Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 6 (2023)

A Study on Development of a Cost-Effective
Software Maintenance Management
Models

Ahmed Masih Uddin Siddiqi
Department of Computer Science Engineering, Mangalayatan University, Beswan, Aligarh, UP, India
Dr. Manoj Varshney
Mangalayatan University, Beswan, Aligarh, UP, India

Abstract:

The process of maintaining software encompasses a wide range of activities, such as the enhancement of
capabilities, the correction of errors, the optimisation of performance, and the elimination of obsolete capabilities.
In order to guarantee the normal operation of essential software tools and accurate cost estimation, it is vital to
ensure that the relevant software tools are maintained. As a result of this, a number of scholars have gravitated
towards the study of the many elements that influence the productivity of software development. Research on the
development of cost-effective software maintenance management models is the primary objective of this study.
This study utilized secondary data to examine the software maintenance activities conducted through the current
software development environment. For the purpose of selecting the software development activities, a non-
probability convenience and judgement sampling technique was utilised. This was due to the exploratory character
of the study. In terms of the functional point, the recommended performance is coming in high, which is 85.65%,
and it must be high in order to achieve higher productivity of the software product, which in turn raises the demand
in the market and the functionality of the software that is developed. Also, it has been demonstrated that the
amount of work required per individual is minimal, coming in at 4.88 percent. This is a factor that ought to be low
in order to provide accurate cost estimation in terms of maintenance.

Keywords: Software; Software Development; Software Maintenance models; Cost — Effectiveness.

Introduction:

Software maintenance encompasses a wide range of activities, such as enhancing capabilities, rectifying errors,
optimising performance, and eliminating outdated features. It is necessary to establish a system for assessing,
managing, and implementing modifications in response to the expected occurrence of change (Singh et al., 2019).
During software development, it is crucial to create a well-defined plan for maintenance activities, which is an
essential component of software maintenance. This plan specifies the adjustments that need to be implemented.
In order to account for any changes in requirements, it is necessary to incorporate the cost of software development
into the budget (Pospieszny et al., 2019). This implies that the maintenance expenses would rise, not alone because
of inadequate design, but also owing to alterations in customer environmental and expected requirements, for
which the system has been created (Islam et al., 2023).

Approximately 60% of the workforce in software development organisations from foreign countries will be
allocated to maintaining the existing software (Khezami et al., 2021). The percentage of software tools and
personnel is continuously increasing on a daily basis. Users and developers commonly encounter software
maintenance issues (Khezami et al., 2021). Prior planning and cost analysis by developers and users are crucial
factors in accurately estimating software maintenance costs. The primary objective of this project is to investigate
the development of cost-effective models for managing software maintenance.

A discussion of the previous literatures that are relevant to this research is presented in the following section.

6876




Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055
Vol. 44 No. 6 (2023)

Literature REVIEW:

The following table discussed about the past literatures related to development of a cost-effective software
maintenance management models.

Table 1: Related works

AUTHORS
YEAR

Singh et al., (2019)

Andi, (2021)

Machado et
(2023)

al.,

Pargaonkar, 2023

Lima et al., (2023)

Research Gap

Explanatory based study implementation is used

In this work, a model was proposed and a brief
description was provided on the concept of
serverless cloud computing, its application in
the information technology industry, and the
advantages it offers.

For this study, a comprehensive literature
analysis was conducted on the relevant works
that were published between the years 1990 and
2020 in the field of software engineering. The
search engines that were utilized were the most
important ones.

The study commences by doing a thorough
theoretical analysis of classical Software
Development Life Cycle (SDLC) models, such
as the Waterfall, Iterative, and VModel through
qualitative research approach.

This study collected data from testing experts
using convenience, purposive, and snowballing
sampling methods in accordance with software
engineering survey principles.

ANDIMETHODOLOGY IFINDINGS I

Various approaches are used to
estimate software maintenance
costs due to its importance.
Maintenance estimation models
are separated by granularity level
into Phase, Release, and Task
levels. Most software costs can be
evaluated by considering
maintenance, a crucial software
engineering task.

It is possible to significantly cut
down on the amount of time
required for a system to be brought
to market by utilizing this strategy,
which also results in cost savings.
Among the three groups that make
up serverless architecture are
Amazon Web Services Lambda,

Microsoft Azure, and Google
Cloud.
Software maintenance metrics

were identified in the product,
process, and resource perspectives
more broadly directed toward the
product, and their application
validation is done through
technical experimentation of the
measurement, which often does not
match the software maintenance
environment.

Software development
stakeholders and quality engineers
can choose the best SDLC method
for their projects by analysing each
model's strengths and weaknesses.
This study found that refactoring
improves software testing team
performance and automated test
maintenance.

Subsequently, certain new trends in maintenance management are acknowledged, which will assist academics in
identifying areas where the current literature is lacking and in efficiently focusing their future research endeavors.

6877



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 6 (2023)

So the goal of this study is to conduct a research on the development of a cost-effective software maintenance
management models. Researchers, maintenance professionals, and individuals in the maintenance industry will
all gain valuable insights from this study, as it will enhance their comprehension of the crucial aspects of
maintenance management.

Methodology

The proposed methodology utilizes MATLAB Bug Id reports to acquire datasets for performing sentiment
classification based on severity. The development tool MATLAB has been utilized in this project. The dataset
includes COCOMO, PUTNAM and PUCO (HYBRID). Additionally, there may exist alternative instruments that
might be employed in this development, such as quantifying individual engagement and their level of interest.
Eclipse, a widely used development platform, is utilized by developers worldwide. These developers employ
technical terminology while creating bug reports. This helped in describing the severity level of the defect and
developing a more precise lexicon.

Subsequently, the textual summary report obtained from the dataset acquisition undergoes pre-processing. Using
a summary as a severity level forecast yields superior outcomes when compared to an emotional report's detailed
explanation. The process involves tokenization, stop word elimination, and stemming. The first step is
Tokenization, which aims to eliminate punctuation marks. The entire text is segmented into distinct tokens to
facilitate the exploration of all terms in the document. The second step is stop word removal, which aims to
eliminate common words such as articles, prepositions, conjunctions, adjectives, adverbs, and frequent verbs from
the textual data. These words lack significant information as they are often employed words. As a result, the data
(text) was reduced and the system's performance improved. The third technique employed is stemming, which
aims to reduce words to their base forms.

Results And Discussions

The outcomes achieved with the suggested methodology. This full chapter is divided into three pieces. The initial
step of the COCOMO model involves the utilization of SLOC, functional points, and efforts per person each
month to calculate the results. The functional point percentage is 60.885%, while the set effort per person per
month and SLOC (Source Lines of Code) are 12.0929 and 733, respectively. The second step of the PUTNAM
model involves the utilization of the Tomcat dataset, which is first subjected to pre-processing. Subsequently,
Principal Component Analysis (PCA) is employed to extract features from the pre-processed dataset. The Particle
Swarm Optimization (PSO) algorithm is utilized to analyze the extracted features for the purpose of instance
selection. These selected instances are then classified using the Linear Discriminant Analysis (LDA) technique.
The COCOMO model quantifies the work required per person as 4.84% and measures the source lines of code
achieved as 464. Additionally, it accounts for 3.92% of the function point. The PUTNAM model's performance
evaluation yields a predicted object point of 27.5%, an effort requirement of 33.67% per person, 900 source lines
of code, and an achievement of 66.32% of function point. Both COCOMO and PUTNAM possess their own
strengths and weaknesses. Therefore, in the third phase, they are merged to leverage their respective benefits.

Table 1: Performance Comparison using different datasets

Model COCOMO PUTNAM PUCO (HYBRID)
SLOC 463 902 576

Efforts Per Person 4.83 % 33.66 % 4.88 %

Functional Point 3.93% 66.33 % 85.66 %

Relative Mean Square | 0.21 0.25 0.002

Error

6878



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 6 (2023)

Compariso of datasets

Relative Mean Square Error
Functional Point
Efforts Per Person

SLOC
I

0 100 200 300 400 500 600 700 800 9S00 1000

PUCO (HYBRID) PUTNAM m COCOMO

Figure 1: Performance Comparison using different datasets

When these three models are examined for 500 and 1056 records of the dataset, respectively, in terms of effort
per person and functional point, it is demonstrated that the hybrid PUCO model's performance is superior to that
of other models. When it comes to the Eclipse Bug Prediction Dataset, the model is evaluated for a total of 698
and 500 records respectively.

It is possible to calculate the Effort per person and functional point for each of the three models by taking into
account 16 lines of code from the dataset that contains 500 and 998 records respectively. With regard to each and
every set of lines of code, the findings of both models indicate that the suggested hybrid PUCO model produces
a superior output in comparison to the other two models. It is possible for the number of source lines of code to
be high or low depending on the software requirement, which must be produced in accordance with the user's
point of view.

Conclusion:

The recommended performance, measured in terms of functional points, is very high at 85.65%. This high
performance is crucial for achieving increased production of the software product, which in turn improves its
demand in the market and enhances the functionality of the generated software. Additionally, the data reveals that
the individual efforts are similarly minimal, amounting to 4.88%. This low level of effort is desirable for accurate
cost estimation in relation to maintenance. Generally speaking, when working with the software development cost
estimation platform, there are a lot of different possibilities that can be explored in the future. One example of this
would be expanding this platform beyond its original purpose of providing a cost estimation platform to
incorporate various types of maintenance, agile software development methodologies, and even the possibility of
improving the approach to regression.

References:

[1] Andi, H. K. (2021). Analysis of serverless computing techniques in cloud software framework. Journal of
10T in Social, Mobile, Analytics, and Cloud, 3(3), 221-234.

[2] Islam, M., Farooqui, N. A., Haleem, M., & Zaidi, S. A. M. (2023). An Efficient Framework for Software
Maintenance Cost Estimation Using Genetic Hybrid Algorithm: OOPs Prospective. International Journal of
Computing and Digital Systems, 14(1), 1-xx.

[3] Khezami, N., Kessentini, M., & Ferreira, T. D. N. (2021). A Systematic Literature Review on Software
Maintenance for Cyber-Physical Systems. IEEE Access, 9, 159858-159872.

6879



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 6 (2023)

[4]

[5]

[6]

[7]

[8]
[9]

Lima, D. L., Santos, R. D. S., Garcia, G. P., Da Silva, S. S., Franga, C., & Capretz, L. F. (2023, October).
Software testing and code refactoring: A survey with practitioners. In 2023 IEEE International Conference
on Software Maintenance and Evolution (ICSME) (pp. 500-507). IEEE.

Machado, J., Kemczinski, A., & Schroeder, R. (2023, May). Survey of Software Maintenance Metrics: A
Systematic Literature Review. In Proceedings of the XIX Brazilian Symposium on Information Systems (pp.
332-339).

Pargaonkar, S. (2023). A Comprehensive Research Analysis of Software Development Life Cycle (SDLC)
Agile & Waterfall Model Advantages, Disadvantages, and Application Suitability in Software Quality
Engineering. International Journal of Scientific and Research Publications (1JSRP), 13(08).

Pospieszny, P., Czarnacka-Chrobot, B., & Kobylinski, A. (2018). An effective approach for software project
effort and duration estimation with machine learning algorithms. Journal of Systems and Software, 137, 184-
196.

Singh, C., Sharma, N., & Kumar, N. (2019). Analysis of software maintenance cost affecting factors and
estimation models. Int. J. Sci. Technol. Res, 8(9), 276-281.

Singh, C., Sharma, N., & Kumar, N. (2019). Analysis of software maintenance cost affecting factors and
estimation models. Int. J. Sci. Technol. Res, 8(9), 276-281.

6880



