
Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 6 (2023)

__

6876

A Study on Development of a Cost-Effective

Software Maintenance Management

Models

Ahmed Masih Uddin Siddiqi

Department of Computer Science Engineering, Mangalayatan University, Beswan, Aligarh, UP, India

Dr. Manoj Varshney

Mangalayatan University, Beswan, Aligarh, UP, India

Abstract:

The process of maintaining software encompasses a wide range of activities, such as the enhancement of

capabilities, the correction of errors, the optimisation of performance, and the elimination of obsolete capabilities.

In order to guarantee the normal operation of essential software tools and accurate cost estimation, it is vital to

ensure that the relevant software tools are maintained. As a result of this, a number of scholars have gravitated

towards the study of the many elements that influence the productivity of software development. Research on the

development of cost-effective software maintenance management models is the primary objective of this study.

This study utilized secondary data to examine the software maintenance activities conducted through the current

software development environment. For the purpose of selecting the software development activities, a non-

probability convenience and judgement sampling technique was utilised. This was due to the exploratory character

of the study. In terms of the functional point, the recommended performance is coming in high, which is 85.65%,

and it must be high in order to achieve higher productivity of the software product, which in turn raises the demand

in the market and the functionality of the software that is developed. Also, it has been demonstrated that the

amount of work required per individual is minimal, coming in at 4.88 percent. This is a factor that ought to be low

in order to provide accurate cost estimation in terms of maintenance.

Keywords: Software; Software Development; Software Maintenance models; Cost – Effectiveness.

Introduction:

Software maintenance encompasses a wide range of activities, such as enhancing capabilities, rectifying errors,

optimising performance, and eliminating outdated features. It is necessary to establish a system for assessing,

managing, and implementing modifications in response to the expected occurrence of change (Singh et al., 2019).

During software development, it is crucial to create a well-defined plan for maintenance activities, which is an

essential component of software maintenance. This plan specifies the adjustments that need to be implemented.

In order to account for any changes in requirements, it is necessary to incorporate the cost of software development

into the budget (Pospieszny et al., 2019). This implies that the maintenance expenses would rise, not alone because

of inadequate design, but also owing to alterations in customer environmental and expected requirements, for

which the system has been created (Islam et al., 2023).

Approximately 60% of the workforce in software development organisations from foreign countries will be

allocated to maintaining the existing software (Khezami et al., 2021). The percentage of software tools and

personnel is continuously increasing on a daily basis. Users and developers commonly encounter software

maintenance issues (Khezami et al., 2021). Prior planning and cost analysis by developers and users are crucial

factors in accurately estimating software maintenance costs. The primary objective of this project is to investigate

the development of cost-effective models for managing software maintenance.

A discussion of the previous literatures that are relevant to this research is presented in the following section.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 6 (2023)

__

6877

Literature REVIEW:

The following table discussed about the past literatures related to development of a cost-effective software

maintenance management models.

Table 1: Related works

AUTHORS AND

YEAR

METHODOLOGY FINDINGS

Singh et al., (2019) Explanatory based study implementation is used Various approaches are used to

estimate software maintenance

costs due to its importance.

Maintenance estimation models

are separated by granularity level

into Phase, Release, and Task

levels. Most software costs can be

evaluated by considering

maintenance, a crucial software

engineering task.

Andi, (2021) In this work, a model was proposed and a brief

description was provided on the concept of

serverless cloud computing, its application in

the information technology industry, and the

advantages it offers.

It is possible to significantly cut

down on the amount of time

required for a system to be brought

to market by utilizing this strategy,

which also results in cost savings.

Among the three groups that make

up serverless architecture are

Amazon Web Services Lambda,

Microsoft Azure, and Google

Cloud.

Machado et al.,

(2023)

For this study, a comprehensive literature

analysis was conducted on the relevant works

that were published between the years 1990 and

2020 in the field of software engineering. The

search engines that were utilized were the most

important ones.

Software maintenance metrics

were identified in the product,

process, and resource perspectives

more broadly directed toward the

product, and their application

validation is done through

technical experimentation of the

measurement, which often does not

match the software maintenance

environment.

Pargaonkar, 2023 The study commences by doing a thorough

theoretical analysis of classical Software

Development Life Cycle (SDLC) models, such

as the Waterfall, Iterative, and VModel through

qualitative research approach.

Software development

stakeholders and quality engineers

can choose the best SDLC method

for their projects by analysing each

model's strengths and weaknesses.

Lima et al., (2023) This study collected data from testing experts

using convenience, purposive, and snowballing

sampling methods in accordance with software

engineering survey principles.

This study found that refactoring

improves software testing team

performance and automated test

maintenance.

Research Gap

Subsequently, certain new trends in maintenance management are acknowledged, which will assist academics in

identifying areas where the current literature is lacking and in efficiently focusing their future research endeavors.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 6 (2023)

__

6878

So the goal of this study is to conduct a research on the development of a cost-effective software maintenance

management models. Researchers, maintenance professionals, and individuals in the maintenance industry will

all gain valuable insights from this study, as it will enhance their comprehension of the crucial aspects of

maintenance management.

Methodology

The proposed methodology utilizes MATLAB Bug Id reports to acquire datasets for performing sentiment

classification based on severity. The development tool MATLAB has been utilized in this project. The dataset

includes COCOMO, PUTNAM and PUCO (HYBRID). Additionally, there may exist alternative instruments that

might be employed in this development, such as quantifying individual engagement and their level of interest.

Eclipse, a widely used development platform, is utilized by developers worldwide. These developers employ

technical terminology while creating bug reports. This helped in describing the severity level of the defect and

developing a more precise lexicon.

Subsequently, the textual summary report obtained from the dataset acquisition undergoes pre-processing. Using

a summary as a severity level forecast yields superior outcomes when compared to an emotional report's detailed

explanation. The process involves tokenization, stop word elimination, and stemming. The first step is

Tokenization, which aims to eliminate punctuation marks. The entire text is segmented into distinct tokens to

facilitate the exploration of all terms in the document. The second step is stop word removal, which aims to

eliminate common words such as articles, prepositions, conjunctions, adjectives, adverbs, and frequent verbs from

the textual data. These words lack significant information as they are often employed words. As a result, the data

(text) was reduced and the system's performance improved. The third technique employed is stemming, which

aims to reduce words to their base forms.

Results And Discussions

The outcomes achieved with the suggested methodology. This full chapter is divided into three pieces. The initial

step of the COCOMO model involves the utilization of SLOC, functional points, and efforts per person each

month to calculate the results. The functional point percentage is 60.885%, while the set effort per person per

month and SLOC (Source Lines of Code) are 12.0929 and 733, respectively. The second step of the PUTNAM

model involves the utilization of the Tomcat dataset, which is first subjected to pre-processing. Subsequently,

Principal Component Analysis (PCA) is employed to extract features from the pre-processed dataset. The Particle

Swarm Optimization (PSO) algorithm is utilized to analyze the extracted features for the purpose of instance

selection. These selected instances are then classified using the Linear Discriminant Analysis (LDA) technique.

The COCOMO model quantifies the work required per person as 4.84% and measures the source lines of code

achieved as 464. Additionally, it accounts for 3.92% of the function point. The PUTNAM model's performance

evaluation yields a predicted object point of 27.5%, an effort requirement of 33.67% per person, 900 source lines

of code, and an achievement of 66.32% of function point. Both COCOMO and PUTNAM possess their own

strengths and weaknesses. Therefore, in the third phase, they are merged to leverage their respective benefits.

Table 1: Performance Comparison using different datasets

Model COCOMO PUTNAM PUCO (HYBRID)

SLOC 463 902 576

Efforts Per Person 4.83 % 33.66 % 4.88 %

Functional Point 3.93 % 66.33 % 85.66 %

Relative Mean Square

Error

0.21 0.25 0.002

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 6 (2023)

__

6879

Figure 1: Performance Comparison using different datasets

When these three models are examined for 500 and 1056 records of the dataset, respectively, in terms of effort

per person and functional point, it is demonstrated that the hybrid PUCO model's performance is superior to that

of other models. When it comes to the Eclipse Bug Prediction Dataset, the model is evaluated for a total of 698

and 500 records respectively.

It is possible to calculate the Effort per person and functional point for each of the three models by taking into

account 16 lines of code from the dataset that contains 500 and 998 records respectively. With regard to each and

every set of lines of code, the findings of both models indicate that the suggested hybrid PUCO model produces

a superior output in comparison to the other two models. It is possible for the number of source lines of code to

be high or low depending on the software requirement, which must be produced in accordance with the user's

point of view.

Conclusion:

The recommended performance, measured in terms of functional points, is very high at 85.65%. This high

performance is crucial for achieving increased production of the software product, which in turn improves its

demand in the market and enhances the functionality of the generated software. Additionally, the data reveals that

the individual efforts are similarly minimal, amounting to 4.88%. This low level of effort is desirable for accurate

cost estimation in relation to maintenance. Generally speaking, when working with the software development cost

estimation platform, there are a lot of different possibilities that can be explored in the future. One example of this

would be expanding this platform beyond its original purpose of providing a cost estimation platform to

incorporate various types of maintenance, agile software development methodologies, and even the possibility of

improving the approach to regression.

References:

[1] Andi, H. K. (2021). Analysis of serverless computing techniques in cloud software framework. Journal of

IoT in Social, Mobile, Analytics, and Cloud, 3(3), 221-234.

[2] Islam, M., Farooqui, N. A., Haleem, M., & Zaidi, S. A. M. (2023). An Efficient Framework for Software

Maintenance Cost Estimation Using Genetic Hybrid Algorithm: OOPs Prospective. International Journal of

Computing and Digital Systems, 14(1), 1-xx.

[3] Khezami, N., Kessentini, M., & Ferreira, T. D. N. (2021). A Systematic Literature Review on Software

Maintenance for Cyber-Physical Systems. IEEE Access, 9, 159858-159872.

0 100 200 300 400 500 600 700 800 900 1000

SLOC

Efforts Per Person

Functional Point

Relative Mean Square Error

Compariso of datasets

PUCO (HYBRID) PUTNAM COCOMO

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 6 (2023)

__

6880

[4] Lima, D. L., Santos, R. D. S., Garcia, G. P., Da Silva, S. S., França, C., & Capretz, L. F. (2023, October).

Software testing and code refactoring: A survey with practitioners. In 2023 IEEE International Conference

on Software Maintenance and Evolution (ICSME) (pp. 500-507). IEEE.

[5] Machado, J., Kemczinski, A., & Schroeder, R. (2023, May). Survey of Software Maintenance Metrics: A

Systematic Literature Review. In Proceedings of the XIX Brazilian Symposium on Information Systems (pp.

332-339).

[6] Pargaonkar, S. (2023). A Comprehensive Research Analysis of Software Development Life Cycle (SDLC)

Agile & Waterfall Model Advantages, Disadvantages, and Application Suitability in Software Quality

Engineering. International Journal of Scientific and Research Publications (IJSRP), 13(08).

[7] Pospieszny, P., Czarnacka-Chrobot, B., & Kobylinski, A. (2018). An effective approach for software project

effort and duration estimation with machine learning algorithms. Journal of Systems and Software, 137, 184-

196.

[8] Singh, C., Sharma, N., & Kumar, N. (2019). Analysis of software maintenance cost affecting factors and

estimation models. Int. J. Sci. Technol. Res, 8(9), 276-281.

[9] Singh, C., Sharma, N., & Kumar, N. (2019). Analysis of software maintenance cost affecting factors and

estimation models. Int. J. Sci. Technol. Res, 8(9), 276-281.

