
Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 2 (2024)

__

91

Visualization of Information System

Architectures Based on Microservices

Kornienko D.V. Mishina S.V.

Bunin Yelets State University

Abstract: This article substantiates the importance and necessity of visualizing the architecture of information

systems built on the principles of microservice architecture. This task is key both in the process of developing

new systems and in optimizing the operation of existing ones. To provide complete and up-to-date information

about the structure and interaction of microservices, an approach is required that is based on the automatic

collection and processing of information about the relationships between microservices and their internal

structure, followed by visualization in architecture diagrams. The study revealed that specialized software trace

logs must be used to visualize the architecture. As part of the work, aspects of tracing were considered in the

context of the OpenTelemetry project, an open-source tool designed for collecting telemetry data from programs

and analyzing them. The author suggested using the C4 model as a visualization method. This approach is a

relatively new concept for modeling software systems, including context, containers, components, code, and their

relationships. The main goal of the research was to automate the process of creating diagrams based on data

obtained from OpenTelemetry to simplify the understanding of the structure and interactions of microservices in

the system. The result of the research was the development of algorithms for collecting and converting trace data

to create C4 diagrams, as well as the development of software for their implementation.

Keywords: automation, information systems, architecture, visualization, microservices, C4, OpenTelementry,

Zipkin.

1. Introduction

Microservices have gained great popularity in the development and construction of modern complex information

systems [1]. They are an approach to software development in which a large application is broken down into

small, independent modules or services, each of which performs a specific function and communicates with the

others through simple interfaces, such as a RESTful API [2]. One of the key benefits of microservices is flexibility.

Breaking the system into separate modules allows development teams to work on one service independently of

the others, which speeds up the development process and simplifies scaling. Microservices also help increase

system reliability, since an error in one service does not necessarily affect the operation of others. This can

significantly reduce application downtime and make it more resilient to errors [3].

Flexible methodology, in particular Agile, is one of the main approaches in modern software development,

including microservices [4]. The use of Agile in microservices development typically involves incremental and

iterative approaches to create functionally independent system components. This allows teams to effectively adapt

to changing business needs and technology trends. However, Agile also has its challenges. One of the most

common problems is the lack of detailed and up-to-date documentation [4]. According to Agile principles, a

working product is more important than detailed documentation. This means that Agile teams tend to focus on

continuous value delivery and a working product rather than on creating detailed documentation. Most Agile

documentation consists of task descriptions, system changes, and other work notes. This is incremental

documentation and is created and updated as development progresses. Description of a complete system map is

usually a labor-intensive task and is not always kept up to date. However, accurate and up-to-date system

documentation is very important for a systematic understanding of the operation of the information system.

Documentation helps analysts, developers and architects make timely and correct decisions about the development

of the system, taking into account its technical features.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 2 (2024)

__

92

The most reliable information about the system is provided by the system itself, in the form of source code, binary

files, system logs and trace logs. These artifacts can be used to reverse engineer the system [5, 6]. Through code

analysis, logs, and traces [7], the structure and behavior of the system can be reconstructed, which in turn allows

automatic generation of documentation. For example, you can automatically generate API descriptions,

dependency diagrams, data diagrams, and other types of documentation. Additionally, tools can be compiled to

visualize the microservice architecture.

For visualization of microservice architecture, trace systems are of greatest interest, in particular OpenTelemetry

is a set of open-source tools designed for collecting, processing and exporting traces, metrics and logs [8]. This

project was the result of the merger of two other projects, OpenTracing and OpenCensus, and is part of the Cloud

Native Computing Foundation's cloud architecture. When it comes to microservice architectures, OpenTelemetry

is especially valuable for its tracing capabilities. Splitting a system into many microservices can make it difficult

to track the flow of requests between all of these services, as well as identify bottlenecks, performance issues, and

other errors. OpenTelemetry allows you to trace request paths across all services, providing a complete final

execution context [9]. The main applications for visualizing and analyzing OpenTelemetry traces are Zipkin and

Jaeger [9]. The results of the study of these applications showed that these tools have limitations in terms of

visualizing system components. Zipkin and Jaeger demonstrate the ability to present trace data in a useful and

readable format, but they do not provide a comprehensive visualization of the system architecture. This

shortcoming can lead to an incomplete view of integrations within a system, as well as make it difficult to identify

complex interoperability issues between microservices. In addition, to visualize a microservice architecture, it is

convenient to represent components and their relationships in the C4 model - a hierarchical system architecture

visualization scheme that covers systems at other levels of complexity, offering contextual, container, component

and class representation [10, 11]. Applying the C4 model to the visualization of OpenTelemetry trace data can

improve the understanding of a system's architecture and make it easier to analyze the interactions between

components.

The task of visualizing software architecture remains at the forefront of information technology and continues to

become increasingly relevant in modern conditions. Visualization simplifies the process of perceiving and

analyzing complex information, and helps both programmers and architects gain a better understanding of the

structure and function of the system. In the work of Namiota D.E., Romanov V.Yu. “On 3D Visualization of

Software Architecture and Metrics,” emphasizes the importance of this aspect [12]. The authors rightly point out

the benefits of this approach, including speeding up the process of learning software and improving its

understanding. Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna “Visualization of object-oriented

software in a city metaphor: Comprehending the implemented variability and its technical debt” describes the use

of visualization in a city metaphor to study the variability of object-oriented software [13]. In the work of Vyugina

A. A. “Visualization of the work of client-server architecture using delegates in the C# language”, the tasks of

visualizing the client-server architecture of applications are considered and it is noted that this approach will allow

you to see which requests come to the server, and which requests are sent back to the client [14]. However, at the

moment, the problem of visualizing the architecture of an information system based on microservices has not been

completely solved. Modern approaches to obtaining and processing data on connections and the use of a modern

convenient model for representing architecture, such as C4 diagrams, are required. The article discusses the option

of building an architecture based on OpenTelemetry data, where Zipkin is used as a data collector. The process of

obtaining and processing this data is described to visualize the architecture in the C4 model of the first and second

levels of presentation - the context level and the container level.

2. Results and discussion

This article discusses the developed algorithm for visualizing the architecture of an information system based on

microservices using OpenTelemetry, which can be divided into the following stages: 1. Preparing the information

system infrastructure for collecting trace data, metrics and logs. This phase involves deploying and configuring

data collection tools, such as OpenTelemetry agents, that will monitor the execution of microservices and collect

trace information, metrics, and logs. 2. Uploading trace data. At this stage, the collected trace data, containing

information about the interaction between various components of the information system, is retrieved from the

warehouse and prepared for further processing. 3. Data processing and preparation. The collected trace data is

processed and aggregated to create a structure that is easy to visualize. This stage includes data merging, filtering,

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 2 (2024)

__

93

eliminating duplicates, and converting the data into a format that is used to build graphical visualizations. 4. Direct

data visualization. At the last stage, the prepared data is visualized using suitable tools that allow you to create

visual graphical representations of the architecture of the information system based on microservices. In Fig.

Figure 1 presents the above-described stages of the algorithm for visualizing the architecture of an information

system based on microservices using OpenTelemetry.

Fig. 1. Stages of an algorithm for visualizing the architecture of an information system based on

microservices using OpenTelemetry

The infrastructure provisioning phase involves configuring and initializing relevant agents for each microservice.

These agents intercept requests to other services or databases and, in the background, pass information about such

requests to the appropriate data collection module. OpenTelemetry provides such agents for most modern

programming languages. For example, a special instrumentation agent has been developed for the Java platform,

which supports most Java frameworks, including Spring Boot. This agent introduces additional elements into the

bytecode of classes when the application starts, allowing you to intercept calls to internal service functions and

calls to external components, passing this data to pre-configured information collection modules. An alternative

approach for setting up data collection agents is to use Istio Service Mesh in a Kubernetes infrastructure. Istio

serves as a proxy for requests to other services, providing the ability to collect this information and subsequently

transmit it to data collection modules in accordance with the OTPL protocol. It is proposed to use Zipkin as a

collector for accumulating trace data. Zipkin is an easy-to-use yet feature-rich tool that offers support for a variety

of data store types, such as MySQL, Apache Cassandra, and Elasticsearch. This expands the possibilities of its

integration into various architectural solutions. A key feature of this tool is the availability of a tool for searching

and viewing traces, which greatly facilitates the process of analyzing them. Zipkin also has an API for retrieving

data that will be used for further processing in terms of architectural visualization. In Figure 2 shows one of the

options for an infrastructure diagram using OpenTelemetry.

Fig. 2. Infrastructure diagram using OpenTelemetry

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 2 (2024)

__

94

The Trace Data Upload phase is a process that involves setting a time period to collect trace information and

downloading the data from the Zipkin system. It is obvious that it is critically important that the collected data

reflect the actual state and behavior of the system as accurately and completely as possible. In this context, one of

the key parameters is the depth of coverage of various system operating scenarios. To download data, it is

proposed to use the REST API of the Zipkin service, namely the GET / traces method. The time interval is

specified by the endTs and lookback parameters. The result of this method is expressed in the form of a two-

dimensional array in a JSON structure, where each element corresponds to a specific trace episode. These episodes

represent individual events that took place within the system, for example, initializing interaction with another

service, activating an internal component, making a database query, etc. An example of a Zipkin trace element is

shown in Figure 3.

Fig. 3. Zipkin Trace Element Example

This structure is intended for the convenience of analyzing and processing the received trace data, which

contributes to a more accurate interpretation of the processes and relationships operating in the system. It is worth

noting that many such elements form an unconnected graph, which consists of a number of directed subgraphs

organized like a tree. The number of such subgraphs corresponds to the number of unique traceId values, and the

root vertices in these subgraphs are elements with a parentId value equal to null. An example of such a subgraph

in a disconnected OpenTelementry event graph is shown in Figure 4.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 2 (2024)

__

95

Fig. 4. Example of a subgraph in a disconnected OpenTelemetry event graph

The data processing stage for the purpose of visualization involves the construction of a new graph. In this context,

the vertices of this graph are produced by extracting the unique values of the localEndpoint.serviceName attribute

from the vertices of the source graph. The edges in the newly created graph represent connections between

different services, their identification is carried out based on a search for the sequence of changes in the values of

localEndpoint.serviceName. For example, if the current vertex of the graph contains the value service1, and the

next node of the tree contains the value service2, then based on this information, an edge of a new graph is formed

connecting the vertices service1 and service2. Thus, the new graph allows you to most clearly and conveniently

represent the interaction between various services. Additionally, you need to perform a search procedure for all

root vertices in the original graph with non-empty values in the tags[‘user_agent.original’] field. According to the

developed algorithm, for each service where the tags[‘user_agent.original’] value in the original graph is not

empty, a separate vertex is created in the new graph. Then an edge is created that connects the new vertex to the

service vertex. Thus, the new vertex represents a specific service user in the context of the new graph. As a

continuation of the developed algorithm, an additional search for vertices in the source graph occurs, based on the

detection of non-empty values using the tags[‘db.name’] label. Based on each unique value, consisting of a

combination of the values tags['db.name'], tags['db.system'], tags['db.user'] and tags['db.connection_string'], a set

of new vertices is formed . These newly created vertices are database containers that are used by services. To

ensure the connectivity of the graph, edges are established that connect these vertices to services. The criterion

corresponding to service nodes is determined based on the value of localEndpoint.serviceName. The process of

constructing a new graph is complemented by searching for vertices in which the value of

tags[‘messaging.destination.name'] is non-empty. For each unique set of values composed of

tags['messaging.destination.name'], tags['messaging.system'], tags['network.peer.address'] and

tags['network.peer.port'] , a vertex is formed, which is subsequently included in a new graph between existing

vertices. It is worth noting here that the vertex of the input graph, which is the source of information (with the

kind attribute as PRODUCER), is displayed in the new graph as the source vertex with the service name

corresponding to the value of localEndpoint.serviceName. Accordingly, the vertex representing the receiving

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 2 (2024)

__

96

service (with its kind attribute equal to CONSUMER) becomes the destination for the new vertex's data. Thus,

the organization of the vertices of the new graph is realized, which are message brokers participating in the

interaction between services. This provides a deeper and more accurate understanding of the interactions that

occur during system operation, since message brokers play a central role in the exchange of information between

services. An example of the operation of the data preparation algorithm is shown in Figure 5.

Fig. 5. An example of preparing trace graph data for architectural visualization

The resulting new graph will be used to visualize the C4 diagram of the second level - the container level, which

shows the interaction at the service level within the information system. In the context of analyzing complex

systems that have the form of a graph of service interactions, it is possible to use the Label Propagation Clustering

clustering algorithm. This allows us to identify an additional level of abstraction - the level of subsystems, and in

the C4 model the level of context. The essence of the Label Propagation Clustering algorithm is to implement an

iterative approach, during which class labels are transmitted from the selected vertex to all neighboring ones. In

this case, the vertex takes the most frequently occurring label among its neighbors, which allows similar objects

to be grouped into common clusters. The main goal of this algorithm is to minimize the intra-cluster distance and

maximize the distance between clusters, that is, grouping interconnected vertices into common clusters. This

approach allows you to identify the structure of service interactions at more refined levels and analyze complex

systems more effectively. Applying the Label Propagation Clustering algorithm to the service interaction graph

allows us to identify subsystems that are larger, functionally related groups of services.

The stage of direct visualization of the architecture at the context and container level of the C4 model consists of

creating text files that are syntax diagrams in the PlantUML format. PlantUML is a diagram visualization tool that

allows you to describe the structure of diagrams as text. For ease of working with the C4 model, there is a special

C4 library for PlantUML, which simplifies the process of visualizing diagrams of this model. A particularly

important aspect of this stage is the use of the graph structure obtained in the previous stages, together with the

use of template engines such as Mustache. Template engines allow you to create templates for generating

PlantUML text files, which ensures automatic generation of text diagrams based on specified templates. An

example template for creating a PlantUML C4 diagram using the Mustache template engine is shown in Figure 6.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 2 (2024)

__

97

Fig. 6. Example template for creating a PlantUML C4 diagram using the Mustache template engine

As a result of this stage, ready-made files are created that contain all the necessary information to describe the

diagrams of the C4 model of the first and second levels. These text materials are then used to construct a visual

diagram of the system architecture, which provides a more visual representation of the structure and relationships

of components in the information system in question.

3. Conclusion

In conclusion of this article, it can be noted that the author has done work to develop an algorithm for visualizing

the architecture of an information system built on the basis of microservices. A unique algorithm was proposed

that includes several key stages: preparing the information system infrastructure, including setting up

OpenTelemetry to collect accurate and reliable data, downloading data, processing data and direct visualization.

For data analysis and processing, data downloaded from Zipkin was used, which made it possible to obtain the

most complete picture of the interaction between system components. To create a second-level C4 model graph,

a specially developed data processing algorithm was used to accurately reflect the structure of microservices. In

order to test the operation of the developed algorithm, a diagram of the microservice architecture of the prototype

marketplace system was obtained, which consists of the microservices BackendForFrontent, Billing, Delivery,

Notification, Catalog, Discount and Payment. A diagram of the architecture of the prototype marketplace system

in C4 notation of the container level is presented in Figure 7.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 2 (2024)

__

98

Fig. 7. Architecture diagram of a prototype marketplace system in container-level C4 notation

The graph of this diagram was supplemented by using the Label Propagation Clustering algorithm, which made

it possible to extract the C4 model of the first level of context, which is the structure of subsystems. Diagram C4

of the first level of context for a prototype marketplace system after applying the Label Propagation Clustering

algorithm is shown in Figure 8.

Fig. 8. Diagram C4 of the first level of context for a prototype marketplace system after applying the

Label Propagation Clustering algorithm

The work also proposed a visualization option based on the use of the PlantUML tool. The PlantUML text file

template was created using the Mustache template engine. This approach allows you to customize the visualization

to the specifics of the information system. Thus, the results of the author’s work represent a work algorithm for

visualizing the microservice architecture of an information system. This opens up new opportunities for analyzing

and optimizing the structure of the system, simplifies the process of design, development and maintenance, which

in general can significantly increase the efficiency of specialists in this field.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 45 No. 2 (2024)

__

99

The authors would like to thank the management of Bunin Yelets State University for financial support of this

study.

Refrences

[1] Nadeikina, L. A., Cherkasova N. I. Creating applications based on microservices // Informatization and

communication. 2019. No. 4. pp. 107-112.

https://doi.org/10.34219/2078-8320-2019-10-4-107-112

[2] Kornienko D.V., Mishina S.V., Shcherbatykh S.V. and Melnikov M.O. (2021) Principles of securing RESTful

API web services developed with python frameworks. Journal of Physics: Conference Series. 2021, 2094(3),

032016.

https://doi.org/10.1088/1742-6596/2094/3/032016

[3] Valdivia H. A., Laura-Gonzalez A., Lemon K. Patterns of microservice architecture: a multidisciplinary

literature review // Proceedings of the Institute of System Programming of the Russian Academy of Sciences.

2021. Vol. 33, No. 1. pp. 81-96.

https://doi.org/10.15514/ISPRAS-2021-33(1)-6

[4] Hüseyin Ünlü, Dhia Eddine Kennouche, Görkem Kılınç Soylu, Onur Demirörs. Microservice-based projects

in agile world: A structured interview. Information and Software Technology, Volume 165, 2024, 107334,

ISSN 0950-5849.

https://doi.org/10.1016/j.infsof.2023.107334

[5] Lulu Wang, Peng Hu, Xianglong Kong, Wenjie Ouyang, Bixin Li, Haixin Xu, Tao Shao. Microservice

architecture recovery based on intra-service and inter-service features. Journal of Systems and Software,

Volume 204, 2023, 111754, ISSN 0164-1212.

 https://doi.org/10.1016/j.jss.2023.111754

[6] Romanov V. Y. A tool for reverse engineering and refactoring software written in Java // International Journal

of Open Information Technologies. 2013. Vol. 1. No. 8. pp. 1-6.

[7] Andrea Janes, Xiaozhou Li, Valentina Lenarduzzi. Open tracing tools: Overview and critical comparison,

Journal of Systems and Software, Volume 204, 2023, 111793, ISSN 0164-1212.

https://doi.org/10.1016/j.jss.2023.111793

[8] Rudometkin V. A. Monitoring and troubleshooting in distributed high-load systems // Cybernetics and

programming. 2020. No. 2. pp. 1-6.

https://doi.org/10.25136/2644-5522.2020.2.32996

[9] L. Giamattei, A. Guerriero, R. Pietrantuono, S. Russo, I. Malavolta, T. Islam, M. Dînga, A. Koziolek, S.

Singh, M. Armbruster, J.M. Gutierrez-Martinez, S. Caro-Alvaro, D. Rodriguez, S. Weber, J. Henss, E.

Fernandez Vogelin, F. Simon Panojo. Monitoring tools for DevOps and microservices: A systematic grey

literature review. Journal of Systems and Software, Volume 208, 2024, 111906, ISSN 0164-1212.

https://doi.org/10.1016/j.jss.2023.111906

[10] Boitsov B. V., Minakova O. V., Potsebneva I. V. An architectural approach to creating software tools for

working with evaluation tools of an information system according to quality parameters // Quality and Life.

2022. № 1(33). Pp. 23-30.

https://doi.org/10.34214/2312-5209-2022-33-1-23-30

[11] Kitanin, S. S., Makarevich A.D. Building the architecture of a software system for a geoinformation

application of augmented reality // Modern science: actual problems of theory and practice. Series: Natural

and Technical Sciences. 2023. No. 6-2. pp. 90-100.

https://doi.org/10.37882/2223-2982.2023.6-2.20

[12] Namiot D. E., Romanov V. Yu. 3D visualization of architecture and software metrics // Scientific

visualization. 2018. Vol. 10. No. 5. pp. 123-139.

https://doi.org/10.26583/sv.10.5.08

[13] Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna. Visualization of object-oriented software in a

city metaphor: Comprehending the implemented variability and its technical debt. Journal of Systems and

Software, Volume 208, 2024, 111876, ISSN 0164-1212.

https://doi.org/10.1016/j.jss.2023.111876

[14] Vyugina A. A., Kroshilina A. A. Visualization of the client-server architecture using delegates in C# //

Methods and means of information processing and storage: Interuniversity collection of scientific papers /

Edited by B.V. Kostrov. – Ryazan: Ryazan State Radio Engineering University named after V.F. Utkin,

2022. pp. 140-144.

https://doi.org/10.34219/2078-8320-2019-10-4-107-112
https://doi.org/10.1088/1742-6596/2094/3/032016
https://doi.org/10.15514/ISPRAS-2021-33(1)-6
https://doi.org/10.1016/j.infsof.2023.107334
https://doi.org/10.1016/j.jss.2023.111754
https://doi.org/10.1016/j.jss.2023.111793
https://doi.org/10.25136/2644-5522.2020.2.32996
https://doi.org/10.1016/j.jss.2023.111906
https://doi.org/10.34214/2312-5209-2022-33-1-23-30
https://doi.org/10.37882/2223-2982.2023.6-2.20
https://doi.org/10.26583/sv.10.5.08
https://doi.org/10.1016/j.jss.2023.111876

