model exhibited superior performance compared to the other models, 

achieving a test accuracy of 87.76%. In contrast, the LeafNet, Xception, and MobileNetV2 models achieved test 

accuracies of 71.84%, 71.95% and 67.68%, respectively. 

 

Figure 7. Training And Validation Curves. (A) Xception. (B) Mobilenetv2. 
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Figure 8. Model Performance On The Testing Dataset. (A) Modified Leafnet Classification Report And 

Confusion Matrix. (B) Leafnet Classification Report And Confusion Matrix. 

One possible explanation for the exceptional performance of the Modified LeafNet model could be its 

specialized design tailored specifically for classifying rice leaf diseases. This design might incorporate more 

robust features adept at discerning subtle distinctions among various types of rice leaf ailments. Additionally, 

the heightened accuracy of the Modified LeafNet model could be attributed to its extensive parameterization, 

enabling it to capture intricate patterns within the dataset effectively. 

In contrast, the MobileNetV2 and Xception models demonstrated respectable performance despite not being 

explicitly crafted for rice leaf disease classification. Their effectiveness suggests that transfer learning can serve 

as a potent strategy for categorizing images of rice leaf diseases, even when the models were initially trained on 

dissimilar image datasets. 
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FIGURE 9. Model performance on the testing dataset. (a) Xception classification report and confusion matrix. 

(b) MobileNetV2 classification report and confusion matrix. 

FIGURE 10. Performance comparison among all four models (all models used a batch size of 32, except 

MobileNetV2, which used a batch size of 16). 

The primary objective of this research was to develop a model capable of accurately identifying rice leaf diseases, 

which presented challenges due to imaging conditions. The small size of the rice leaves and the consistent white 

background in the images posed difficulties for detection. Initially, all models struggled with low performance 

due to these conditions. To address this issue, data preprocessing techniques were implemented. This involved 

zooming in on the images to enhance the visibility of the rice leaves and applying data augmentation, including 

flips, shifts, and rotations, to the training set. The experiment highlighted the significant impact of image 

conditions on model performance, emphasizing the importance of image preprocessing. 

CNN deep learning models emerged as suitable candidates for rice leaf disease classification. Transfer learning 

proved beneficial in improving model accuracy, leveraging pretrained CNN models trained on general image 

datasets like ImageNet. However, successful application of transfer learning required appropriate replacement of 

the last few layers to align with the study's objective of rice leaf disease classification. While the LeafNet model 

demonstrated proficiency in detecting and recognizing leaf types, the Modified LeafNet model specifically 

tailored for rice leaf disease classification yielded improved accuracy in this study. 

For future researchers venturing into leaf classification studies, three recommendations are proposed. Firstly, 

consider utilizing CNN models with transfer learning to capitalize on pretrained models' knowledge. Secondly, 

explore LeafNet as a viable option, given its strong performance in leaf type recognition. Lastly, prioritize the use 

of the Modified LeafNet model, as it offers enhanced accuracy specifically tailored for classifying rice leaf 

diseases. 
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TABLE 12. Comparative analysis of studies with the same dataset. 

 

Table 12 provides a comparative analysis of studies utilizing the same dataset as ours for classifying various rice 

leaf diseases. Four algorithms from the literature are evaluated, with most studies testing on four classes: healthy, 

brown spot, hispa, and leaf blast. Zhang [32] employed the WS-DAN algorithm, achieving a testing accuracy of 

87.60% across all classes. Putra et al. [33] utilized the HTL algorithm, reporting a validation accuracy of 91% for 

three classes: brown spot, hispa, and leaf blast. Verma et al. [34] employed a lightweight CNN model, yielding a 

testing accuracy of 73.02% for all classes. Bhowmik et al. [35] implemented an ensemble model (VGG16 Light 

GBM), achieving a validation accuracy of 96.49% for all classes. In contrast, our proposed Modified LeafNet 

model achieved the highest validation accuracy of 97.44% among all algorithms. These findings underscore the 

efficacy of the Modified LeafNet and ensemble models in plant leaf disease classification. 

In summary, our results highlight the superior performance of the Modified LeafNet model in classifying rice leaf 

diseases. Moreover, transfer learning emerges as a potent strategy for leveraging pretrained models to achieve 

accurate classification. Future research endeavors should explore additional deep learning models and image 

processing techniques to further enhance the accuracy of rice leaf disease classification. 

In conclusion, our study successfully demonstrates the feasibility of classifying rice leaf diseases, including brown 

spot, hispa, and leaf blast, using various models trained on rice leaf images. While the Xception and MobileNetV2 

models achieved testing accuracies of 71.95% and 67.68%, respectively, the LeafNet model emerged as a state-

of-the-art solution for leaf classification. However, our investigation extended to both the LeafNet model and a 

modified version, revealing that the Modified LeafNet model surpassed all others in performance, achieving 

outstanding classification accuracies of 97.44% on the validation set and 87.76% on the testing set. 

While achieving higher accuracy is commendable, future research endeavors should aim to enhance the 

dependability and robustness of the model across diverse datasets. This entails addressing challenges posed by 

complex surroundings and varying lighting conditions commonly encountered in real-world scenarios. Moreover, 
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there is a need to prioritize the development of interpretable CNN models that provide insights into disease 

classification in a comprehensible manner. 

Acknowledging the limitations of our study, particularly concerning dataset size and variety, future work should 

focus on collecting more extensive and diverse datasets to improve the robustness and practical utility of the 

proposed models. Additionally, efforts to optimize model size and inference speed, through techniques like 

quantization and pruning, will be crucial for deployment on resource-constrained edge devices. 

Furthermore, external validation using independent datasets is essential to validate the generalizability of our 

models. By subjecting them to various real-world scenarios, we can strengthen their credibility and demonstrate 

their efficacy beyond the confines of our specific dataset. Finally, exploring alternative interpretability techniques 

will enhance the transparency and interpretability of our deep learning models, further advancing their utility in 

practical applications. 
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