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Abstract: - In the era of smart manufacturing, the combination of AI and the IoT have changed a landscape of 

CNC milling with Next-Generation Tool Condition Monitoring (TCM). This radical combination opens a new 

paradigm of efficiency, precision, and productivity in milling applications. Through AI-driven analytics, CNC 

machines become proficient observers, assessing real-time sensor data from IoT-enabled cutting tools. 

Predictive maintenance solutions are seamlessly integrated, ensuring proactive tool wear detection and problem 

anticipation, thus eliminating production disruptions and optimizing tool life. Edge computing equips these 

smart CNC machines with lightning-fast decision-making capabilities, while an agile cloud-based framework 

facilitates seamless data storage and sharing. Case studies demonstrate the real-world benefits of AI-driven 

TCM, exhibiting improved production outcomes, management of resources, and more powerful quality control. 

Embrace the future with Next-Generation Tool Condition Monitoring, where AI and IoT unite to elevate 

manufacturing excellence to new heights. 

Keywords: Internet of Things (IoT), Predictive Maintenance, CNC Milling Machines, Cutting Tool Condition 

Monitoring, Machine Health.. 

 

1. Introduction to Tool Condition Monitoring and its Importance in Milling Applications 

Tool condition monitoring (TCM) is an essential element of machining operations, including milling 

applications. This entails making use of different methods and advances in technology for continually evaluating 

the condition and efficacy of cutting tools during the machining process. The fundamental purpose of TCM is to 

ensure that tools are in good working condition, detect any signs of wear or damage early, and improve tool life 

and machining efficiency. Here is an overview of tool condition monitoring and its usefulness in milling 

applications [1] 

a. Types of Tool Condition Monitoring: 

Direct Methods: These involve direct measurement of tool wear and damage employing sensors. Common direct 

methods includes acoustic emission monitoring, vibration analysis, and force measurement. 

Indirect approaches: These approaches rely on monitoring elements related to the machining process, such as 

cutting temperature, cutting forces, and power usage, to infer tool status. Thermography and power usage 

monitoring fall within this category. 

Hybrid Methods: These incorporate both direct and indirect methods for a more comprehensive assessment of 

tool condition. 

b. Importance in Milling Applications: 
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Cost Reduction: Milling operations can be expensive, and tool wear or breakage can result in costly downtime 

and the need for regular tool replacements. TCM aids in increasing tool life by spotting faults early, lowering 

tooling expenses as shown in Figure1 

Improved Product Quality: As tools wear or get damaged, the quality and precision of machined parts might 

decline. TCM guarantees that the tools are in optimal condition, leading to greater product quality and lower 

scrap rates. 

Enhanced Process Efficiency: Monitoring tool condition allows for modifications in cutting parameters, such as 

feed rate and cutting speed, to maintain optimal machining efficiency. This leads to faster production rates and 

lower energy consumption. 

Preventive Maintenance: TCM enables predictive maintenance methods, where tools are replaced or 

reconditioned based on actual wear data rather than a fixed schedule. This avoids unplanned downtime and 

enhances overall equipment efficiency. 

Safety: Dull or damaged tools can be a safety problem in milling operations, potentially leading to accidents. 

TCM helps guarantee that tools are safe to use and lowers the likelihood of accidents. 

Tool Life Optimization: By monitoring tool condition, milling operators can optimize tool life, enhancing the 

number of components that can be produced with each tool. This reduces tool changeovers and accompanying 

production interruptions. 

Data-Driven Decision-Making: TCM systems give real-time data on tool condition, which may be used for 

process optimization and performance analysis. This data-driven strategy can lead to ongoing improvement in 

milling processes. 

Fig 1. Different Tool Faults 

In the present production scene, computer numerically controlled (CNC) equipment stand as important assets. 

Within the world of CNC milling, the soundness of the cutting tool takes priority, as any damage that occurs has 

significant consequences on component quality, efficiency in production, equipment immovability, and the total 

duration of the cutting activity. It's important to point out that the damage to the cutting tool frequently emerges 

as the principal factor behind unplanned disturbances in the manufacture process According to a comprehensive 

study, a significant twenty percent of a machine failure can be directly related to tool wear [2]. 

Striking the appropriate balance in tool replacement is paramount: postponing the replacement when tool 

deterioration has become severe results in substandard product quality & a looming prospect of an unplanned 

halt in operations. Conversely, premature tool replacement leads to wastage and an unnecessary increase in the 

overall processing expenditure. It's illuminating to gather from earlier studies that cutting instruments are 

commonly utilized within a functional life range of seventy to eighty percent [3]. Consequently, fast 

identification of tool degradation and timely replacement emerge as imperatives in the quest to provide 

components of superior quality and support extremely effective operations. In essence, a Tool Condition 

Monitoring (TCM) system is naturally designed to collect immediate information through sensors attached to 

the machine tool. This data undergoes scrutiny via computational signal processing techniques, enabling the 

continual assessment of cutting circumstances and the early detection of tool damage. A complete TCM system 
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concurrently boosts production while enforcing high quality control standards of product, so serving as an 

indisputable driver for enhanced machining efficiency [4].  

The aforementioned arguments make it clear that dealing with wear of tools in cutting metal processes continues 

to be a challenging task. This difficulty results from the complicated, non-linear properties present in the 

majority of cutting operations, which make it difficult to accurately estimate wear of tools. The method involves 

collecting visual information using sensor technology and probing tools, including photographic equipment, in 

order to directly measure tool wear [5]. 

The aforementioned arguments make it clear that dealing with wear of tools in cutting metal processes continues 

to be a challenging task. This difficulty results from the complicated, non-linear properties present in the 

majority of cutting operations, which make it difficult to accurately estimate wear of tools. The method involves 

collecting visual information using sensor technology and probing tools, including photographic equipment, in 

order to directly measure tool wear [5].  

These approaches do, however, have certain inherent drawbacks, including issues with affordability, 

responsiveness, and setup simplicity. As a result, the current trend is towards the use of secondary measuring 

techniques, whereby devices are strategically placed to gather data on a variety of parameters, includes the 

measurement of cutting forces, the interpretation of intricate vibration patterns, the capture of acoustic emissions 

and the scrutiny of tool temperature, among others [6]. 

In the area of indirect measurement, past research has mostly used dyno and Acoustic Emission sensors to 

determine how much tool wear has occurred. The effectiveness of these sensors could be hampered due to the 

constantly changing operating circumstances in real-world settings, which could increase costs and produce less 

reliable results [7] 

Furthermore, it is extremely difficult for tracking tool requirements in actual time in industrial settings. It's 

interesting to note that a substantial chunk of academic research in this area has attempted to analyse cutting 

data using custom sensor systems. It's important to note that these specialised sensors frequently continue to be 

prohibitively expensive and, as a result, face challenges in obtaining wider market adoption because of their 

expensive nature [8]. 

The emergence of intelligent manufacturing combined with Industrial Internet of Things industrial devices 

heralds in a potential era of industrial optimisation in this changing environment [9]. 

Internet of Things devices low cost combined with new advances in ML-driven analyses made possible by 

widely used computer OS lead to a variety of useful uses in industrial contexts [10]. 

Therefore, the forecast indicates that in the future, accurate TCM devices will outperform traditional cutting 

chatter monitoring systems in terms of efficiency and effectiveness in the context of intelligent Computerised 

Numerical Controlled machines as shown in fig.2. These systems will be intricately entwined with data analysis 

and Internet of Things technologies that harness cutting signals [11]. 
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Fig 2. IoT Based Tool Condition Monitoring 

Information processing methods are vital in tool condition monitoring systems, since they link tool usage and 

data provided by the tool [12], which includes current signals, noise and vibration [13]. Techniques like quick 

Fourier transformation [14], Principal Component Analysis (PCA) [15], Time-Frequency Analysis, Correlation 

and Cross-correlation Analysis extensively analyse cutting movements and find the frequency of the resonant 

[16]. Frequency spectrum examination is utilized for nonstationary cutting signals, whereas Time Domain 

Evaluation (TDE) illustrates variations over a period of time [17]. Multi-sensor combining methods can improve 

TCM systems by collecting more data as well as correlations associated with the tool's deterioration. However, 

finding important characteristics and parameters associated with tool wear is a primary challenge for 

multisensory devices. A modular multi-sensor solution for TWM devices using current, vibration and cutting 

force signals has been created, guaranteeing that the entire power generated by the cutting is compatible with the 

tool's breaking profile [18]. 

 

Fig 3. Different TC Monitoring Techniques 
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Traditional tool condition monitoring (TCM) approaches play a significant role in figuring out the condition of 

cutting tools while processes of machining. But they also have constraints that need to be recognised. Here's a 

description of these tactics and their supplemental limitations [19]: 

Tool condition can be satisfied using the approach given in fig 3. The tool condition monitoring (TCM) system 

usually contains 5 necessary stages: sensor insertion, the signal acquiring, signal interpreting, system 

forecasting, and then tool wearing taking decisions [20]. Its fundamental purpose of the tool condition 

monitoring process is that recognise an operational update from the cutting operations properly. A system is 

capable of being programmed to track either connected, disconnected or in continuous synchronisation through 

the web [21]. 

Sensor Integration: In this step, several sensors such as accelerometers, electric current detectors and 

microphones are included within the computerised numerical control machine centre to gather actual time data 

associated to the cutting tools behaviour and conditions Signal Collection: The integrated sensors continuously 

collect data during the machining process. The signals obtained include information on cutting forces, vibration, 

acoustic emission, tool temperature, and other parameters [22]. 

Signal Processing: The gathered data is processed employing processing of signals methods, such as FT, WA or 

envelope analysis, to extract valuable features and patterns linked to tool wear conditions. 

Model Prediction: Machine learning algorithms or predictive models are applied to examine the processed data 

and predict the tools wear state and Remaining Useful Life (RUL). These models learn from historical data to 

make accurate predictions [23]. 

Tool Wear Decision-Making: Based on the predictions from the model, the TCM system takes judgements 

regarding tool wear condition. It can either trigger maintenance operations proactively to prevent tool failure or 

detect and resolve tool wear issues automatically to avoid surprise tool failures time to time. 

The TCM method can be implemented in several ways based on its scope and requirements: 

Local TCM System: This includes interacting with the machining system and checking the tools indicate using 

specific inspection equipment like a numeral microscope [24]. 

Real-time Actual tool condition monitoring system: This innovative technology forecasts the probability of 

degradation of cutting tool and takes proactive efforts to avert possible complications. It can automatically 

detect and resolve tool wear problems to avoid downtime [25]. 

The integration of economical sensors and the architecture of lightweight IoT protocols, such as Message Queue 

Telemetry Transport (MQTT), facilitate information from the sensor nodes and from server, enabling efficient 

data transmission and real-time monitoring of the cutting tools conditions. This incorporation of IoT technology 

boosts the effectiveness and scalability of the CTCM system, leading to enhanced manufacturing efficiency and 

decreased operational costs [26]. 

In previous decades, the increasing use of cyber physical revolution and the emergence of cutting-edge 

technologies have driven significant developments in smart machining processes [18]. ML and internet of 

things-based technologies has played a vital role in modernising Tool Condition Monitoring (TCM) procedures 

[19]. These innovative approaches have demonstrated promising performance [20], consistently evolving and 

being used in TCM systems that leverage multi-sensor data to assess the TCM via typical ML [21] and DL 

algorithms [22]. 

Moreover, that tendency of cloud adoption takes fuelled the creation in increasingly efficient while compact tool 

condition monitoring systems, enabling real-time digital intelligent plant operations. As an illustration of 

designed then created a driven by ICM system, where a monitoring process has begun within a period of time 

once the product begins cutting [18]. 

These developments in intelligent machining systems have resulted in higher machining efficiency, enhanced 

tool life, and streamlined production processes. The integration of machine learning, IoT, and cloud 

technologies has enabled proactive maintenance scheduling, real-time tool wear prediction, and prompt tool 
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replacement, leading to reduced downtime and greater productivity in industrial processes. As Industry 4.0 

continues to expand, the potential for intelligent machining systems to further revolutionize the manufacturing 

industry remains high [24]. 

The going on innovation and deployment of these sophisticated TCM approaches are projected to drive greater 

efficiency, cost-effectiveness, and sustainability in the global industrial industry [25]. 

2. The Rise of AI and IoT in Manufacturing: Transforming Milling Processes 

Cyber Physical Revolution is a significant transformation driven through advancements in technology. AI and 

IoT play pivotal roles in reshaping manufacturing, healthcare, logistics, and other sectors. AI enables smart 

automation, predictive maintenance, quality control, supply chain optimization, customization, and energy 

efficiency. IoT involves sensor networks, data connectivity, real-time monitoring, asset tracking, remote control, 

data analytics, and safety and security. These technologies enable businesses to make data-driven decisions, 

optimize processes, reduce costs, and deliver customized products and services. As these technologies continue 

to evolve, their impact on Industry 4.0 is expected to deepen, resulting in further transformative changes across 

various sectors [26]. 

Cyber Physical advancements have led to achievements with smart manufacturing machines. ML and cloud-

built approaches has shown significant efficiency in tool condition monitoring (TCM). Digital mobility has 

pushed to invention for sophisticated while compact tool condition monitoring solutions for digital intelligent 

factory functioning within instantaneously. Recent research has produced next generation tool condition 

monitoring (NGTCM), transfer learning models, Bayesian discriminant analysis, minimum and flexible TCM 

systems, lightweight image processing, and neural networks. These developments aim to increase TCM 

performance and enable online smart manufacturing operations in real-time. Fig 4 shows the industry 4.0 

Fig 4. Role of IoT in Industry 4.0 

Latest literature has yet to fully investigate into the concept of interconnected intelligent manufacturing systems. 

These networks possess a shared online repository of knowledge concerning tools and machining operations 

processes, stored in a stored in the cloud record. This allows regional laptops to execute forecasts and finding 

using established and regularly up-to-date tool condition monitoring models. This has the potential to 

significantly enhance systemic issues efficiency, facilitate widespread tool condition monitoring adoption, and 

minimise a necessity for particular computation devices and customized setups. The aforementioned 

interconnected manufacturing plants can range in numerous plants inside the regional production hub to 

extensive global networks. To realize this vision, it is imperative to have a reliable the cloud assistance supplier, 

ample records ability, and robust optimization of the tool condition monitoring system. Moreover, ongoing and 

forthcoming advancements in emerging tool condition monitoring technologies are essential for achieving this 

vision. This article delves into various aspects, including sensing instrument synthesis techniques, highly 

efficient ML algorithm models, cybernetic machining, tool condition monitoring optimization for efficiency, 
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less waiting for data transmission, strategies for migrating to the cloud, and the combination of Internet of 

Things (IoT) [27]. 

The integration of AI and IoT in milling applications may revolutionise machining operations by boosting 

effectiveness, efficiency, and flexibility. IoT-enabled sensors capture current information on milling machines, 

allowing the monitoring and analysis. Data is kept in secure cloud-based or premises databases, and AI-based 

analytics are utilised to extract important insights [28]. AI models continuously monitor tool status, predict 

machine failures, optimize cutting settings, assure quality control, minimise energy usage, and improve human-

machine interaction. AI can identify trends and patterns in machining data, enabling manufacturers make 

informed decisions for process enhancement and product development. Securing IoT devices demands the 

adoption of key safeguards, including encryption, authentication, as well as access management and data. 

Flexibility and agility are necessary for responding to various milling machines and processes. By integrating AI 

and IoT into milling applications, producers can gain higher productivity, lower costs, improved product quality, 

and greater competitiveness in the contemporary manufacturing landscape [29]. 

3. AI models for TCM in Milling. 

3.1 Machine learning techniques for tool wear prediction 

Using algorithms for prediction in the field of algorithmic learning for tool condition monitoring aim to label 

cutting tool states forecast their balance of lifespan, then anticipate upcoming failures of cutting tools. Effective 

models include Deep Learning Models (DLM) Neural Network (NN), SVM, Probabilistic Neural Networks 

(PNN) models, Nearest Neighbor Methods (NNM), Classification Trees (CT) and Gaussian processes (GP) [30]. 

Branch-based methods, which include classification trees, logistic trees, and forecast models, are proposed to 

categorize let-down modes of cutting equipment. Bootstrap Aggregation and boosting approaches limit variation 

in decision trees, while white-box Random Forest classifiers give more transparency in model interpretation and 

scrutiny. Semi-Supervised Learning (SSL) approaches are suggested for classification problems without labels, 

using a pre-labelled dataset and labelled and unlabelled datasets. Nature-Inspired Algorithms, like as modern 

Swarm intelligence techniques, replicate a grouping of vegetation and creatures in natural surrounding 

demonstrate greater work in sorting problems. The suggested TCM system along with ML algorithms offers 

both pros and disadvantages [31]. 

 

Fig 5. Workflow for Machine Learning-Based Tool Condition Monitoring 

ANN algorithm models are routinely utilised in ML to anticipate tool wear progression stages. Taking 

inspiration from brain neurons, these models connect features to related results and are trained by updating 

weights and biases. Fig 5 shows the flowchart of tool condition monitoring. They are often used to assess 

uncertainty, ambiguous relations, then find unseen designs in massive database. However, they have constraints 

including a lengthier era a period of time local limits, and additional efforts for calibrating multiple biases and 

weights. Based on data algorithms have been evaluated for improved stability & reliability [32]. Table 1 shows 

that different algorithm model study for prediction. 
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Table 1 Different Algorithm Model Study 

Authors Algorithm Model Common 

Features 

Processing 

Methods 

Cutting 

Signals 

Typical 

Accuracy 

Range 

H. Wang 

[33] 

Support Vector 

Machine 

Wavelet 

Transform, RMS 

Time-domain, 

Frequency-

domain 

Vibration, 

Force 
86% - 91% 

J. Kim 

[34] 
Neural Networks 

Spectral entropy, 

wavelet coeffs. 

Time-domain, 

Frequency-

domain 

Vibration, 

Sound 
92% - 97% 

Liu et al 

[35] 

Long Short-Term 

Memory (LSTM) 

Time-domain 

statistical 

features 

Time-domain, 

Frequency-

domain 

Vibration, 

Force 
91% - 96% 

Johnson 

and 

Brown 

[36] 

Support Vector 

Machine 

RMS, skewness, 

kurtosis 

Time-domain, 

Frequency-

domain 

Vibration, 

Force 
85% - 90% 

Garcia 

and 

Martinez 

[37] 

Decision Trees 

Autocorrelation, 

Kurtogram 

features 

Time-domain, 

Frequency-

domain 

Vibration, 

Force 
82% - 88% 

Chen and 

Wang 

[38] 

Neural Networks 
Spectral entropy, 

cepstral coeffs. 

Time-domain, 

Frequency-

domain 

Vibration, 

Sound 
90% - 95% 

Lee and 

Kim [39] 
k-Nearest Neighbors 

MFCCs, Hjorth 

parameters 

Time-domain, 

Frequency-

domain 

Vibration, 

Sound 
85% - 92% 

Patel et 

al. [40] 
Gradient Boosting 

Teager-Kaiser 

Energy Operator 

Time-domain, 

Frequency-

domain 

Vibration, 

Force 
87% - 92% 

I. 

Martinez 

[41] 

Random Forest 

Statistical 

moments, FFT 

coefficients 

Time-domain, 

Frequency-

domain 

Vibration, 

Force 
89% - 94% 

Smith et 

al. [42] 
Random Forest 

Statistical 

moments, FFT 

coefficients 

Time-domain, 

Frequency-

domain 

Vibration, 

Force 
88% - 93% 

 

3.2 Deep learning models for anomaly detection and fault diagnosis 

Deep learning is receiving attention as a great technique for categorization jobs, notably process Condition 

Monitoring (TCM). Deep learning models excel at developing the detailed link between input signals and output 

conditions, minimising the demand for manual feature engineering, which is especially useful in the continually 

changing arena of TCM. Past studies have leveraged multiple sensors for collecting cutting data for tool 

degradation tracking indicating a considerable connection with force signals, especially those from the 

frequency domain. Deep learning networks, recognised for their multi-layered design, separately detect patterns 

and create characteristics that are representative directly from raw data [43]. 

In comparison with classical machine learning, deep learning models offer significant advantages by 

transcending the need for deep domain expertise in signal processing and feature selection. This process of 

automation simplifies feature extraction and selection, raising tool condition monitoring efficiency and 

minimising dependency on expert knowledge [44]. In conclusion, deep learning has established itself as a key 

asset in TCM, facilitating the development of exact models. Leveraging deep learning's capabilities, TCM 

systems provide improved outcomes in tool wear prediction as shown in fig 6. Remaining Life Estimation 

(RLE), and failure detection, eventually boosting manufacturing productivity and saving downtime [45]. 
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Fig 6 Deep Learning Model of Tool Condition Monitoring 

4. IoT Sensors and Data Acquisition for Milling Applications 

Tool condition monitoring (TCM) during machining operations relies on experienced human operators. TCM 

systems have developed through stages, from human sensing to direct measurement and, at present, sensor-

based techniques. Sensor-based technologies, especially indirect tool wear sensing, have gained relevance due to 

their cost-efficiency and versatility compared to direct tool wear procedures. In intermediate approaches, sensor 

signals including force exerted during cutting, sound emission (SE), vibrational behaviour and tool heat level are 

utilised to record tool conditions. Dynamometers are and AE sensors have routinely been used to evaluate tool 

wear indirectly [46]. These sensors send data to an acquiring data System and these tracks an analysis numerous 

substance. However, sensor-based systems suffer from high costs and inconsistent outcomes under various 

operation conditions [47]. Multiple sensors have been employed in prior research for cutting signal gathering in 

tool wear monitoring. Notably, an important connection exists between force indications, especially with regard 

to the cutting feed direction, and tool wear. Vibration analysis and AE sensors are effective approaches for 

monitoring tool wear, with AE signals being very responsive to changes in machining operations. The use of 

audible sound signals for tool wear monitoring has shown promise, offering practical applications by connecting 

sound signals showing tool situations, from excellent that fails states. These advancements indicate the ongoing 

transition of TCM toward more automated and precise process [48]. 
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Fig 7 Data Acquisition Techniques for Milling Applications 

In an IoT-enabled milling system, data collecting and communication are crucial components. Data is acquired 

from different sensors on the milling machine, including vibration, temperature, force, current, and sound 

sensors, among others as shown in fig 7. This data is then processed locally or at the edge to extract important 

information. An IoT gateway device promotes connectivity by delivering the processed data to the cloud 

utilising protocols like Wi-Fi, cellular, or LPWAN. In the cloud, the data is stored, analysed, and exposed to 

advanced analytics and machine learning. Alerts and alerts are provided for anomalies, enabling remote 

monitoring and control of the milling machine as shown in table 2. This integrated strategy boosts efficiency, 

decreases downtime, and supports data-driven decision-making in milling processes [49]. 

Table 2. Data acquisition and communication in IoT-enabled milling systems 

Sr. 

`No. 
Data Acquisition Communication 

1 Sensors                                  IoT Gateway 

 Vibration Connectivity Protocols 

Temperature Wi-Fi  

Force Cellular 

Current Ethernet 

Acoustic LPWAN 

2 Data Processing  Cloud Integration 

 Local Processing AWS IoT, Azure IoT 

Edge Computing   Google Cloud IoT. 

3 Edge Computing    Data Storage 

  Databases 

 Time-series databases 

4 Communication Analytics 

 

IoT Gateway 

Machine Learning Algorithms 

Anomaly Detection 

Trend Analysis 

5 Cloud Integration Alerts and Notifications 
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 Data Transmission Email, SMS, Mobile Apps 

6 Data Storage  Remote Monitoring and 

Control 

 Cloud Databases Web Dashboards 

Historical Data  Mobile Apps 

 

5. Data Analytics and Processing for Next-Generation TCM 

5.1 Pre-processing techniques for sensor data 

The text underlines the significance of pre-processing and processing in a data-driven Tool Condition 

Monitoring (TCM) system. It starts with sensor conditioning to digitize data while evaluating sensor properties 

and potential interferences. Signal amplification enhances the signal-to-noise ratio, and suitable sample rates are 

selected to enable efficient tool wear monitoring [50]. 

 

 

 

 

 

 

 

 

 

 

Fig 8 Pre-processing Techniques for Sensor data 

Filtering of signals techniques, includes high-pass, low-pass, and band-pass filtration, are employed to reduce 

noise and unfavourable signal components while keeping the sensor-variable link. Signal separation happens 

when the tool interacts with the workpiece, providing information gathering about tool status. Continued data 

collecting generates massive, extremely dimensional databases, offering storage and computing issues. To 

remedy this, a feature representation is introduced during signal processing, generating short explanations of 

variables. Dimensionality reduction approaches are then utilised to pick key features while deleting unnecessary 

ones, increasing classification model efficiency. In summary, pre-processing and processing procedures are 

crucial for enhancing data quality and controlling data volume problems in TCM [51]. 

Pre-processing techniques are critical for optimizing sensor quality of data before analysis or prediction. They 

handle difficulties such as noise, missing values, and data preparation. Common pre-processing methods for 

sensor data include data cleaning (handling missing values and removing outliers), normalization and scaling, 

feature engineering (transforming raw data into meaningful features), smoothing and filtering, time alignment, 

feature scaling, data transformation, data encoding, aggregation and resampling, data splitting, data 

augmentation, and data quality assurance [52] as shown in fig 8. These strategies make sure sensor data is well-

prepared for analysis and decision-making in many different fields, including IoT, manufacturing, and 

healthcare, with the choice of technique based on data properties and analysis goals [53]. 

5.2 Feature extraction and selection methods 

Feature extraction approaches in Tool Condition Monitoring (TCM) entail examining sensor data in various 

ways. Time domain analysis looks at statistics like mean and variance throughout time. Frequency domain 
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analysis, like the Fast Fourier Transform (FFT), finds elements of frequency. The Wavelet Transform provides 

an accurate representation of both time and frequency data. Spectral analysis estimates power spectral density. 

Statistical features, such as skewness and kurtosis, describe data distribution. Time-frequency analysis addresses 

like STFT and CWT capture shifting frequencies, whereas envelope analysis follows amplitude variations. 

MFCCs are utilised for audio-based TCM to collect sound characteristics [54]. 

In TCM, feature selection algorithms assist choose the most relevant features. Filter approaches, like correlation 

analysis, choose features according to their relationship with tool condition. Wrapper approaches analyse 

subsets of features using machine learning models. Embedded approaches, like LASSO, integrate feature 

selection with training models. Sequential feature selection investigates combinations of features. Recursive 

feature elimination, also known as RFE, regularly fits models, deleting less significant features. Genetic 

algorithms look for optimal feature subsets. Mutual information-based selection gauges the importance of 

features, while the Boruta Algorithm notices significant features. These strategies increase TCM accuracy and 

efficiency by selecting informative features and decreased noise and dimensionality [55]. All Feature Extraction 

and Selection Methods shown in table 3. 

Table 3. Feature Extraction and Selection Methods 

Method Applications Advantages Disadvantages 

Feature Extraction 

Methods 

   

Time Domain Analysis Time-series sensor data 

analysis 

 Simple and interpretable May not capture complex 

patterns 

Frequency Domain 

Analysis 

Frequency-based feature 

extraction 

Reveals frequency 

components 

May require domain 

knowledge for 

interpretation 

Wavelet Transform Multiresolution analysis Captures both time and 

frequency information 

Selection of appropriate 

wavelets can be challenging 

Spectral Analysis Frequency content 

analysis 

Identifies frequency 

characteristics 

Sensitive to noise 

Spectral Analysis Frequency content 

analysis 

Identifies frequency 

characteristics 

Sensitive to noise 

Statistical Features Describing data 

distribution 

Easy to compute and 

understand 

Limited ability to capture 

complex relationships 

Time-Frequency 

Analysis 

Tracking frequency 

changes over time 

Captures dynamic 

changes 

Choice of time-frequency 

method affects results 

Envelope Analysis Amplitude variation 

detection 

Sensitive to tool wear May not capture subtle 

changes 

Feature Selection 

Methods 

   

Filter Methods Identifying relevant 

features 

Simple and 

computationally efficient 

May miss complex 

relationships 

Wrapper Methods Feature subsets 

evaluation 

Optimizes for specific 

machine learning models 

Computationally intensive, 

prone to overfitting 

Embedded Methods Integrated with model 

training 

Simultaneously trains 

and selects features 

Model-dependent, limited 

to certain algorithms 

Sequential Feature 

Selection 

Sequential feature subset 

exploration 

Systematic search for 

optimal subsets 

Computationally intensive, 

may not find global optima 

Recursive Feature 

Elimination (RFE) 

Iteratively removes 

unimportant features 

Reduces dimensionality, 

preserves relevance 

Computationally intensive, 

may require model 

retraining 

Genetic Algorithms Evolutionary search for 

optimal features 

Effective for complex 

feature spaces 

Computationally 

demanding, requires tuning 
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6. Real-time Monitoring and Predictive Maintenance in Milling 

Implementing real-time monitoring systems employing AI and IoT involves using sensors to record data 

regularly. This data is subsequently transported to a cloud-based repository for storage and preparation [56]. AI 

and machine learning models are taught using previous data to assess incoming data in real-time. The 

technology sends warnings and messages when abnormalities are discovered and provides user-friendly 

dashboards for monitoring. Scalability, security, privacy, and cost management are critical factors, as is 

adhering to regulations. Regular maintenance, training for users, and integration with current systems are crucial 

for system efficacy and longevity [57]. 

 

Fig 9 Implementing real-time monitoring systems using AI and IoT 

The framework includes of 3 stages linking internet and physical space. In the first stage, sensor collect data on 

CNC machine, cutting tool, and component activities, together with ambient data [58]. This information is 

integrated with machine makers' experience. The intermediary layer, the cyber-physical interface, stores and 

analyses the machining data using methods like large amounts of data analytics and ML [59]. It seeks to 

recognise cutting procedure and benefit from manufacturing practises. The tertiary tier, the cyberspace stage, 

handles executive for machine breakdown forecast as well as servicing [60] as shown in fig 9. It gives machine 

failure models produced from sensor data mining, using ontologies to develop machine health knowledge. 

Ontological thinking is utilized to assess machinery harm, degeneration, and subsequent upkeep requirements. 

The outcomes from these layers inform producers' decisions in physical space. 

The latest study in digital Mechanical structures and TCM is defining a forecast of intelligent production. Still, 

the present Internet of Things framework and connection framework to tool condition monitoring confront 

increasing needs for connectivity, security, and methodical frameworks. These demands have been motivated by 

the increased need for enhanced machine learning, reliable data pipelines, and a low-late cloud computing, and 

enhanced connection across numerous factories. Consequently, further study is needed to examine either a 

developed   for TCM or innovative methods to reinforce the current framework [61].  

Predictive maintenance is helpful for improving tool life in production, as it saves downtime, extends tool life, 

improves product quality, and results in savings on costs. It also promotes safety, simplifies inventory 

management, delivers data-driven insights, optimizes resource allocation, gives a competitive advantage, and 

supports to environmental sustainability. 

7. Case Studies: Successful Implementations of AI and IoT in Milling 

7.1 Automotive Industry - Smart Machining Centres [62] 
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History  

In the automotive manufacturing sector, the dilemma of excessive tool wear rates was harming production 

efficiency and product quality. Frequent tool changes led in higher downtime and expenses 

Implementation Details: 

IoT Sensors: Vibration, temperature, and tool wear sensors were strategically placed on CNC milling machines. 

Data Collection: Real-time data was collected and transmitted to a cloud-based platform. 

Analytics: Machine learning algorithms were used to predict tool wear and recommend maintenance. 

Visualization: A user-friendly dashboard was provided for operators and maintenance teams. 

Outcomes: 

1. Tool wear rate reduced by 30%. 

2. Production efficiency increased by 15% due to reduced downtime. 

3. Maintenance costs decreased significantly with predictive maintenance. 

4. Product quality improved, resulting in higher customer satisfaction. 

Benefits: 

1. Substantial cost savings from reduced tool wear and maintenance expenses. 

2. Enhanced production efficiency leading to higher throughput and revenue. 

3. Increased customer satisfaction due to improved product quality and on-time deliveries. 

4. Competitive advantage in the automotive market through efficient manufacturing processes. 

Conclusion: 

1. Proper sensor placement and regular calibration are crucial for accurate data collection. 

2. Regular maintenance of IoT infrastructure is necessary to ensure reliable monitoring. 

3. User training and engagement are essential for maximizing the benefits of IoT-based monitoring. 

Future Improvements: 

1. Integration with the supply chain for just-in-time tool replacement. 

2. Expansion of IoT monitoring to other manufacturing processes for comprehensive efficiency improvements. 

7.2 Case Study 2: Aerospace Industry [63] 

History  

The aerospace industry faced challenges due to frequent tool wear, leading to costly equipment failures and 

production delays. 

Implementation Details: 

1. IoT Sensors: Vibration, temperature, and acoustic sensors were installed on CNC milling machines. 

2. Data Collection: Real-time data was transmitted to a cloud-based platform for analysis. 

3. Analytics: Predictive maintenance algorithms were used to anticipate tool wear and recommend replacements. 

4. Visualization: A user interface provided real-time tool condition status and alerts. 

Outcomes: 

1. A 40% reduction in unplanned downtime due to predictive maintenance. 

2. Lowered maintenance costs by proactively replacing tools at the right time. 

3. Enhanced safety for machine operators and maintenance teams. 

Benefits: 
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1. Significant cost savings from reduced downtime and maintenance expenses. 

2. Improved production schedules with fewer unexpected delays. 

3. Increased worker safety, reducing the risk of accidents. 

Conclusion: 

1. Regular calibration and maintenance of sensors are essential for accurate readings. 

4. Collaboration between maintenance and production teams is critical for successful implementation. 

5. The system's scalability allows for future expansion into other manufacturing processes. 

Future Improvements: 

1. Integration with other maintenance systems for a holistic equipment management approach. 

2. Implementation of edge computing for real-time analysis and response. 

7.3 Case Study 3: Metal Fabrication [64] 

History: In the metal fabrication industry, frequent tool wear led to increased scrap rates and production 

inefficiencies. 

Implementation Details: 

1. IoT sensors: Vibration, temperature, and acoustic sensors were installed on CNC milling machines. 

2. Data collection: Real-time data was transmitted to a cloud-based platform. 

3. Analytics: Predictive maintenance algorithms identified tool wear trends and recommended timely 

replacements. 

4. Visualization: Operators accessed a user-friendly dashboard to monitor tool conditions. 

Outcomes: 

1. A 25% reduction in scrap rates due to early defect detection. 

2. Enhanced material efficiency and cost savings. 

3. Improved product consistency and reduced waste. 

Benefits: 

1. Lower material waste and improved product quality. 

2. Cost savings through reduced scrap rates and tool replacement frequency. 

3. Sustainable manufacturing practices. 

Conclusion: 

1. Proper sensor placement and calibration are crucial for accurate data. 

2. Operator training and engagement are essential for effective monitoring. 

3. Early defect detection prevents costly material waste. 

Future Improvements: 

1. Integration with inventory management for just-in-time tool replenishment. 

2. Expansion of condition monitoring to other metal fabrication processes. 

7.4 Case Study 4: Medical Device Manufacturing [65] 

History: 

In the medical device manufacturing business, accuracy and quality control are of vital importance. The 

challenge confronted by this company was the regular wear and tear of cutting equipment used in the fabrication 

of medical devices. Tool wear not only increased production costs because of frequent substitutions but also 

posed a risk to the uniformity and reliability of the medical devices being created. 
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Implementation Details: 

1. IoT Sensors: Vibration, temperature, and tool wear sensors were strategically placed on CNC milling machines 

and other relevant equipment. 

2. Data Collection: Real-time data from these sensors was collected and transmitted to a cloud-based platform. 

3. Analytics: Advanced predictive maintenance algorithms were employed to monitor tool wear patterns and 

predict maintenance needs accurately. 

4. Visualization: A user-friendly interface was provided for operators and maintenance personnel to monitor tool 

conditions and receive alerts. 

Outcomes: 

1. The implementation of IoT-based condition monitoring extended the lifespan of cutting tools by an impressive 

50%. 

2. Reduced tool replacement frequency led to significant cost savings on tooling expenses. 

3. Consistency in tool performance ensured that medical devices met stringent quality and compliance standards 

consistently. 

Benefits: 

1. Substantial cost savings achieved through reduced tool wear and fewer replacements. 

2. Ensured product quality and compliance with medical industry regulations. 

3. Enhanced customer trust and satisfaction through consistent product quality. 

Conclusion: 

1. Proper sensor placement and regular calibration are essential for accurate data collection in medical device 

manufacturing. 

2. Close collaboration between operators, maintenance teams, and quality control personnel is vital for the 

successful implementation of IoT-based monitoring. 

3. Predictive maintenance can significantly impact both cost savings and product quality in industries with 

stringent standards. 

Future Improvements: 

1. Integration with the manufacturing execution system (MES) for seamless workflow optimization. 

2. Further exploration of advanced analytics and AI to optimize machining parameters and tool selection for even 

better tool life extension. 

7.5 Case Study 5: Precision Engineering [66] 

History: 

Precision engineering organizations work in highly specific fields where precision, dependability, and efficiency 

are critical. In this scenario, the difficulty presented by a precision engineering company was the regular wear 

and replacement of cutting tools, resulting in interruptions in production and increased expenses. 

Implementation Details: 

1. IoT Sensors: Vibration, temperature, and tool wear sensors were strategically placed on CNC milling machines 

and precision equipment. 

2. Data Collection: Real-time data from these sensors was collected and transmitted to a cloud-based platform. 

3. Analytics: Advanced predictive maintenance algorithms were applied to monitor tool wear trends and predict 

maintenance requirements accurately. 

4. Visualization: A user-friendly interface was provided for operators and maintenance teams to monitor tool 

conditions, receive alerts, and plan maintenance activities. 

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 2 (2024) 

__________________________________________________________________________________ 

180 

Outcomes: 

1. The implementation of IoT-based condition monitoring resulted in a 20% reduction in tool replacement 

frequency. 

2. Reduced downtime due to proactive maintenance led to improved production efficiency. 

3. Machining accuracy significantly improved, ensuring that products met strict precision standards. 

4. Customer satisfaction increased due to consistent product quality and timely deliveries. 

Benefits: 

1. Cost savings achieved through reduced tool wear and fewer replacements. 

2. Enhanced production efficiency, leading to higher throughput and revenue. 

3. Improved product quality and adherence to precision engineering standards. 

4. Elevated customer trust and satisfaction through consistent quality and on-time deliveries. 

Conclusion: 

1. Proper sensor placement and regular calibration are essential for accurate data collection in precision 

engineering. 

2. Collaboration between operators, maintenance teams, and quality control personnel is critical for the successful 

implementation of IoT-based monitoring. 

3. Predictive maintenance not only impacts cost savings but also significantly enhances product quality and 

customer satisfaction in precision engineering. 

Future Improvements: 

1. Integration with a comprehensive manufacturing execution system (MES) for end-to-end workflow 

optimization. 

2. Further exploration of advanced analytics, machine learning, and AI for optimizing machining parameters and 

tool selection to further extend tool life. 

7.6 Case Study 6: Electronics Manufacturing [67] 

History: 

The electronic device manufacturing industry requires precise and defect-free manufacturing processes. Tool 

wear and machining difficulties can result in expensive product defects and production interruptions. In this 

issue case, an electronics manufacturing company searched for to address these challenges by implementing 

IoT-based cutting tool condition monitoring. 

Implementation Details: 

1. IoT Sensors: Vibration, temperature, and tool wear sensors were strategically placed on CNC milling machines 

and other relevant equipment. 

2. Data Collection: Real-time data from these sensors was collected and transmitted to a cloud-based platform. 

3. Analytics: Predictive maintenance algorithms were applied to monitor tool conditions, detect early faults, and 

recommend maintenance actions. 

4. Visualization: A user-friendly interface provided operators and maintenance personnel with real-time tool 

condition status and alerts. 

Outcomes: 

1. Early fault detection resulted in a 15% reduction in product rejection rates. 

2. Improved product yield and reduced waste contributed to significant cost savings. 

3. Enhanced product quality and reduced rework, leading to higher customer satisfaction. 

Benefits: 

1. Improved product yield and reduced material waste, translating into cost savings. 
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2. Enhanced product quality and adherence to strict industry standards. 

3. Increased customer trust and satisfaction through consistent quality and on-time deliveries. 

Conclusion: 

1. Proper sensor placement and regular sensor maintenance are crucial for precise data collection in electronics 

manufacturing. 

2. Effective communication and collaboration between operators, maintenance teams, and quality control 

personnel are vital for successful IoT-based monitoring. 

3. Early fault detection not only impacts cost savings but also significantly enhances product quality and customer 

satisfaction in electronics manufacturing. 

Future Improvements: 

1. Integration with a comprehensive manufacturing execution system (MES) to optimize production scheduling 

and workflow. 

2. Exploration of advanced analytics and machine learning to fine-tune machining parameters and further extend 

tool life. 

7.7 Case Study 7: Moulds and Die Making [68] 

History: 

The moulds and die-making industry focuses on generating quality moulds and dies for many manufacturing 

industries. In this scenario, the problem faced was the regular wear and replacement of cutting tools throughout 

the machining of moulds and dies. Tool wear not only increased production costs but also damaged the quality 

of moulds and dies, resulting in rework and disruptions. 

Implementation Details: 

1. IoT Sensors: Vibration, temperature, and tool wear sensors were strategically installed on CNC milling 

machines and machining centers. 

2. Data Collection: Real-time data from these sensors was collected and transmitted to a cloud-based platform. 

3. Analytics: Advanced predictive maintenance algorithms were utilized to monitor tool wear trends and predict 

maintenance needs accurately. 

4. Visualization: A user-friendly interface was provided for operators and maintenance teams to monitor tool 

conditions and receive real-time alerts. 

Outcomes: 

1. Implementation of IoT-based condition monitoring resulted in an impressive 40% extension of cutting tool 

lifespan. 

2. Reduced tool replacement frequency led to substantial cost savings in tooling expenses. 

3. Improved precision and quality of molds and dies reduced rework and improved client satisfaction. 

Benefits: 

1. Substantial cost savings achieved through reduced tool wear and fewer tool replacements. 

2. Enhanced production efficiency and decreased downtime. 

3. Improved precision and quality of molds and dies, leading to client satisfaction and repeat business. 

Conclusion: 

1. Proper sensor placement and regular calibration are critical for precise data collection in mold and die making. 

2. Collaboration and communication between operators, maintenance teams, and quality control personnel are vital 

for the successful implementation of IoT-based monitoring. 

3. Predictive maintenance significantly impacts both cost savings and the quality of precision components in the 

mold and die industry. 
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Future Improvements: 

1. Integration with an advanced computer-aided design (CAD) system to optimize toolpaths for even better tool 

life extension. 

2. Further exploration of advanced analytics and artificial intelligence to optimize machining parameters for 

maximum tool life. 

7.8 Case Study 8: Shipbuilding [69] 

History: 

The shipbuilding sector is noted for its complicated and large-scale undertakings, where precision and efficiency 

are vital. Frequent tool wear and maintenance concerns in shipbuilding machinery can lead to considerable 

delays and increased operational expenses. In one scenario, a shipbuilding company intended to overcome these 

difficulties by introducing IoT-based cutting tool condition monitoring. 

Implementation Details: 

1. IoT Sensors: Vibration, temperature, and tool wear sensors were strategically placed on CNC milling machines 

and other relevant equipment used in shipbuilding. 

2. Data Collection: Real-time data from these sensors was collected and transmitted to a cloud-based platform. 

3. Analytics: Predictive maintenance algorithms were employed to monitor tool wear patterns and anticipate 

maintenance requirements accurately. 

4. Visualization: A user-friendly interface was provided for operators, maintenance personnel, and project 

managers to monitor tool conditions and receive real-time alerts. 

Outcomes: 

1. Early fault detection led to a 30% reduction in machine downtime, contributing to improved project timelines. 

2. Reduced maintenance costs and optimized tool use resulted in lower operational expenses. 

3. Enhanced safety for workers and better resource allocation led to improved project management. 

Benefits: 

1. Significant cost savings through reduced downtime and maintenance expenses. 

2. Improved project timelines and customer satisfaction due to on-time deliveries. 

3. Enhanced safety for workers and efficient resource allocation for project managers. 

Conclusion: 

1. Proper sensor placement and regular calibration are crucial for precise data collection in shipbuilding 

machinery. 

2. Collaboration and communication between operators, maintenance teams, and project managers are vital for the 

successful implementation of IoT-based monitoring. 

3. Early fault detection not only impacts cost savings but also significantly enhances project management and 

safety in shipbuilding. 

Future Improvements: 

1. Integration with an advanced project management system to optimize resource allocation and project 

scheduling. 

2. Exploration of advanced analytics and machine learning for further optimization of machining parameters and 

tool life extension in shipbuilding. 

7.9 Case Study 9: Agricultural Machinery [70] 

History: 
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The agricultural machinery business plays a key part in modern farming operations, where productivity and 

equipment reliability are essential. Recurrent tool wear and maintenance concerns can disrupt farming efforts 

and contribute to increased operational costs. In this scenario, an agricultural machinery manufacturer attempted 

to address these difficulties by introducing IoT-based cutting tool condition monitoring. 

Implementation Details: 

1. IoT Sensors: Vibration, temperature, and tool wear sensors were strategically installed on CNC milling 

machines and agricultural equipment. 

2. Data Collection: Real-time data from these sensors was collected and transmitted to a cloud-based platform. 

3. Analytics: Predictive maintenance algorithms were applied to monitor tool wear trends and anticipate 

maintenance needs accurately. 

4. Visualization: A user-friendly interface was provided for equipment operators, maintenance teams, and farmers 

to monitor tool conditions and receive real-time alerts. 

Outcomes: 

1. Early fault detection led to a 10% increase in crop yield due to reduced equipment downtime. 

2. Lower maintenance costs and optimized tool use resulted in reduced operational expenses for farmers. 

3. Improved equipment uptime ensured timely farming activities and enhanced agricultural productivity. 

Benefits: 

1. Increased crop yield and reduced operational costs for farmers. 

2. Enhanced equipment reliability and reduced farming disruptions. 

3. Improved agricultural productivity and farmer satisfaction. 

Conclusion: 

1. Proper sensor placement and regular sensor maintenance are crucial for precise data collection in agricultural 

machinery. 

2. Collaboration and communication between equipment operators, maintenance teams, and farmers are vital for 

the successful implementation of IoT-based monitoring. 

3. Early fault detection not only impacts cost savings but also significantly enhances agricultural productivity and 

farmer satisfaction. 

Future Improvements: 

1. Integration with farm management systems to optimize equipment usage and crop planning. 

2. Exploration of advanced analytics and machine learning for further optimization of machining parameters and 

tool life extension in agricultural machinery. 

7.10 Case Study 10: Textile Industry [71] 

History: 

The textile industry relies on precise machinery to sustain efficient and high-quality production operations. 

Frequent tool wear and equipment malfunctions can interrupt industrial processes and lead to excessive 

downtime. In this scenario, a textile producer attempted to overcome these difficulties by introducing IoT-based 

cutting tool condition monitoring. 

Implementation Details: 

1. IoT Sensors: Vibration, temperature, and tool wear sensors were strategically installed on CNC milling 

machines and textile production equipment. 

2. Data Collection: Real-time data from these sensors was collected and transmitted to a cloud-based platform. 

3. Analytics: Predictive maintenance algorithms were applied to monitor tool wear patterns and anticipate 

maintenance needs accurately. 
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4. Visualization: A user-friendly interface was provided for equipment operators, maintenance teams, and 

production managers to monitor tool conditions and receive real-time alerts. 

Outcomes: 

1. Early fault detection led to a 20% reduction in tool changeover time, contributing to increased production 

throughput. 

2. Lower maintenance costs and optimized tool use resulted in reduced operational expenses. 

3. Enhanced equipment uptime ensured timely production and improved manufacturing efficiency. 

Benefits: 

1. Increased production throughput and reduced operational costs for the textile manufacturer. 

2. Enhanced equipment reliability and reduced production disruptions. 

3. Improved manufacturing efficiency and on-time order fulfilment. 

Conclusion: 

1. Proper sensor placement and regular sensor maintenance are crucial for precise data collection in textile 

machinery. 

2. Collaboration and communication between equipment operators, maintenance teams, and production managers 

are vital for the successful implementation of IoT-based monitoring. 

3. Early fault detection not only impacts cost savings but also significantly enhances manufacturing efficiency and 

customer satisfaction in the textile industry. 

Future Improvements: 

1. Integration with an advanced production planning and scheduling system for optimizing workflow and resource 

allocation. 

2. Exploration of advanced analytics and machine learning for further optimization of machining parameters and 

tool life extension in textile machinery. 

 

 

 

Fig 10 Suggested IoT System to CNC Milling Centre 
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These technologies are transforming traditional manufacturing into smarter, data-driven processes. The smart 

Internet of Things framework is provided, combining DL models for assessing machine procedures in order to 

safeguard tool integrity and longevity. The architecture of Tool Condition Monitoring (TCM) system for CNC 

machines is described, featuring key elements such as a CNC Milling Centre using various sensors, an Arduino 

or NVIDIA for real-time data capture, data ingestion through Intel Edison, signal processing via LabVIEW, data 

storing in a Microsoft SQL Server, and the use of sensor data for real-time tool condition monitoring. This 

system provides ongoing evaluation of tool health during machining, boosting tool integrity and extending tool 

life. Suggested IoT System to CNC Milling Centre shown in fig 10. 

8. Challenges and Future Directions in Next-Generation TCM 

In Tool Condition Monitoring (TCM) have given solutions for various stages of TCM, but there are persisting 

issues. Such things as integrating sensors into industrial machinery, data loss during processing, balancing 

efficiency and accuracy in Machine Learning models, developing On- and off-line architecture of linked 

records, addressing internet-based computing delays, cyber threats, and escalating costs. 

The future of IoT-based cutting tool condition monitoring depends on easy integration with the larger 

framework of the fourth industrial revolution. This combination will eventually result in further networked and 

smarter production settings. Intelligent factories will take advantage of IoT data not only for status monitoring 

but additionally for actual time modifications to manufacturing processes. With the confluence of IoT, AI, and 

robotics, cutting tools are going to become a crucial component of autonomous production systems that adapt to 

varying conditions on demand. The cooperation between IoT and the advancement of Industry 4.0 will promote 

adaptive and information-driven choices, eventually maximising efficiency in manufacturing, minimising 

recyclables, and assuring improved quality of the product. 

As can be IoT-based cutting tool condition monitoring creates large volumes of data, the requirement for 

instantaneous analytics will expand. The use of edge computers that processes data closest of it’s the source, is 

going to have a vital role. By relocating information processing to the edge, producers may cut delay while 

reacting to tool condition shifts within milliseconds instead of a few minutes or seconds. This strategy is 

especially important in applications after which even the tiniest delayed can impair product quality or safety. 

Computing at the edge will help producers to make instantaneous choices, boosting overall equipment efficacy 

and averting costly breakdowns. 

In the years to come, IoT-based cutting tool condition monitoring is going to lead to sustainability and reduced 

environmental impact. Via improving the utilisation of tools and maintenance levels, producers may decrease 

their usage of materials and energy, hence minimising waste and greenhouse gases. Environmental measures 

will work hand in hand to monitoring of conditions, harmonising with worldwide aims for accountable 

manufacturing. Furthermore, internet of things (IoT) technology will allow improved monitoring of tool 

recycling and reuse programs, thereby adding to a sustainable economy. Manufacturers would not only benefit 

economically from less waste but also strengthen their green credentials, appealing to green-conscious 

consumers and financiers together. 

The near future is going to see the emergence of forecasting maintenance techniques for IoT-based condition 

monitoring. Improved machine learning models will become more accurate in estimating tool wear and failure 

probabilities. These models are going to estimate requirements for upkeep but also provide useful information, 

such as advising optimal machining parameters to extend tool life. As more data becomes accessible, these 

models will continuously improve, allowing producers to optimize their maintenance plans more. Furthermore, 

AI-driven maintenance prediction will transcend beyond just spotting errors; it will give root-cause analysis and 

recommend preventive steps, ushering in a new era of proactively tool management. 

Future research should explore shared machining databases across various factories, customs network structures 

for TCM, improving data handling for complex data, experimenting with different Machine Learning models, 

developing adaptive TCM systems, enhancing cybersecurity, applying material science knowledge to TCM 

models, and evaluating the economics of TCM for mass execution in intelligent factories. 
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9. Conclusion 

This paper addresses the importance of tool wear in machining processes and its influence on productivity and 

quality. To overcome this issue, the study offers the smart globally TCM technology built upon the IIoT. This 

system blends machine learning and IoT technology, continuously monitoring tool conditions in real-time. The 

fusion of sensors collects data from the machining process, which is subsequently forwarded to the IIoT 

platform for analysis. Data analysis and machine learning algorithms recognise trends and abnormalities, 

allowing the system to determine the cutting tool's condition. The system then makes decisions regarding 

machining control, such as cutting speeds, feeds, or tool changes. The ultimate goal is to develop a system of 

intelligent manufacturing units that can self-supervise and make judgements on machine operations and 

procedures. The intelligent TCM network provides effortless integration of automated processes with human-

machine collaboration, coinciding with Industry 4.0 and the goal of more efficient and intelligent manufacturing 

systems. 

In the arena of production, where accuracy and effectiveness are essential, IoT-based cutting tool condition 

monitoring is growing as a disruptive force. The use of this technology enables us to surpass typical 

maintenance techniques by delivering immediate insight into the condition of cutting tools and machinery. With 

careful placement of sensors, data collecting, and advanced analytics, producers can now estimate tool wear, 

detect deviations, and optimize their operations like never previously. 

The advantages of IoT-based cutting tool monitoring of condition are various. It not only avoids unexpected 

downtime but also increases the lifespan of instruments, resulting in major cost savings. By making sure tools 

are changed at the right moment, producers may achieve a uniform level of quality, satisfy production deadlines, 

and boost client satisfaction. Moreover, the incorporation of IoT technologies supports a more secure place to 

work, ensuring the well-being of operators of machines and maintenance groups. 

While we go ahead, the avenues for IoT-based cutting tool condition monitoring remains infinite. The coupling 

of IoT with modern technologies like machine learning and computing at the edge promises even higher 

efficiency improvements and accuracy in prediction. This synergy helps producers to not only satisfy the 

demands of the fourth industrial revolution but also to lead the drive towards healthier, more productive, and 

affordable manufacturing environmental systems. 

IoT-based cutting tool condition monitoring is not only a technological improvement; it's an essential 

requirement in the developing production landscape. It offers an opportunity to manufacturers attempting to stay 

competitive in an era of fast change. The future will see increased consolidation of IoT and Industry 4.0, 

utilising the collective power of data, artificial intelligence, and automation. The result? More agile, efficient, 

and sustainable manufacturing procedures that equip firms for success in an ever-changing global marketplace. 

IoT-based condition monitoring is not simply a tool; it's an essential component for industrial evolution. 
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