

Assessment of Outcome of Environment Variation and Vagueness with in Division of Partially Parched Hilly Region

Rajvardhan Patil ^a* Nitin Bharadiya^b

^a Research Scholar, Sandip University Nashik ,Assistant Professor, DYPatil College of Engineering, Akurdi,Pune-411044,Maharashtra,India.

^b Associate Professor, Sandip University Nashik,Maharashtra,India

Abstract

Uncertainty about climate change gives a strong drive to some areas or river basins. In our study, we emphasized on climate change effect on watershed area of amu darya river basin. Our research mainly concentrates on outcome of climate change, the uncertainties involved in it, the study of hydrograph analysis of a watershed. Measurement of the cause of change in climate, uncertainties involved in it can be studied through proper modeling and analysis; here in our modeling we get dissimilar scenarios that represent it. The GCMs considered here are fitting for the situation. Distress of climate change, uncertainty analysis, and Hydrograph analysis were considered by means of a semi disseminated deterministic representation called SWAT- soil and water assessment tool. Pragmatic watercourse run series used for the stage of 2012 - 2022 is utilized to standardize and authenticate the sculpt. Calibration and justification of replica has been completed by means of SWAT CUP. Result shows uncertainties in the environment change of the amu darya watershed and variation in runoff hydrograph.

Keywords: Climate, SWAT, GCM, SWAT CUP, Uncertainty, Hydrograph analysis, Stream fl

1. Introduction-

Amu darya greatest tributary in middle asia was naturally supposed on the way to nourish Aral Sea. But after decades of unprofessional conduct and over-exploitation, it has not enough water for growing agriculture fields. Almost all water comes from the glaciers of the pamir and tian shan mountains.In middle asia and Afghanistan area amu darya is the main watercourse. Pamir heaps ,north of the hindu kush is the main location where amu darya is growing.On the edge between afghanistan and tajikistan at the junction of vakhsh and panj river is originated.It is flowing very silently from northwestward side to sourthen remnants of the aral sea. If we see the river flow in its elevated trail, stream flows from element of northen rim of afghanistan with uzbekistan, turkmenistan and tajikistan. Stream also acting as a edge of turan in the midst of greater iran ,today communicated to middle asia. Per year 70 cubic kilometers of water is discharging from river. It is used for irrigation purpose, industrial purpose and drinking purpose. Potential blow of climate transform on the Amu Darya watershed should be assessed. To do so, an extensive literature review of the Amu Darya region should be done. A comprehensive collection of the primary and secondary data was completed. Required tools such as software and projection models should be selected and used. The output data should be well interpreted & analyzed. In India so many variations found in the culture and tradition, environment, landscape, terrain and climate. In near future application of our model will help to learn the crash of weather transform on Himalayan watershed region, India. A variation in precipitation in diverse sections changes significantly both in provisions of concentration and allocation. There is scarcity in water for some years and then suddenly stages of extreme

floods. The command for water for a variety of exercises is growing day by day. To face flood conditions, drought conditions and congregate increasing requirements of the world, it is very essential to enlarge wet possessions intended for guaranteed watering and consumption wet contribute.

Figure 1: Uncertainty

At the end of the watershed area amu darya river has momentous impact on water quality and quantity. Water quality and quantity plays an important role in tropical climate and sub-humid regions. Due to heavy rainfall excess surface runoff causes soil erosion, land degradation, water quality issues at the receiving end of the water bodies. Detail study of hydrology of amu darya river basin takes our attention towards rainfall runoff model of the river basin. There are mainly two primary objectives of hydrological modeling one objective is to determine the changes occurred in the watershed area with respect to time and space. Second objective is to create hydrological statistics of the watershed area for successful and safe design of water structures. These hydrological modeling studies are crucial in deciding the possible impact of climate transform and land use. Scientific study of Environmental change can be done by using different software. Precise and proper modeling is required for processing the data. So Hydrologic models are used which are separated into two, one is physical model and another one is abstract model. Scale model included in the physical model signify the organization on a bridged level. These models are further categorized into linear, time variation, non linear, time invariant, lumped, distributed, stochastic, deterministic models. In our research work to determine blow of atmosphere transform we decided to exercise soil and water assessment tool (SWAT). USDA Agricultural investigate services department developed SWAT. The representation is effectively used to check the environmental impact in different watershed areas. Intended for reproducing outside overflow plus residue capitulate consequences encompass originate future sensibly suitable. SWAT replica is utilized as 1993 designed for concerns tell in the direction of cut-off point in addition to water resources. The model successfully used to evaluate the environment transform effect as well as anthropogenic aspects lying on watercourse run, compound effect on cultivation in addition to deposit capitulates within huge waterway sink. Objective of our research is en route for learn precipitation overflow performance of Amu Darya River watershed area with SWAT model. Applications of same to the Indian locations. After application we can carry out the understanding investigation of parameters plus we will learn effect of climate change.

2. Study Area

We have chosen Amu Darya River Basin as our research region. Amu darya watershed area is a leaf shaped watershed area, deceit among $37^{\circ}27'04''N$ $73^{\circ}34'21''E$ and $44^{\circ}06'30''N$ $59^{\circ}40'52''E$. It is covering an area of

about $534,739 \text{ km}^2$. It includes the majority of tajikistan. It also includes north east area of afghanistan ,a slight portion of eastern turkmenistan, western half portion of uzbekistan, the southwest angle of kyrgyzstan. Pakistan to the south with china on the eastern side of river. As we see the drainage basin of amu darya, 60% of it deceit in Uzbekistan, Tajikistan and Turkmenistan while in Afghanistan area it is found 40%. Total length is 2,400 kilometers and the whole drainage sink of the Amu Darya is $534,739 \text{ km}^2$. Per year the watershed getting a discharge of around 97.4 cubic km. For over 1450 km ,it is used for navigation purpose. From high mountains of the south river water originates. The yearly rainfall occurred at amu darya watershed area is 1000 mm. The watershed basin divided into two zones one is mountainous zone of nourishment and a lowland zone of depletion. The river water comes from the mountain of Tajikistan ,Afghanistan and snow melting of glaciers of the pamir mountain.

d

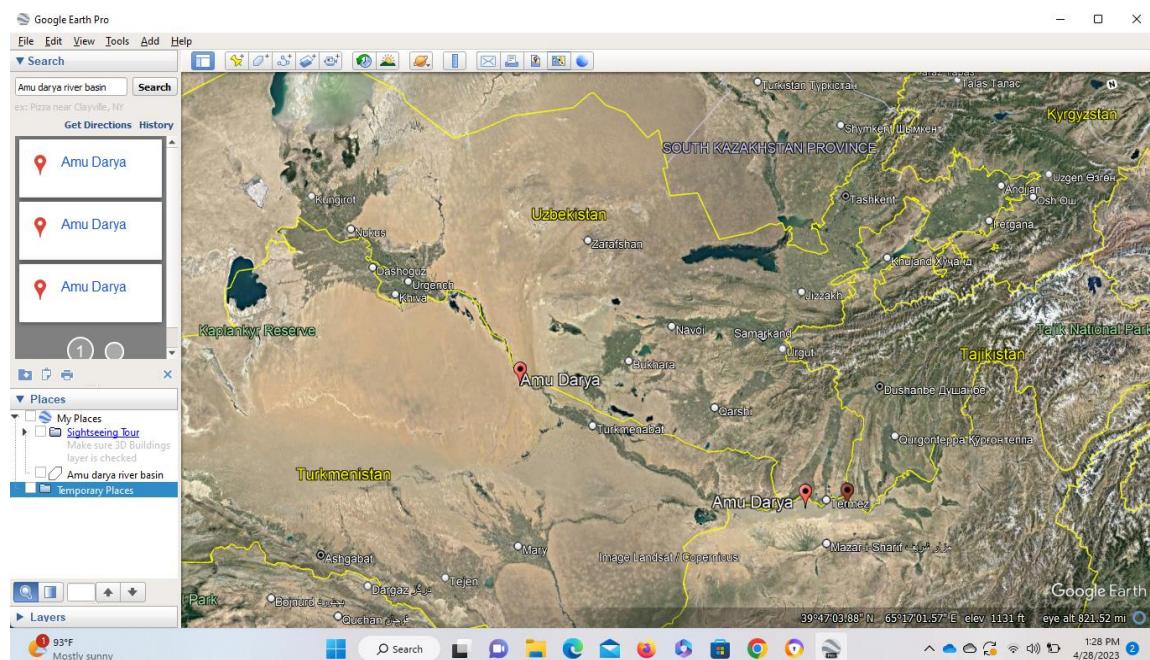
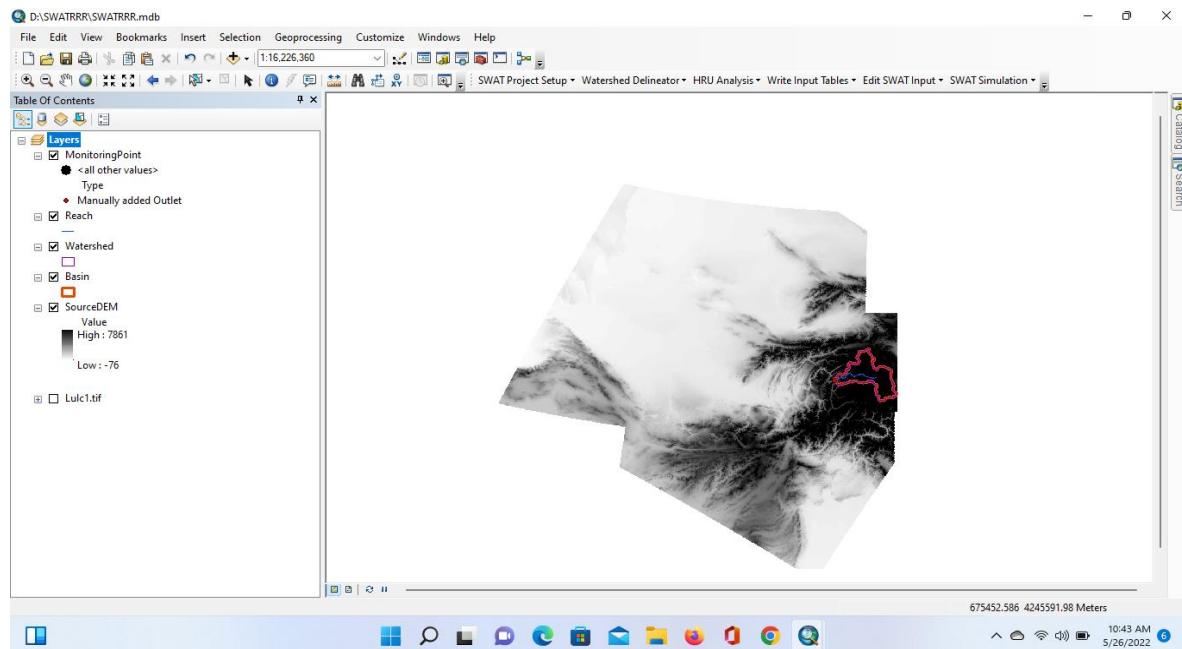
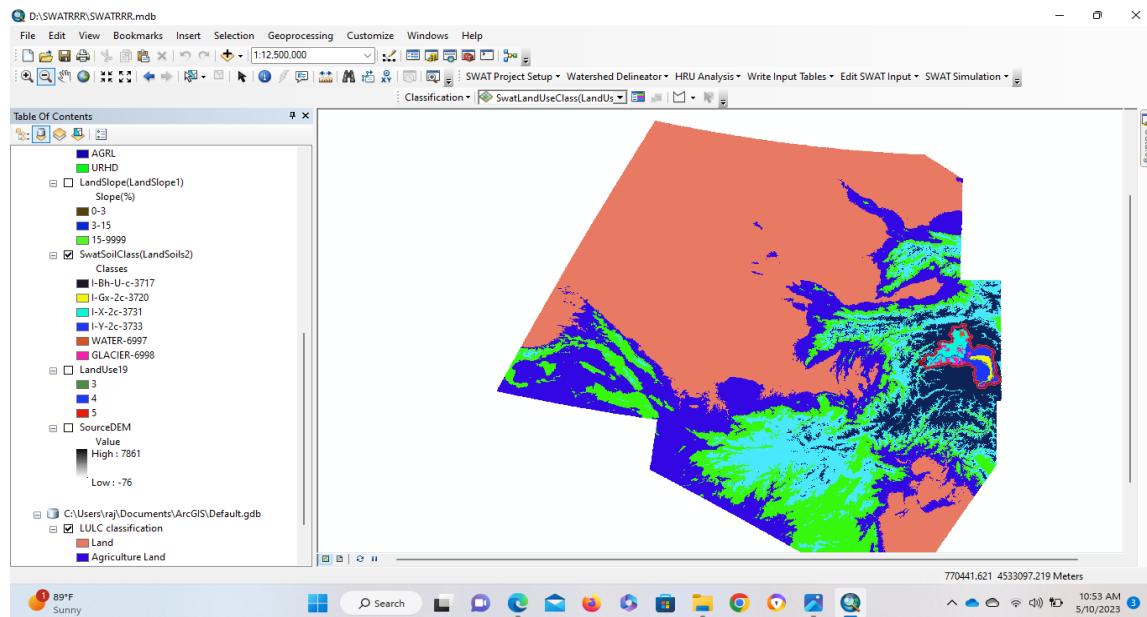


Figure 2: Amu Darya River basin


3. Procedure

The data required for the study is described below:

1. Observed Rainfall, From Meteorological department maximum and minimun temperature taken for a period of 2012-2022.
2. Discharge data from Amu Darya River gauging station for a period of 2012-2022.
3. The future statistically downscaled and bias corrected precipitation, maximum and minimum.


Temperature for two scenarios namely SSP 370 and SSP585 for three GCMs, they are ECACCESSCM2 and MPI-ESM1-2-HRare required <https://zenodo.org/record/3874046#.YpYb7ChBzIX>

4. Digital elevation representation of 30 m declaration was take out from generally accepted url.The url is <https://portal.opentopography.org/dataCatalog?group=global> .Figure 2 shows amu darya river basin digital elevation model.

Figure 3: Amu darya river basin's Digital altitude representation

5. Land use ground wrap atlas for year 2020 was extracted from Bhuvan. The link is <https://bhuvan.nrsc.gov.in>.

Figure 4: Amu darya river basin's land use land cover map

6. Soil plot extracted in favor of Amu Darya from FAO site; www.fao.org and the figure.

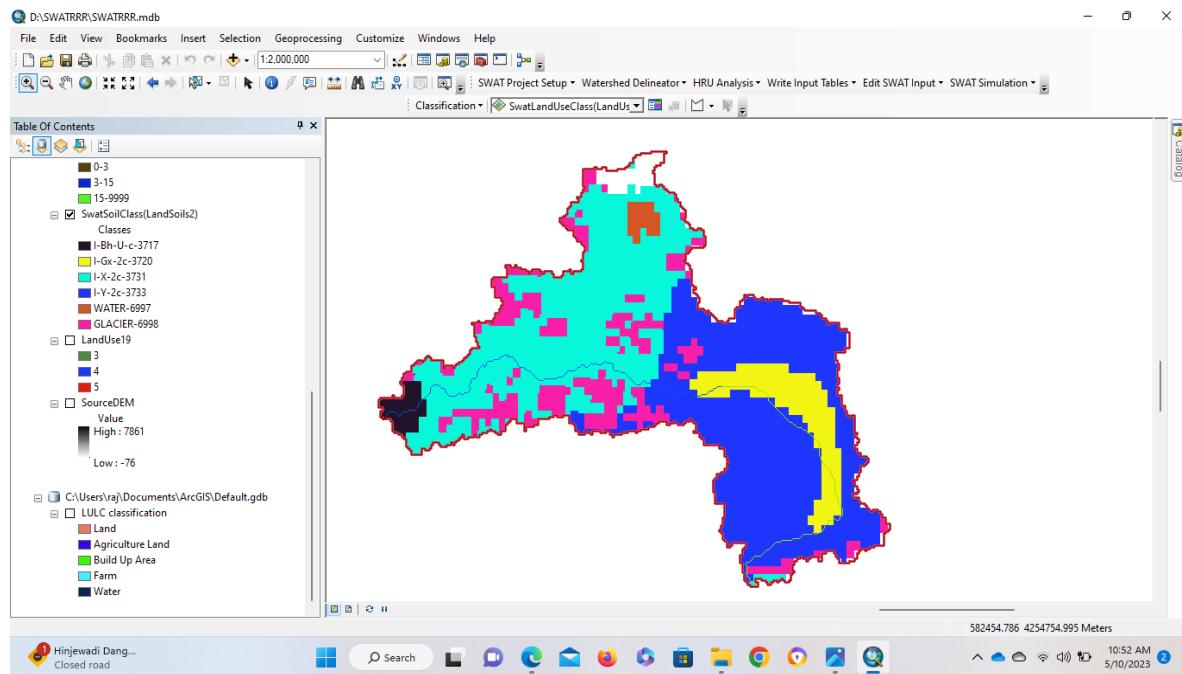


Figure 5: Amu darya river basin's soil map

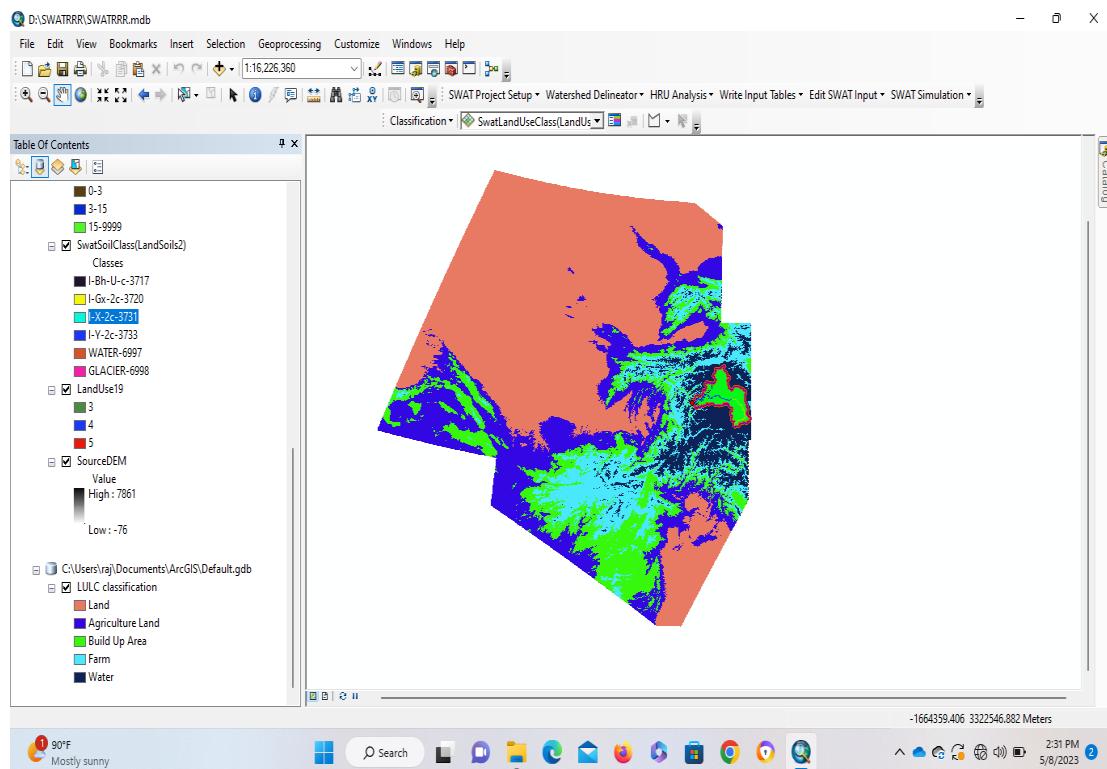
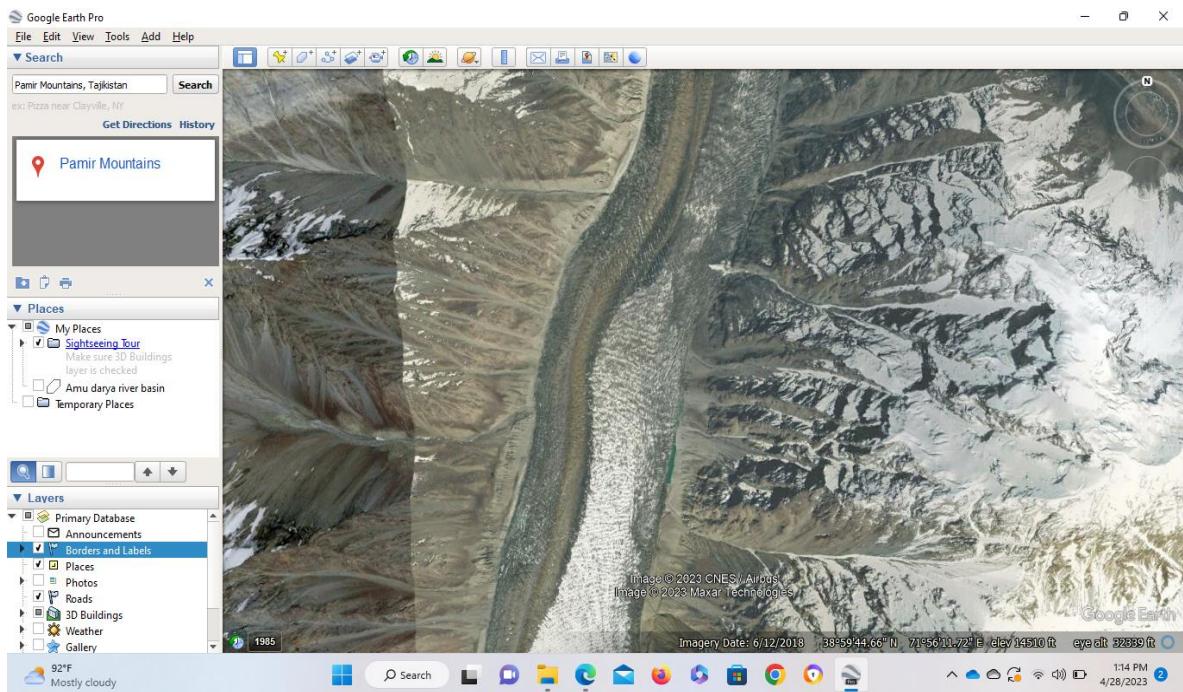



Figure 6: Map of Sub basin classification

Figure 7: Pamir Mountains

A. Soil and water assessment tool (SWAT)

Within our research work we have used actually supported semi disseminated hydrological representation described SWAT. In this model entire basin is separated into smaller units called hydrological response unit (HRU). Run off from every HRU is forecasted in addition to running scared toward calculate approximately entirety run off of the basin. This is the main characteristic of SWAT which makes it more accurate. Steering can be performed either using variable storage coefficient or Muskingam equation. The peak run off from each basin is calculated using rational method. The hydrological cycle provides us information about water balance. SWAT is working on principle of water balance equation, which is represented within eqn.no. 1.

“

where,

SW_t = ending soil wet content (mm of H_2O)

SW_o = early soil wet content on day k (mm of H_2O)

R_{day} = quantity of rainfall on day k (mm of H_2O)

Q_{sur} = quantity of surface runoff on day k (mm of H_2O)

E_a = quantity of evapotranspiration on day k (mm of H_2O)

W_{in} = quantity of stream incoming the vadose region from the Soil outline on day k (mm of H_2O)

Q_{gw} = quantity of revisit stream on day k (mm of H_2O) Ht = time (days). Also the estimation of stream flow in the subordinate sink can be done by model

$$Q_{\text{sur}} = \frac{(R_{\text{day}} - 0.25)^2}{(R_{\text{day}} + 0.25)^2}. \quad \dots \quad 2)$$

Retention parameter is denoted by S and eqn.no.3 is used to determine it.

Methodology designed for SWAT modeling is given in the flow chart, figure no.08. For the calibration of SWAT Model the most general tool is a SWAT-CUP. For calibration, sensitive parameters must be chosen; parameters can be selected by sensitive analysis or following the previous studies conducted in the region. For fitting the parameters in SWAT CUP Sufi 2 algorithm is used, as algorithm Sufi 2 considers all the ambiguity. The restriction insecurity through a multivariate consistent allotment in a parameter hypercube can be illustrated by Sufi 2. while the productivity ambiguity is quantified by 95% forecast ambiguity band (95PPU) (Reund et al.2012) .In calibration method the precision of simulated data is measured using p factor and r factor. Percentage of scrutinized information can be represented through p factor bracketed in the ppu band. It is described the same as the percent of experimental information sequence grouped by means of ninety five 95 ppu. The superiority of calibration is specified by r factor, it is symbolized same as the width of ppu band. Equation 4 represents the r factor

where σ_x =Standard deviation of the measured variable x and d_x = average distance between the upper limit and lower limit of the 95 ppm band can be calculated using equation 5.

k = number of data points in the observed variable and x_u and x_L are the 97.5th percentile and 2.5th percentile of the cumulative distribution of each simulated point respectively.

B. Assessment of Recital of model

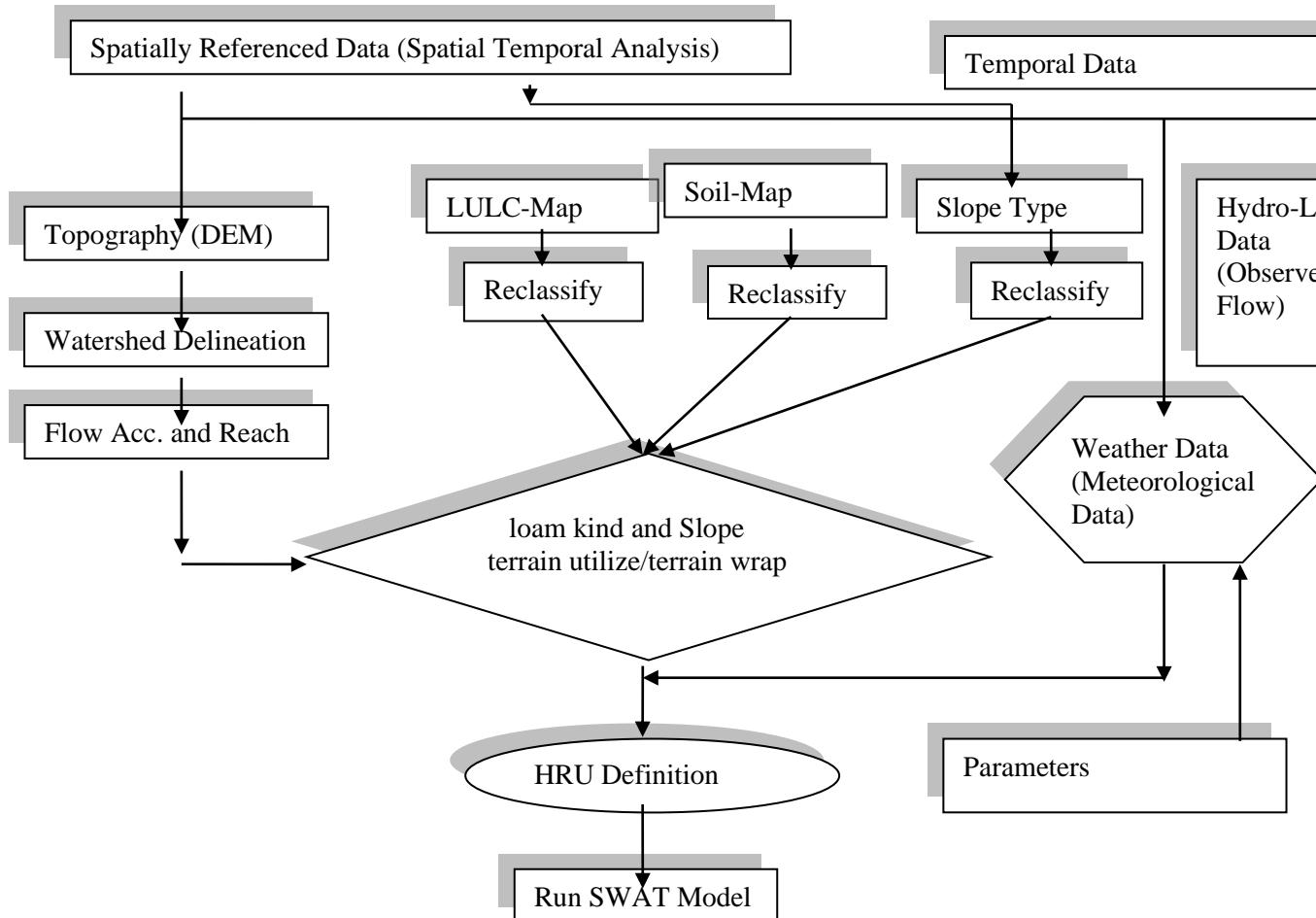
Appraisal metrics are given below:-

Nash Sutcliff efficiency (NSE):- Relative magnitude of variance of observed data and measured data can be decided by Nash Sutcliff efficiency. It sorts from $-\infty$ to 1. Optimal value is 1. Values below 0 represents undesirable presentation where as assessment greater than 0.5 are acceptable.

Coefficient of determination R^2 is represented by evaluation of the inconsistency of modeled statistics by means of entirety disagreement of experiential facts. The assessment of coefficient of determination varies from 0 to 1. If the value of the R^2 is higher it represents the good presentation of the model.

$$R^2 = \frac{\sum_{i=1}^n (T_{Oi} - T_{O,avg})(T_{pi} - T_{p,avg})}{\sqrt{\sum_{i=1}^n (T_{Oi} - T_{O,avg})^2} \sqrt{\sum_{i=1}^n (T_{pi} - T_{p,avg})^2}}. \dots \quad 7)$$

4. Methodology:


Converting input into output a conceptual, comprehensive, constant instance dispersed, deterministic stream sink replica requires a great amount of contribution restrictions diverging extensively within liberty and instance a model is called a SWAT model. It is enlarged through USDA agricultural research service in addition toward a refinement within replica is going till date.

Model Represented

- In large complex watersheds for hydrological estimation, SWAT model is effectively used. Prediction and determination of sediment quantity and quality for land management can be successfully done.
- It is widely used in rural and urban land exercises for impending tool for forecasting of runoff, sediment, nutrients and pesticides.
- It is exercised as an intermediate to improve the effects on long term non point source pollution, water superiority particularly depends on the different land management practices.
- SWAT is a cost-effective model. It is liberally accessible. SWAT is used for incredibly extensive stage of 150 -300 years.
- Wet resources arrangement, decision making policies, administration can be properly done through use of this model.

Soil map, digital elevation model, meteorological statistics and land utilize map needed in the direction of sprint SWAT replica. Every day rainfall information, maximum temperature data, minimum temperature data, comparative moisture data etc. are important parameters in meteorological data. Weather generator file generates other important parameters which are helpful to run the model. Water balance equation is the main backbone of SWAT. It works on that equation and produces excellent results which are important in determining the climate change conditions. These all inputs plays crucial role and important to calculate precipitation, losses due to evapotranspiration, canopy storage, infiltration, surface flow, subsurface flow. Input and output can be balanced by this. How to perform the work is represented in Fig.8

5. Flow Chart of Methodology :-

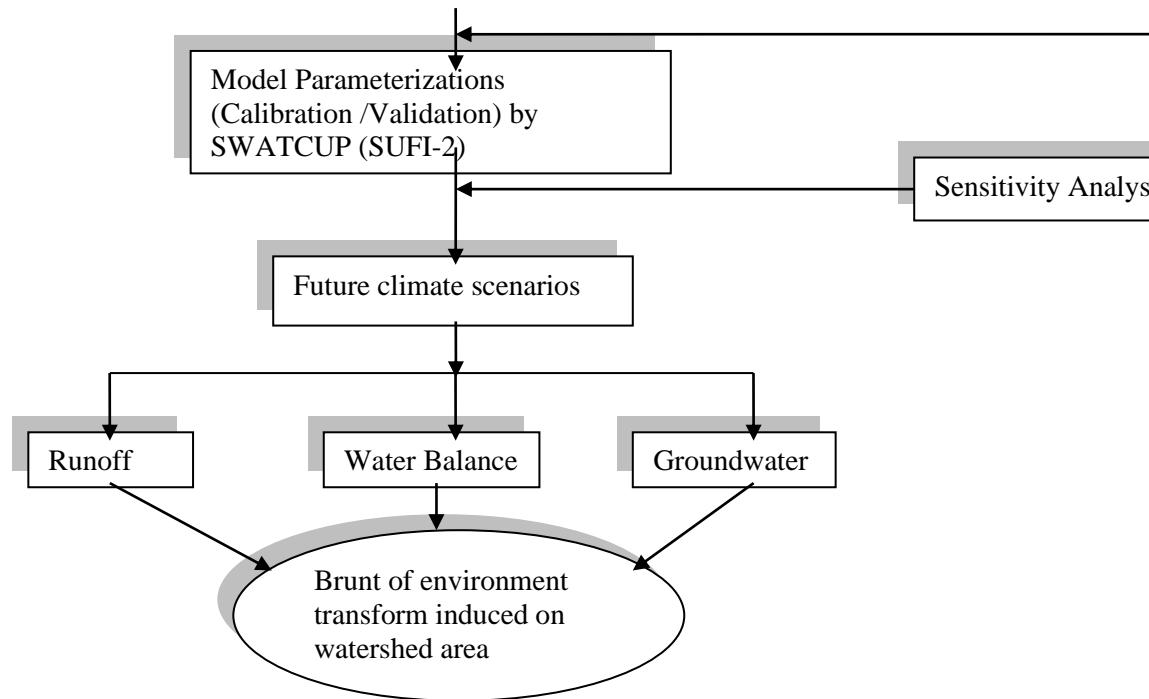


Figure 08: Flow Chart of Methodology

6. Result and Discussion

SWAT-CUP i.e. soil and water assessment tool calibration and uncertainty program is very important intended for calibration and validation. We have performed validation and calibration using soil and water assessment tool calibration and uncertainty program (SWAT CUP). Four algorithms are available inside SWAT CUP for calibration, in our study we have desired chronological Uncertainty fitting (Sufi 2) because of its effectiveness. We have performed calibration for a period of ten years from 2013 to 2022 and we have done validation from 2003 to 2012 for a period of ten years.

Susceptible constraints worn within the replica are groundwater delay time, compensation factor, effective hydraulic conductivity of key canal, accessible irrigate grasping capability of earth , entrance deepness of irrigate in low aquifer ,base flood α factor for evaporation, scs runoff curve number.

As per parameters shown in the table 01, the values in the table will emphasize on as the years are passing precipitation in the river basin is decreasing ,snow fall in the glaciers and in the basin decreasing, snow melting also decreased, sublimation decreased ,surface runoff decreased ,lateral soil increased and ground water shallow AQ increased.

Sr.No.	Parameters	Year 2022	Year 2012
1	Precipitation	520.2 mm	550.9 mm
2	Snow Fall	425.04 mm	493.71 mm
3	Snow Melt	420.14 mm	487.27 mm
4	Sublimation	12.29 mm	12.35 mm
5	Surface Runoff Q	345.40 mm	392.61 mm

6	Lateral Soil Q	1.58 mm	1.49 mm
7	Groundwater (Shallow AQ) Q	16.62 mm	14.76 mm

No.01: Comparison of Parameters

0.902 and 0.853 are the coefficient of determination for calibration and validation respectively. Fig.9 and .10 A very well scatter plots of calibration and validation are represented in figure 10.

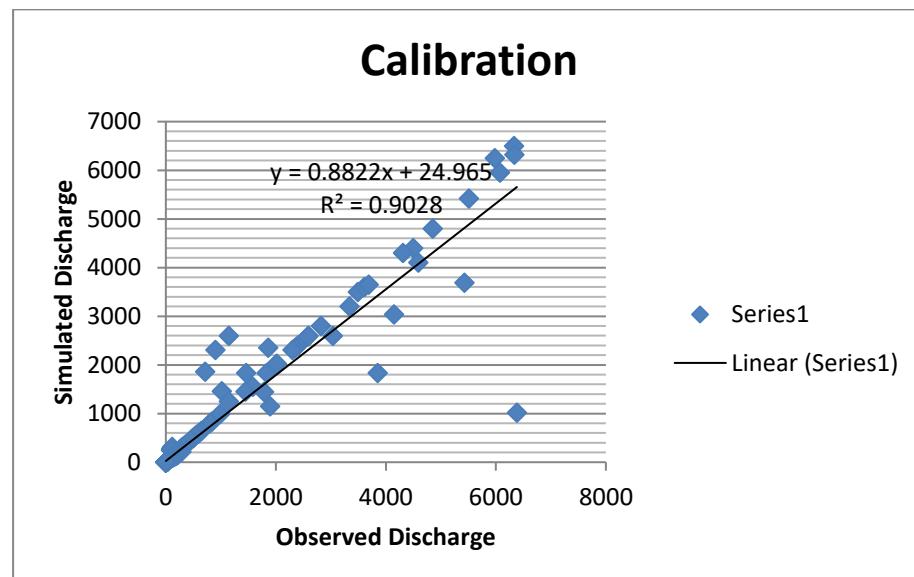


Figure 09: Calibration of Model

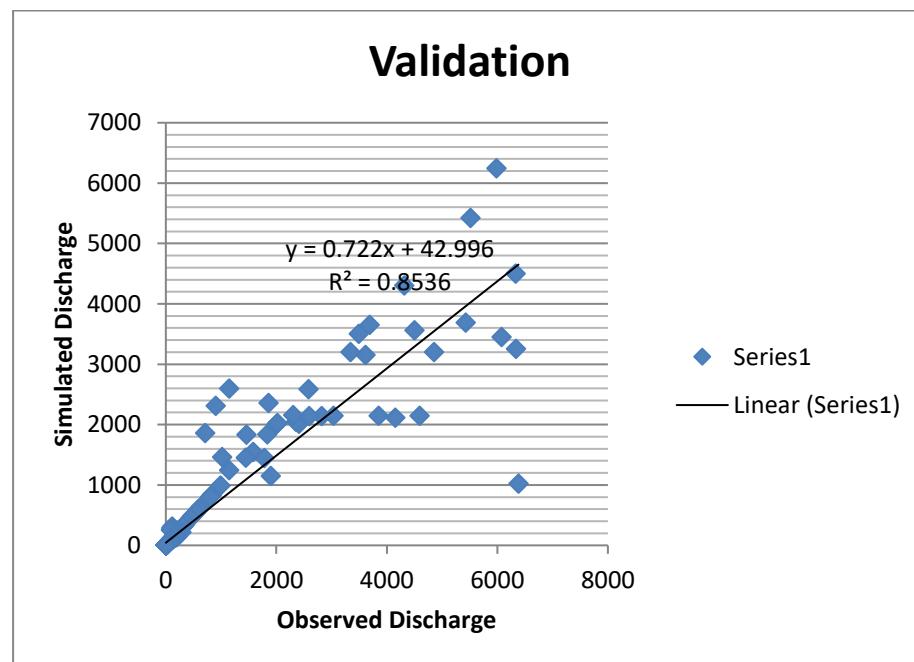
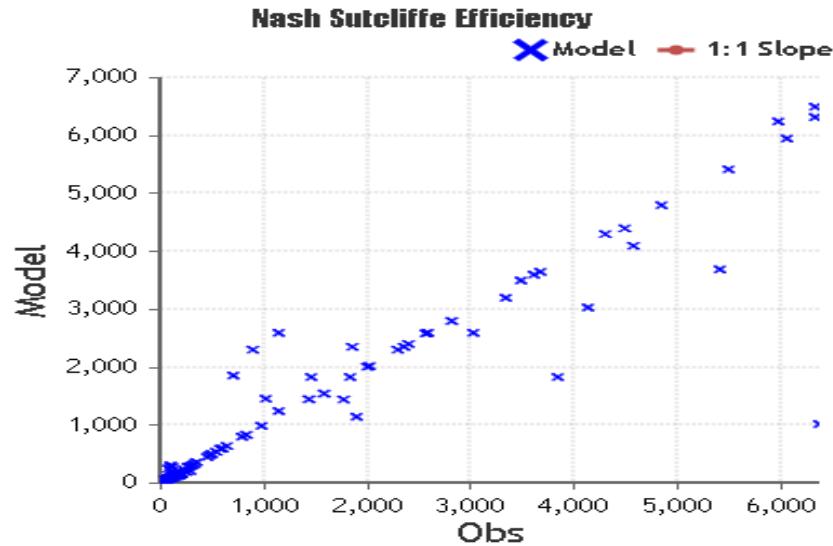
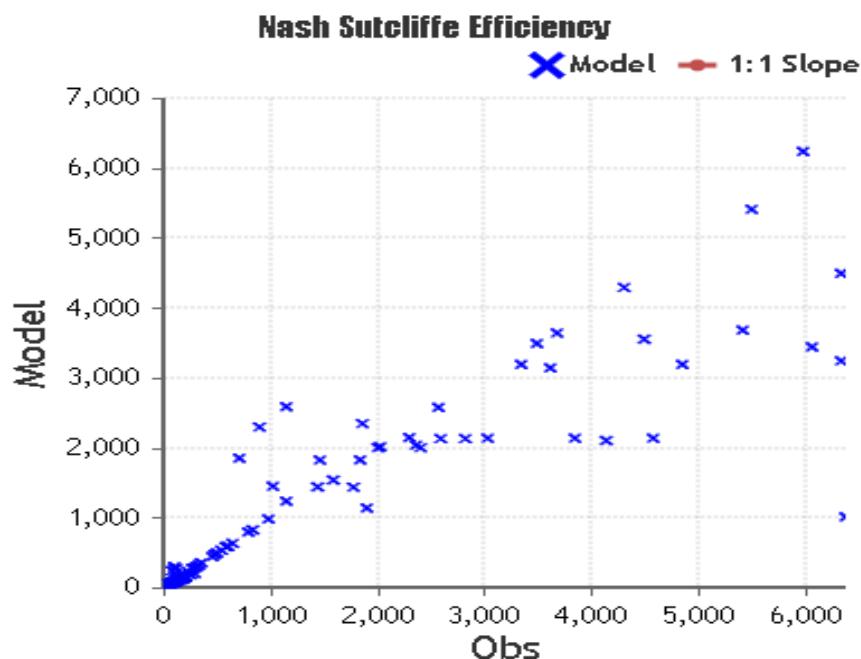



Figure 10: Validation of Model

Calibration and Validation


If you observe in the Fig.11, it will show a large negative prejudice within center and superior varieties of ejection. NS index is quite high in our case, its value ranges from 0.925. A underprivileged fit be able to furnish

elevated price of NS index as the variance is high. Mc Cuen et al. (2006).Our NS index value is 0.925 and the value is excellent so in our case fit is incredibly first-class and fairly elevated assessment of catalog is achieved. So if we see our category proper fitting is achieved.

Figure 11: Variation of Nash Sutcliffe Efficiency for Calibration

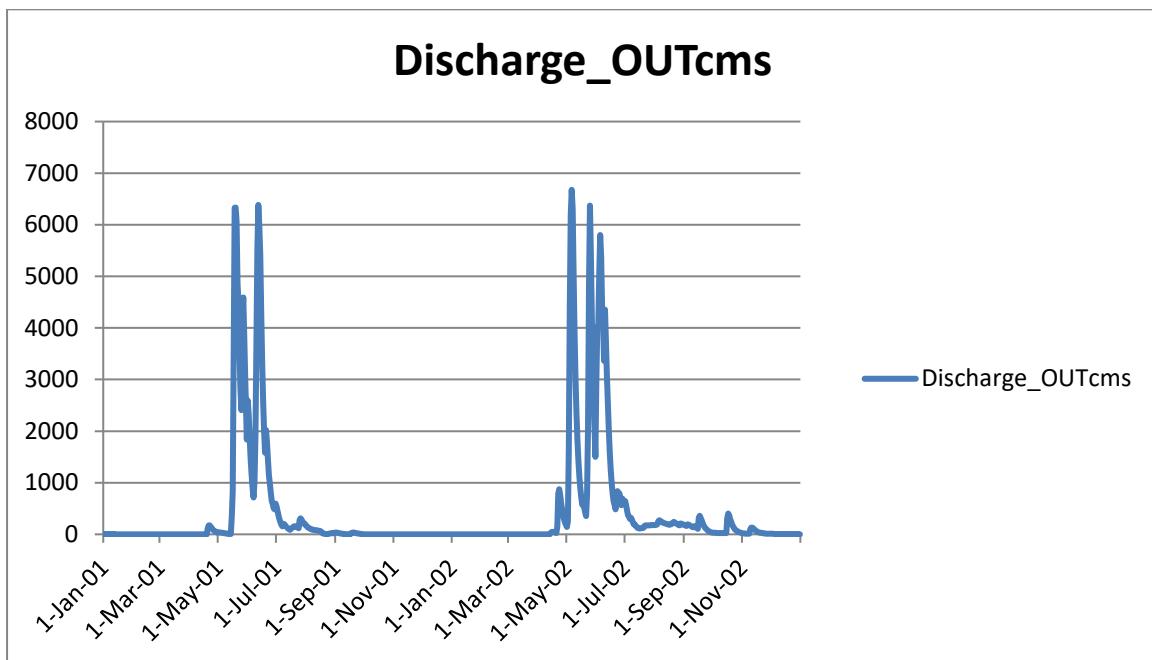

In a scatter diagram moment in time sequence scheme of the experiential and computed expulsion is very well presented which is shown in Fig.11. Simulated expulsion is consistently advanced than the experimental expulsion that we can observe in the scatter plot. If we see the fig.12 low ranges scatter plot illustrates positive effect while medium range scatter plot provides negative effect. NS index value decides the perfect fit of the model so as we precisely look in to our result we can judge our NS index value is too good for perfect fit.

Figure 12: Variation of Nash Sutcliffe Efficiency for validation.

Water level changes over time and it can be studied through hydrograph analysis. In order to understand the control of discharge of water to rivers, reservoirs and other bodies of water hydrograph is effectively used ,so our work emphasize on it. Engineers, planners can make better decisions during design of dams, bridges, culvers etc. If we examine the recession curve it shows the change in volume of water and also it demonstrates change of rate of flow over time due to evaporation and other factors. When we study detention time curve it will help to calculate the time taken for water discharge to move through a reservoir.

In fig.13, if we observe the data represented in january 2001 to december 2001 and january 2002 to december 2002 we find tremendous variations. Through SWAT model Hydrographs has been drawn and it shows the variation in the rising limb and the recession limb. If we observe the figure 13 and data From Jan-2001 to Dec-2001 we find rapid variations in the hydrograph from April to October while in Jan- 2002 to Dec-2002 a different variation in the hydrograph.

Figure 13: Variation of Hydrograph from Jan-2001 to Dec-2002.

A vast study and by running SWAT model for the years, we observed some interesting facts and results, as shown in fig.13. From graphical representation we can observe a drastic change in hydrograph from 2003 to 2012. After comparing the 100th day till 342nd day we will get variation in the hydrograph and surface runoff which shows uneven in discharge .As the time passes surface runoff is decreasing day by day. Also if by comparing fig.14 with fig.15 .A clear graphical picture shows how the hydrograph variations are there and it is clearly gives impact to the society, river basin, watershed area, runoff, surface flow etc.



Figure 14: Hydrograph Analysis from Jan-2003 to Dec-2012.

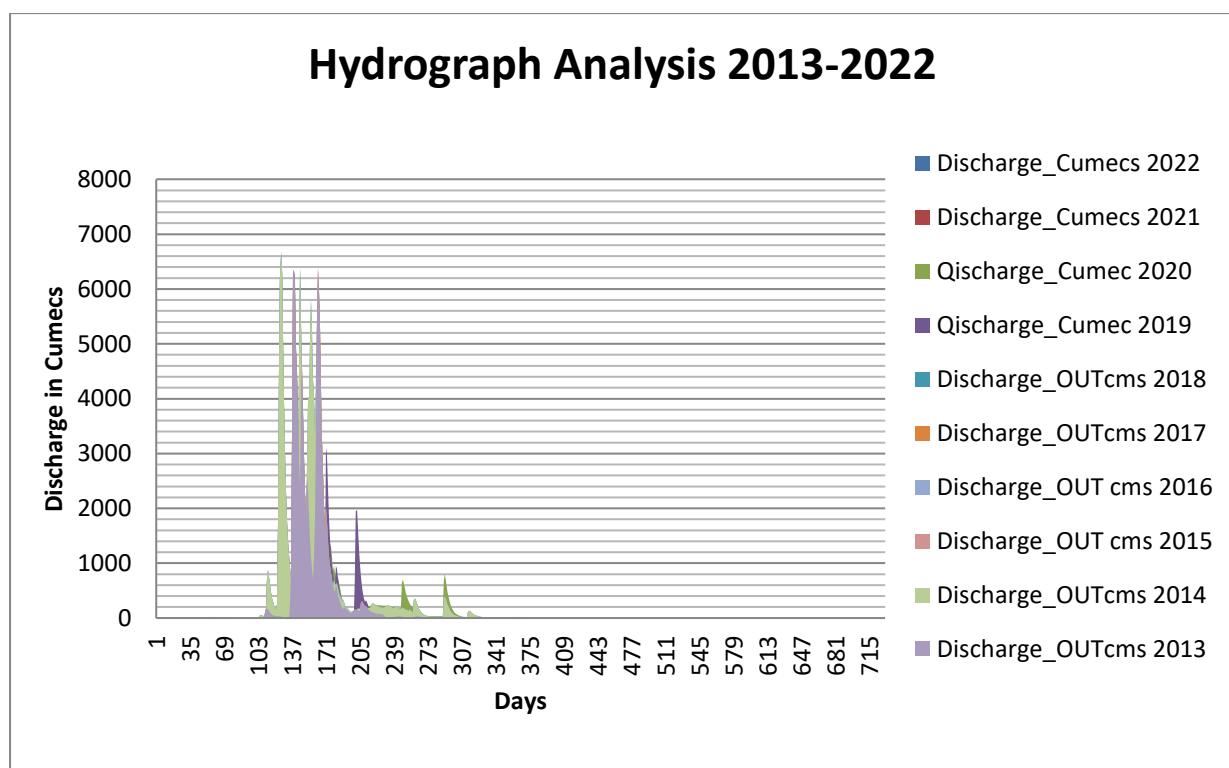


Figure 15: Hydrograph Analysis from Jan-2013 to Dec-2022.

7. Conclusion

This work attempted to analyze how the stream flows of river sink changes due to bang of environment transform. SWAT - soil and water assessment tool a partially dispersed replica, inured on the way to study hydrology of basin.Sufi-2 algorithm of SWAT Cup is successfully implemented for calibration as well as justification toward consider all doubts for example ambiguity within measuring data, theoretical replica, driving variables in addition to parameters. Climate information, minimum temperature data, maximum temperature data, precipitation data can be effectively used. If we observe the figures and data obtained from SWAT Model the trend of present rainfall shows a climatic crash in the river basin. In various climate scenarios a SWAT model is suitable in admitting the transforms within hydrological fluctuations counting river surge in addition to biomass capitulate. The biomass cover is badly affected due to spatial as well as sequential hydrological behavior of watershed area. Steady boost during usual heat across the watershed area might cut down the crop mounting stage ensuing during capitulate price. Alternatively, vary into torrential rain can record solid increase during potential circumstances. Amount of vagueness can augment the snow melt and diminishing the snow from glaciers. The decrease in stream flow is more than 25 percentage. This study throws light into the authorities to take vigilant measures, as there is high probability of the basin getting scarcity of water in near future.

As an outstanding outcome agriculturally valuable hydrological fluctuation mechanism (AET/PET) might be concealed through an analogous stage of improbability distressing yield efficiency. Learning advises that probable decrease within biomass acquiesce dazzling on defer verdict in this region is predictable in future. Surface runoff is going to decrease in near future. Grave study to review harvest defer thrashing with intricate yield modeling proceed to find helpful towards conclusion with response of PET and AET supported capitulate response method used for yield section of sink through satisfactory precision. Examination within this training are aimed toward creation of a sketch stands on top of the acceptable quantity of ambiguity during river surge predicting circuitously influences other hydrological changes valuable in the direction of undeveloped wet administration. Matching dispersed wet administration policy is able to expand in susceptible edges of watershed area on the way to satisfy outcome of extremity within recurring overflow ejection speed as well as supplementing emerald wet mechanism. Our research learning perhaps resolve within devising original policies en route for diminish loss of water, to maintain water level in the river basin, study of threat of water scarcity through a focused water administration preparation essential toward an enhanced financial system of province.

8. Acknowledgment writer ship input declaration

Rajvardhan Patil:- Methodology ,Conceptualization, Data collection, Investigation, Collection of Information, Writing - original draft, Methodology, Project administration, **Nitin Bharadiya:** Supervision, Project administration, Guidance, Motivation.

9. Announcement of contending attention

The writers announce that they have no identified challenging monetary benefit or individual dealings that might have come into view to control the effort accounted within this manuscript.

10. Acceptance

Writers are thankful to Sandip University, Nashik and Dr.Hussain Hitemadi sir for incompletely financial support the present research. The authors are appreciative to DYPatil college of Engineering, Akurdi, Pune-44 for assisting, permission, motivation, helping etc. to carry out research work.

11. References:-

[1] Srinivasan R.,Arnold J. G.,Jones C. A.,1998.Hydrologic Modelling of the United States with the Soil and Water Assessment Tool. Internationmal Journal of Water Resources Development , Volume14,No.03,Pages 315-325.

[2] Santhi J.G.,Arnold J G, Williams J.R., Dugas W.A., Srinivasan R., Hauck L.M.,2001.Validation of the SWAT Model on a Large River Basin with Point and Non Point Sources. *Journal of American Water Resources Association*,Volume 37,Issue 5,Pages 1169-1188.

[3] Wenzhi Cao, William B.Bowden,Tim Davie,Andrew Fenemor ,2006.Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability,*Hydrological Processes*,Volume 20,Issue-5,Pages 1057-1073.

[4] Schuol J., Karim C.Abbaspour,Raghavan Srinivasan ,Hong Yang,2007.Estimination of freshwater availability in the west African sub continent using the SWAT hydrologic model.*Journal of Hydrology* ,Elsevier,Volume 352,Issues 1-2,Pages 30-49.

[5] N.Keshta, A.Elshorbagy, S.Carey,2009. A generic system dynamics model for simulating and evaluating the hydrological performance of reconstructed watersheds. *Hydrology and Earth System Sciences*, Volume 13,Issue 6,Pages 865-881.

[6] J.G.Arnold ,R.Srinivasan,R.S.Muttiah,J.R.Williams ,1998.Large Area Hydrologic Modeling and Assessment Part-I:Model Development. *Journal of American Water Resources Association*,Volume 34,Issue I,Pages 73-89.

[7] Taffese T and Zemadim B. ,2014. Hydrological modeling of a catchment using SWAT model in the upper Blue Nile Basin of Ethiopia:The case of Mizewa Catchment. *E3 Journal of Environmental Research and Management*, Volume 5, Issue 5,Pages 087-091.

[8] Xie H, Nkonya E, Weilgosz B. 2010. Evaluation of the SWAT Model in Hydrologic Modeling of a Large Watershed in Nigeria. *IASTED African Conference Water Resource Management*.

[9] Wu H, Chen B. 2015. Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods. *Ecological Engineering* , Volume76, Pages 110–121.

[10] Juergen Schuol, K.C. Abbaspour, 2007.Using monthly weather statistics to generate daily data in a SWAT model application to West Africa. *Ecological Engineering*, Volume201, Issues 3-4,Pages 301-311.

[11] Xu, Chong-yu, 2002.*Textbook of Hydrologic Models* (edition 2002). Uppsala University Department of Earth Sciences Hydrology.

[12] Yarnal, B., Lakhtakia, M.N., Yu, Z., White, R.A., Pollard, D., Miller, D.A., Lapenta,W.M. 2000. A linked meteorological and hydrological model system: the Susquehanna River Basin Experiment (SRBEX), *Global and Planetary Change*, Valume 25,Issue 1–2,Pages 149–161.

[13] Shimelis G. Setegn,Raghavan Srinivasan,Bijan Dargahi ,2008.Hydrological Modelling in the Lake Tana Basin,Ethiopia using SWAT Model.*The Open Hydrology Journal*.Volume-2,Pages 49-62.

[14] C.A.Spruill, S.R. Workman, J.L.Taraba, 2000. Simulation of Daily and Monthly Stream Discharge from Small Watersheds Using the SWAT Model. *American Society of Agricultural Engineers*.Volume-43,Issue-6,Pages 1431-1439.

[15] Vishal Singh,Bankar N.,Salunkhe S.S.,Bera A.K.,Sharma J.R.,2013.Hydrological stream flow modeling on Tungabhadra catchment :parameterization and uncertainty analysis using SWAT CUP.*Current Science*. Volume-104,Issue-9,Pages 1187-1199.

[16] Yuanyuan su,Yongping Li,Guohe Huang,Qimeng Jia,Yanfeng Li,2021.An integrated multi-GCMs Bayesian-neural-network hydrological analysis method for quantifying climate change impact on runoff of the Amu darya River Basin. *Royal Meteorological Society, International journal of Climatology*, Volume-41, Issue-5, Pages 3411-3424.

[17] Christopher J.White, Trevor W.Tanton,David W.Rycroft ,2014.The impact of climate change on the water resources of the Amu Darya Basin in Central Asia. Water Resources Management,Volume-28,Issue-15,Pages 5267-528.

[18] Akhtar F.,Tischbein,Khalid B.,KU,2013.Optimizing deficit irrigation scheduling under shallow groundwater conditions in lower reaches of Amu Darya River Basin.Water Resources Management,Volume-27,Pages 3165-3178.

[19] Awan UK,Tischbein B,Conrad C,Martius C,Hafeez M,2011.Remote sensing and hydrological measurements for irrigation performance assessments in a water user association in the lower Amu Darya River Basin.Water Resources Management.Volune-25,Issue-10,Pages 2467-2485.

[20] Bernauer T.,Siegfried T.,2012.Climate change and international water conflict in central Asia.Journal Peace Research ,Volune-49,Pages 227-239.

[21] Dipak Mudbhari,Mitthan Lal Kansal,Praveen Kalura,2022.Impact of climate change on water availability in Marsyangdi river basin,Nepal.Quarterly Journal of the Royal Meteorological Society,Volume-148,Issue-744,Pages 1407-1423.

Boini Narsimlu,Ashvin K.Gosain,Bagh R.Chahar,2013.Assessment of Future Climate Impacts on Water Resources of Upper Sind River Basin, India Using SWAT Model. Water Resources Management Journal, Volume-27,Pages 3647-3662.

[23] Nilawar, A.P.; Waikar, M.L.,2018.Use of SWAT to Determine the Effects of Climate and Land Use Changes on Streamflow and Sediment Concentration in the Purna River Basin, India. Environ. Earth Sci. 2018,Valume-77, Pages 783.

[24] Rahman, K.; Ray, N.; Giuliani, G.; Maringanti, C.; George, C.; Lehmann, A. ,2017.Breaking Walls towards Fully Open Source Hydrological Modeling. Water Resour. 2017, Valume-44, Pages 23–30.

[25] Shen, Z.Y.; Chen, L.; Chen, T.,2012. Analysis of Parameter Uncertainty in Hydrological and Sediment Modeling Using GLUE Method: A Case Study of SWAT Model Applied to Three Gorges Reservoir Region, China. Hydrol. Earth Syst. Sci. 2012,Volume-16,Pages 121–132.

[26] Visakh, S.; Raju, P.V.; Kulkarni, S.S.; Diwakar, P.G.,2019.Inter-Comparison of Water Balance Components of River Basins Draining into Selected Delta Districts of Eastern India. Sci. Total Environ. 2019, Volume-654,Pages 1258–1269.

[27] Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R.,2016. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2018,Volume-10,Issue- 6.

[28] Park, G.A.; Park, J.Y.; Joh, H.K.; Lee, J.W.; Ahn, S.R.; Kim, S.J.,2014.Evaluation of Mixed Forest Evapotranspiration and Soil Moisture Using Measured and Swat Simulated Results in a Hillslope Watershed. KSCE J. Civ. Eng. 2014, Volume-18, Pages 315–322.

[29] Amatya, D.M.; Jha, M.K.,2011. Evaluating the SWAT Model for a Low-Gradient Forested Watershed in Coastal South Carolina. Trans. ASABE 2011,Volume-54,Pages 2151–2163.

[30] Abbas, N.; Wasimi, S.A.; Al-Ansari, N.; Nasrin Baby, S.,2018. Recent Trends and Long-Range Forecasts of Water Resources of Northeast Iraq and Climate Change Adaptation Measures. Water 2018, Volume-10, Page-1562.

[31] Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L.,2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007,Volume-50, Pages 885–900.

[32] Krause, P.; Boyle, D.P.; Bäse, F.,2005.Comparison of Different Efficiency Criteria for Hydrological

Model Assessment. *Adv. Geosci.* 2005, Volume- 5, Pages 89–97.

- [33] Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P.,2015. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. *Trans. ASABE* 2015, Volume-58,Pages 1763–1785.
- [34] Nash, J.E.; Sutcliffe, J.V.,1970. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. *J. Hydrol.* 1970,Volume- 10, Pages 282–290.
- [35] Gupta, H.V.; Sorooshian, S.; Yapo, P.O.,1999. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. *Journal of Hydrol. Eng.* 1999,Volume- 4, Pages 135–143.
- [36] Parry, M.; Parry, M.L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. *Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC*; Cambridge University Press: Cambridge, UK, 2007.
- [37] Reddy, K.R.; Hodges, H.F. *Climate Change and Global Crop Productivity*; CABI: Wallingford, UK, 2000.
- [38] Suppiah, R.; Hennessy, K.J.; Whetton, P.H.; McInnes, K.; Macadam, I.; Bathols, J.; Ricketts, J.; Page, C.M. ,2007. *Australian Climate Change Projections Derived from Simulations Performed for the IPCC 4th Assessment Report*. *Aust. Meteorol. Mag.* 2007,Volume-56,Pages 131–152.
- [39] Thomas, A.,2008. Agricultural Irrigation Demand under Present and Future Climate Scenarios in China. *Glob. Planet. Chang.* 2008, Volume-60, Pages 306–326.
- [40] Bonan, G.B.; Oleson, K.W.; Vertenstein, M.; Levis, S.; Zeng, X.; Dai, Y.; Dickinson, R.E.; Yang, Z.-L.,2002. The Land Surface Climatology of the Community Land Model Coupled to the NCAR Community Climate Model. *J. Clim.* 2002, Volume-15, Pages 3123–3149.
- [41] Salinger, M.J.; Stigter, C.J.; Das, H.P.,2000. Agrometeorological Adaptation Strategies to Increasing Climate Variability and Climate Change. *Agric. For. Meteorol.* 2000,Volume-103,Pages 167–184.
- [42] Cuculeanu, V.; Tuinea, P.; Bălceanu, D. ,2002. Climate Change Impacts in Romania: Vulnerability and Adaptation Options. *GeoJournal* 2002, Volume-57, Pages 203–209.
- [43] Ghimire, U.; Srinivasan, G.; Agarwal, A.,2019. Assessment of Rainfall Bias Correction Techniques for Improved Hydrological Simulation. *Int. J. Climatol.* 2019, Volume-39,Pages 2386–2399.
- [44] Turner, S.W.; Galelli, S.,2016. Water Supply Sensitivity to Climate Change: An R Package for Implementing Reservoir Storage Analysis in Global and Regional Impact Studies. *Environ. Model. Softw.* 2016,Volume-76,Pages 13–19.