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Abstract: In this paper, we study the free transverse vibrational behaviour of a nanotube resting on an elastic 

Winkler foundation when subjected to an axial magnetic field and/or a thermal field. The equation of transverse 

motion of the nanotube is determined on the basis of non-local Eringen elasticity and Euller-Bernoulli beam 

theory. By exploiting this equation and the boundary conditions, we determine a homogeneous system whose 

eigenvalues have been determined using the Newton-Raphson algorithm. In this study, the effects of the non-

local parameter, the elastic foundation, the axial magnetic field and the thermal load at high temperature on the 

linear natural frequencies were examined and identified numerically and/or graphically. At the end of this work, 

the magnetic field is used to eliminate the decrease in the natural vibration frequencies of a nanotube undergoing 

a change in temperature. In the course of this work, all the results are compared with those of the existing 

literature and are in good agreement. Magnetic field strengths, temperature variations, elastic foundation 

stiffness and nonlocal parameter values are taken from existing literature.  

Keywords: Single-Walled Carbon Nanotube, nanobeam, Winkler foundation, Eringen’s nonlocal elasticity, 

magnetic field, thermal loading, vibration, natural Frequencies. 

 

1. Introduction 

Thanks to their small size and exceptional mechanical, electrical and thermal properties, nanotubes are the focus 

of a wide range of scientific research. In the field of vibrations, numerical, theoretical and practical research has 

been carried out into the various cases (longitudinal vibrations, transverse vibrations, torsional vibrations) with 

or without the action of physical fields. 

Sardar and Reza [1] studied the effects of thermal stress and a magnetic field on the nonlinear transverse 

vibration of a nanotube resting in an elastic medium. Their results for linear vibration indicate that low 

temperatures increase natural frequencies, while high temperatures decrease them. Burak E. Yapanmiş and 

Şevki Akkoca [2] examined the effects of two elastic foundations (linear and nonlinear) and the magnetic field 

on nonlinear vibration characteristics for two cases: a simply supported nanobeam and an embedded nanobeam. 

With regard to linear vibrations, they concluded that increasing the elastic foundation coefficient or the 

magnetic field intensity increases the values of linear natural frequencies. The same study states that increasing 

the nonlocal parameter leads to a decrease in natural frequencies. A. Benzairand L. Boumia [3] analyzed the 
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thermal effect on the vibration of a carbon nanotube using the Timoshenko beam model. They deduced that 

natural frequencies without thermal effect are smaller than those at low ambient temperatures and larger than 

those at high ambient temperatures. Ismail Esen and A. Eltaher [4] they presented the effects of magnetic and 

thermal fields on the vibration of a cracked FG microbeam. They found that increasing the temperature 

decreases the natural frequencies and that this effect is more significant in the presence of cracks. On the other 

hand the effect of the magnetic field is opposite to that of the temperature. Subrat Kamar and Mohammad 

Sedighi [5] proposed the results of different theories used to study the vibration of a carbon nanotube exposed to 

a magnetic field, temperature distributions and variation in humidity concentration. For increasing moisture 

concentration, they concluded that this reduced the frequency parameters for the different elasticity theories 

used. Vibrations of double and single walled carbon nanotubes under the influence of thermal and magnetic 

field are proposed by P. Ponnusamya and A. Amuthalakshmib [6]. They reported graphically the influence of 

these two physical fields on natural frequencies for different modes and different nonlocal parameters. The 

effects of magnetic and thermal fields on the vibration of a cracked nanobeam reacting in an elastic medium are 

also examined by Danilo Karlicic and Milan Cajic [7]. Their study is carried out on clamped-clamped 

nanobeams and simply supported nanobeams. They discovered that the natural frequencies of the first case are 

greater and less sensitive to changes in the magnetic and thermal fields than those of the second case. Jingnong 

Jiang and Lifeng Wang [8] studied the effect of thermal stress and nonlocal parameter on the vibration of a 

nanobeam with different boundary conditions. M.G. Sobamowo [9] studied the influence of the nonlocal 

parameter on the linear frequencies of a piezoelectric nanobeam in a low temperature and high temperature 

environment. He also investigated the combined effect of nonlocal parameter variation and elastic foundation 

parameter on the nonlinear frequencies of this piezoelectric nanobeam in low temperature and high temperature. 

2. Objectives 

The aim of this work is to study the variations in the natural vibration frequencies of a nanotube resting on a 

Winkler elastic foundation in a thermal environment subjected to a magnetic field.  By considering the effects of 

temperature change, the nonlocal coefficient, the stiffness of the elastic foundation and the magnetic field 

strength as control parameters, this study seeks to give an insight into the behaviour of the linear vibrational 

frequencies of the nanotube following the variation of one or more of the above-mentioned parameters. At the 

end of this study, we used the magnetic field to suppress the variations in the natural frequencies of a nanotube 

suffered following a change in temperature. 

3. Methods 

Consider a clamped-clamped single-walled carbon nanotube (SWCNT) resting on a Winkler elastic foundation 

subjected to a thermal load and a magnetic field, as shown in Figure 1. 

 

Fig.1. Schematic of a clamped-clamped nanotube resting on a Winkler foundation                                                                                                                                  

subjected to thermal loading and magnetic fiel. 

According to the theory of nonlocal elasticity founded by Eringen, the deformation at a point is a function of the 

stress field at any point of the body. For one-dimensional bodies, the nonlocal equation for axial bending stress 

is expressed as follows [10]: 
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Where xx  is the axial stress, xx  is the axial strain and E is Young’s modulus of the carbon nanotube, 0e  is 

material constant experimentally determined, a  is a characteristic internal length and 2
0( )e a  is the nonlocal 

parameter. 

The relationship between strain and displacement given by Von Karman for a straight beam, assuming small 

strains, moderate rotations and large transverse displacements, as follows [11]: 
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Where z-axis is vertical axis and ( , )w x t  denotes the nanotube transverse deflection. Substituting (2) into (1), 

multiplying with zdA on both side of Eq. (1) and integrating over the area A of cross-section of the carbon 

nanotube and we use these following relationships: 
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We obtain: 
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Where I  is the moment of inertia and M is the bending moment.  

The equation of transverse motion of this nanotube can be written as follows [11]: 
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Where   is the mass density, A  is the cross-sectional area, t  denotes time, Q  is the transverse shear force, 

wK  is the elastic foundation stiffness and mF  is the magnetic force per unit length. 

According to the Euler-Bernoulli beam theory, the relationship linking the shear force Q , the bending moment 

M and the axial force N  is written as follows [11,12]: 
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Where N  is the axial force exerted on the nanotube. It is given by the following relationship [11]: 
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Where tN  is the axial force caused by the change in temperature. It is given by the following relation [13]: 

                            1 2
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Where x is the coefficient of thermal expansion  is the Poisson’s ratio and T  is temperature change. 

Substituting Eq. (6) into Eq. (4), we obtain: 
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Using the expression for M  from Eq. (9) in Eq. (4), the dynamic equation for the carbon nanotube will be 

written as follows: 
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The introduction of equation (5) into equation (10) with the elimination of non-linear terms, gives us the final 

expression of the equation governing the transverse vibration movement of the nanotube: 
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The magnetic force per unit length is expressed as follows [14]: 
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Where   is the magnetic field permeability and xH  is the longitudinal magnetic field. 

With the following non-dimensional parameters: 
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We obtain the non-dimensional equation of motion: 
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Solving this equation requires the use of the separation of variables method, which leads us to write: 
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Introducing equation (15) into equation (14), we obtain the transverse displacement of the nanotube, which can 

be expressed as follows [15, 16]: 
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Solving equation (16) leads to a linear modal form, which can be expressed as [17, 18]: 
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For i  varies from 1 to mode number N. 
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We study a clamped-clamped nanotube. The boundary conditions give the following relationships: 

                         

(0) 0W =      ,     '(0) 0W =        

                         

(1) 0W =      ,     '(1) 0W =                        (19) 

The system of eq. (18) offers the possibility of calculating the natural frequencies, by looking for a non-trivial 

solution to find the solutions where the determinant of the matrix of the system of eq. (20) cancels, namely: 

                                                          det( ) 0Y =
                                              

                (20) 

Where Y is the matrix of the system found after injecting the boundary conditions (19) into equation (18). 

4. Results and discussion 

In order to compare the results obtained in this work with those obtained by other researchers such as Farzad 

Ebrahimi and Fatemeh Mahmoodi [21], we carried out a parametric study using the following values for the 

dimensionless parameters: 1E = , 1I = , 1 = , 1L = and 0.3 = . The results of the non-dimensional frequencies 

from this study are listed below and compared with those from other studies. These comparisons show that our 

results are in good agreement with previous studies. 

In this work, we began by analysing the effects of varying the nonlocal parameter on the natural frequencies, 

then we studied the effects of varying the other parameters (elastic foundation, magnetic field and thermal load) 

with a fixed or variable nonlocal parameter, and finally we combined the effects of the magnetic field and the 

thermal load by fixing the other two parameters. The results obtained are reported numerically in the form of 

tables or graphically by curves. The coefficient of thermal expansion is 61.1 10x
−=   for high temperature [1, 

21].  

Effect of the nonlocal parameter 

 In Table 1, we studied the effect of the variation of the nonlocal parameter on the natural frequencies of 

transverse vibration of a clamped-clamped carbon nanotube without magnetic field or thermal charge. We find 

that the increase in the non-local parameter decreases the natural frequencies. This means that the non-local 

effect reduces the stiffness of the material. 

Table 1. Dimensionless natural frequencies for different dimensionless nonlocal parameters (  ). 

                                                                    Mode 

µ source 1 2 3 

0 Present 22.373285 61.672822 120.903391 

 Ref.[21] 22.3733 61.6728 120.903 

0.1 Present 21.109034 50.983166 85.716433 

 Ref.[21] -------------- --------------- -------------- 

0.2 Present 18.289416 36.423927 54.523961 

 Ref.[20] 18.2894 36.4239 54.5240 

0.3 Present 15.353604 27.001656 38.833960 

 Ref.[20] -------------- --------------- ---------------- 

0.4 Present 12.904730 21.139827 29.9624261 

 Ref.[20] 12.9047 21.1398 29.9624 
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Effect of the rigidity of the elastic foundation 

To analyse the effect of elastic foundation stiffness, we ignored the effects of the magnetic field and thermal 

load. The first three dimensionless natural frequencies are given and compared with previous studies in table 2 

for different dimensional foundation stiffnesses and values of the nonlocal parameter ranging from 0 to 0.5. This 

allowed us to conclude that increasing wK  leads to an increase in natural frequencies. This conclusion can be 

quickly drawn by a simple interpretation of Figure 2, which shows the variation of the first natural frequency as 

a function of the nonlocal parameter and the rigidity of the Winkler foundation. This figure also shows that 

increasing the nonlocal parameter decreases the first natural frequency of the nanotube studied. 

Table 2. The first three dimensionless natural frequencies of a clamped-clamped nanotube, for different 

dimensionless foundation stiffness and different nonlocal parameters. 

0.5 Present  10.991367 17.272969 24.332388 

 Ref.[21] 10.9910 17.2730 24.3320 

0.6 Present  9.509194 14.565570 20.458870 

 Ref.[20] 9.5092 14.5656 20.4589 

0.7 Present  8.348283 12.575842 17.636946 

 Ref.[20] ------------- -------------- -------------- 

0.8 Present  7.423595 11.056481 15.492388 

 Ref.[20] 7.4236 11.0565 15.4924 

0.9 Present  6.674087 9.860423 13.808899 

 Ref.[20] ------------- -------------- -------------- 

1 Present  6.056555 8.895434 12.453027 

 Ref.[21] 6.05656 8.89543 12.453 

                                        Mode 

Kw µ source 1 2 3 

0 

0 Present 22.373285 61.672822 120.903391 

 Ref.[20] 22.3733 61.6728 120.9034 

0.1 Present 21.109034 50.983166 85.716433 

 Ref.[20] -------------- --------------- -------------- 

0.2 Present 18.289416 36.423927 54.523961 

 Ref.[20] 18.2894 36.4239 54.5240 

0.3 Present 15.353604 27.001656 38.833960 

 Ref.[20] -------------- --------------- ---------------- 

0.4 Present 12.904730 21.139827 29.9624261 

 Ref.[20] 12.9047 21.1398 29.9624 

0.5 Present 10.991367 17.272969 24.332388 
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  Ref.[20] -------------- --------------- --------------- 

1 

0 Present 22.395622 61.680929 120.907527 

 Ref.[19] 22.3956 61.6809 120.908 

0.1 Present 21.132707 50.992972 85.722266 

 Ref.[19] 21.1327 50.993 85.72223 

0.2 Present 18.316734 36.437652 54.533131 

 Ref.[19] 18.3167 36.4377 54.5331 

0.3 Present 15.386136 27.020167 38.846833 

 Ref.[19] 15.3861 27.0202 38.8468 

0.4 Present 12.943418 21.163466 29.979109 

 Ref.[19] 12.9434 21.1635 29.979109 

0.5 Present 11.036763 17.301892 24.352928 

  Ref.[19] 11.0368 17.3019 24.3529 

10 

0 Present 22.595661 61.753842 120.944739 

 Ref.[19] 22.5957 61.7538 120.945 

0.1 Present 21.344585 51.081143 85.774745 

 Ref.[19] 21.3446 51.0811 85.7747 

0.2 Present 18.560785 36.560942 54.615587 

 Ref.[19] 18.5608 36.5609 54.6156 

0.3 Present 15.675879 27.186199 38.962500 

 Ref.[19] 15.6759 27.1862 38.9625 

0.4 Present 13.286537 21.375039 30.128839 

 Ref.[19] 13.2865 21.375 30.1288 

0.5 Present 11.437226 17.560053 24.537015 

 Ref.[19] 11.4372 17.5601 24.537 

50 

0 Present 23.464098 62.076864 121.109991 

 Ref.[19] 23.4641 62.0769 121.11 

0.1 Present 22.261880 51.471188 86.007598 

 Ref.[19] 22.2619 51.4712 86.0076 

0.2 Present 19.608741 37.103941 54.980563 

 Ref.[19] 19.6087 37.1039 54.9806 

0.3 Present 16.903644 27.912174 39.472477 

 Ref.[19] 16.9036 27.9122 39.4725 

0.4 Present 14.715028 22.291081 30.785499 
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 Ref.[19] 14.715 22.2911 30.7855 

0.5 Present 13.069436 18.664283 25.339003 

 Ref.[19] 13.0694 18.6643 25.339 

100 

0 Present 24.506405 62.478292 121.316240 

 Ref.[19] 24.5064 62.4783 121.316 

0.1 Present 23.357896 51.954626 86.297780 

 Ref.[19] 23.3579 51.9546 86.2978 

0.2 Present 20.844729 37.771715 55.433405 

 Ref.[19] 20.8447 37.7717 55.4334 

0.3 Present 18.323023 28.793913 40.100828 

 Ref.[19] 18.323 28.7939 40.1008 

0.4 Present 16.325810 23.385728 31.587133 

 Ref.[19] 16.3258 23.3857 31.5871 

0.5 Present 14.859682 19.958844 26.307130 

 Ref.[19] 14.8597 19.9588 26.3071 

200 

0 Present 26.468167 63.273510 121.727688 

 Ref.[19] 26.4682 63.2735 121.7278 

0.1 Present 25.408489 52.908253 86.875237 

 Ref.[19] 25.408489 52.9083 86.8752 

0.2 Present 23.119315 39.073040 56.328167 

 Ref.[19] 23.1193 39.073 56.3282 

0.3 Present 20.874222 30.480968 41.328881 

 Ref.[19] 20.8742 30.481 41.3289 

0.4 Present 19.145027 25.434077 33.132264 

 Ref.[19] 19.145 25.4341 33.1323 

0.5 Present 17.911174 22.323876 28.143651 

 Ref.[19] 17.9112 22.3239 28.1437 

500 

0 Present 31.631691 65.601349 122.953772 

 Ref.[19] 31.6317 65.6013 122.954 

0.1 Present 30.750468 55.671206 88.5850264 

 Ref.[19] 30.7505 55.6712 88.585 

0.2 Present 28.887761 42.739940 58.930996 

 Ref.[19] 28.8878 42.7399 58.931 

0.3 Present 27.124402 35.058372 44.811566 
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Fig.2. Representation of the variation in the first fundamental frequency of the clamped-clamped carbon 

nanotube as a function of the variations of the elastic foundation stiffness and the nonlocal parameter 

when 0mH =  and 0T =  

Effect of the thermal load: 

In table 3, we have studied the effects of the variation of the thermal load at high temperature on the natural 

frequencies of the clamped-clamped nanotube without magnetic load and with or without elastic foundation for 

three values of the nonlocal parameter (0, 0.5 and 1). The results obtained show that a positive temperature 

variation at high temperatures decreases the natural frequencies of the nanotube. This means that high 

temperatures reduce the rigidity of the nanotube. 

Table 3. The first three dimensionless natural frequencies of a clamped-clamped nanotube resting on 

Winkler foundation and exposed to variable thermal field at high temperature without magnetic fields (

0mH = ). 

 Ref.[19] 27.1244 35.0584 44.8116 

0.4 Present 25.817282 30.771615 37.386454 

 Ref.[19] 25.8173 30.7716 37.3865 

0.5 Present 24.916062 28.255185 33.046408 

 Ref.[19] 24.9161 28.2552 33.0464 

                                        Mode 

Kw ∆T µ source 1 2 3 

0 0 0 Present 22.373285 61.672822 120.903391 

   Ref.[21] 22.3733 61.6728 120.903 

  0.5 Present 10.991367 17.272969 24.332388 

   Ref.[21] 10.9914 17.273 24.3324 

  1 Present 6.056555 8.895434 12.453027 

   Ref.[21] 6.05656 8.89543 12.453 
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 100 0 Present 22.373209 61.672720 120.903279 

   Ref.[21] 32.3730 61.6724 120.903 

  0.5 Present 10.990951 17.272346 24.331530 

   Ref.[21] 10.9897 17.2705 24.3290 

  1 Present 6.055701 8.894196 12.451304 

   Ref.[21] 6.05318 8.89054 12.4462 

 200 0 Present 22.373134 61.672617 120.903166 

   Ref.[21] 22.3727 61.6720 120.903 

  0.5 Present 10.990535 17.271723 24.330672 

   Ref.[21] 10.9881 17.268 24.3256 

  1 Present 6.054847 8.892957 12.449580 

   Ref.[21] 6.0498 8.88564 12.4394 

 300 0 Present 22.373058 61.672514 120.903054 

   Ref.[21] -------------- -------------- ------------- 

  0.5 Present 10.990119 17.271100 24.329814 

   Ref.[21] -------------- -------------- ------------- 

  1 Present 6.053993 8.891719 12.447856 

   Ref.[21] -------------- -------------- ------------- 

10 0 0 Present 22.595661 61.753842 120.944739 

   Ref.[19] 22.5957 61.7538 120.945 

  0.5 Present 11.437226 17.560053 24.537015 

   Ref.[19] 11.4372 17.5601 24.537 

  1 Present 6.832412 9.440802 12.848264 

   Ref.[19] -------------- -------------- -------------- 

 100 0 Present 22.595586 61.753740 120.944627 

  0.5 Present 11.436827 17.559440 24.536164 

  1 Present 6.831655 9.439635 12.846593 

 200 0 Present 22.595511 61.753637 120.944515 

  0.5 Present 11.436427 17.558827 24.535313 

  1 Present 6.830898 9.438469 12.844923 

 300 0 Present 22.595436 61.753535 120.944402 

  0.5 Present 11.436027 17.558214 24.534463 

  1 Present 6.830141 9.437301 12.843252 
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The figure 3 shows the effect of an increase in temperature on the dynamic behaviour of the nanotube studied. It 

is clear that this decreases the first natural frequency of vibration of the nanotube. The figure also shows that 

this law of variation is linear. This result is in good agreement with the result of Sardar and Reza [1]. 

The figure 4 shows that the conclusions drawn for the first mode are valid for the other two modes of vibration. 

A law that can be generalised to all the modes of vibration of the nanotube studied in this work. 

 

Fig.3. First dimensionless linear frequency of clamped-clamped nanotube as a function of temperature 

variations for 0.5 = and 10wK =  

 

Fig.4. First three dimensional linear frequencies of the clamped-clamped nanotube as a function of 

temperature variations for 0.5 =  with or without elastic foundation 

Effect of the magnetic load 

In table 4, we have studied the effect of varying the magnetic field on the natural frequencies of transverse 

vibration of the clamped-clamped carbon nanotube at room temperature without or with an elastic foundation of 

dimensionless regidity 10wK =
 
for three values of the nonlocal parameter ( 0 = , 0.5 = and 1 = ). 

We find that the natural frequencies of the nanotube increase with increasing longitudinal magnetic field 

intensity. We can therefore conclude that increasing the intensity of the magnetic field increases the rigidity of 
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our nanotube. This result is consistent with those of other authors such as Burak E. Yapanmis and Sevki Akkoca 

[2]. 

Table 4. The first three dimensionless natural frequencies of a clamped-clamped carbon nanotube on a 

Winkler foundation ( 10wK = ) subjected to the effect of a magnetic field without thermal loading for three 

values of the the nonlocal parameter ( 0 = , 0.5 = and 1 = ). 

 

In Figure 5, we show the effect of varying the nonlocal parameter on the nanotube natural frequency by plotting 

the natural frequency ( ) as a function of this parameter (  ) for five magnetic field strengths. Over a range of 

variation in  from 0 to 0.5, we find that increasing the nonlocal parameter decreases the first natural frequency, 

but that with increasing magnetic field strength, this decreasing variation in natural frequencies can be reversed 

                                       Mode 

Kw Hm µ source 1 2 3 

10 0 0 Present 22.595661 61.753842 120.944739 

   Ref.[19] 22.5957 61.7538 120.945 

  0.5 Present 11.437226 17.560053 24.537015 

   Ref.[19] 11.4372 17.5601 24.537 

  1 Present 6.832412 9.440802 12.848264 

   Ref.[19] ------------ ------------ ------------- 

 1 0 Present 22.866110 62.125495 121.352918 

   Ref.[2] ------------ ------------ ------------- 

  0.5 Present 12.808811 19.663107 27.456435 

   Ref.[2] 12.8088 19.663 27.456 

  1 Present 9.181104 13.009122 17.920336 

   Ref.[2] ------------ ------------ ------------- 

 15 0 Present 26.334949 67.097868 126.926138 

   Ref.[2] ------------ ------------ ------------- 

  0.5 Present 25.092562 38.504413 53.655669 

   Ref.[2] 25.092 38.504 53.655 

  1 Present 24.715258 35.927098 50.059829 

   Ref.[2] ------------ ------------ ------------- 

 30 0 Present 29.559490 72.018748 132.630207 

   Ref.[2] ------------ ------------ ------------- 

  0.5 Present 33.592578 51.544389 71.803885 

   Ref.[2] 33.592 51.544 71.803 

  1 Present 34.278362 49.923781 69.619646 

   Ref.[2] ------------ ------------ ------------- 
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to give an increasing frequency evolution. The figure also shows that the increase in the magnetic field effect 

increases the first natural frequency.  

 

Fig.5. The effect of the magnetic load Hm on the first natural frequency of the nanotube for different 

values of the nonlocal parameter and for 10wK =  

Vibratory behaviour of the clamped-clamped carbon nanotube under the combined effects of a thermal 

load and a magnetic field 

In the figure 6, we have plotted the variation of the first fundamental frequency of the clamped carbon nanotube 

as a function of the variation of the dimensionless magnetic field intensity and the change in temperature for a 

non-local parameter 0.5 =  and a dimensionless stiffness 10wK =
 
of the elastic foundation. 

Analysis of this figure shows that an increase in the magnetic field leads to an increase in the natural frequency 

and that a positive change of 300 K in temperature compared with ambient temperature leads to a slight 

decrease in this frequency. We also noticed that at a fixed magnetic field, the frequency varies linearly with the 

change in temperature. This result is illustrated in figure 7. The same figure we have shown through a plot that 

the magnetic field can be used to keep the natural frequencies constant despite the change in temperature. this 

comes down to the fact that the normal force caused by the thermal charge and that caused by the magnetic field 

have opposite signs in the equation governing the movement (equation 14). 

 

Fig.6. Representation of the variation in the first fundamental frequency of the clamped-clamped carbon 

nanotube as a function of the variations of the dimensionless magnetic field effect ( mH ) and the 

temperature (Delta T) change for 0.5 =  and 10wK =  
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Fig.7. Representation of the variation in the first fundamental frequency of the clamped-clamped carbon 

nanotube as a function of the variation of thethe temperature for 0mH =  and m tempH N=  

5. Conclusion 

In this paper, we work on a clamped-clamped nanotube resting in an elastic Winkler foundation. This nanotube 

is considered exposed to a magnetic field and/or a thermal loading. The aim is to study the effects of the 

magnetic field, the temperature change (at high temperature), the rigidity of the foundation elastic and the 

change of the nonlocal parameter, on the variations in natural frequencies. The equation of motion of our studied 

nanotube was obtained by applying nonlocal elasticity and Euler-Bernoulli beam theory. The transverse motion 

is assumed to be harmonic and boundary conditions of the proposed model have been introduced to find 

ahomogeneous system whose determinant produces a nonlinear equation solved numerically by the Newton-

Raphson iteration method. 

The results obtained in our work demonstrated an excellent level of concordance with those obtained from the 

literature, confirming the reliability of our resolution process.  

Based on this work, we can draw the following conclusions: 

• An increase in the strength of the magnetic field leads to an increase in the natural frequencies. 

• In the high-temperature range, the increase in temperature leads to a reduction in the natural 

frequencies of the nanotube under study. 

• The negative effect of an increase in temperature on the natural vibration frequencies of the nanotube 

can be eliminated by applying a magnetic field. 

• For nanotubes resting on an elastic foundation, the nonlocal effect reduces the rigidity of the material 

and that of the foundation increases the rigidity of the structure.  

• The nonlocal parameter can have a considerable effect on the variation of the natural frequency. It is 

therefore important to use the theory of nonlocal elasticity to study the vibrations of nanotubes (nanobeams). 

In summary, this work allowed us to deepen our knowledge of the behavior of nanotubes and their physical 

properties. Through this modest work we wish to contribute to the enrichment of the field of nanostructure 

mechanics. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 1 (2024) 

__________________________________________________________________________________ 

5182 

Refrences 

[1] Abdullah Sardar S., Shahrokh Hosseini-Hashemi, Nazhad A. Hussein and Reza Nazemnezhad: Thermal 

Stress and Magnetic Effects on Nonlinear Vibration of Nanobeams Embedded in Nonlinear Elastic 

Medium.Journal of Thermal Stresses 43(10): 1316–1332 (2020). 

[2] Burak E. Yapanmis, Necla Togun, Suleyman M. Bagdatli and Sevki Akkoca: Magnetic Field Effect on 

Nonlinear Vibration of Nonlocal Nanobeam Embedded in Nonlinear Elastic Foundation. Structural 

Engineering and Mechanics 79 (6): 723–35 (2021).  

[3] A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay and L. Boumia: The Thermal Effect on 

Vibration of Single-Walled Carbon Nanotubes Using Nonlocal Timoshenko Beam Theory. Journal of 

Physics D: Applied Physics 41 (22): 225404 (2008). 

[4] Ismail Esen, Cevat Ozarpa and Mohamed A. Eltaher: Free Vibration of a Cracked FG Microbeam 

Embedded in an Elastic Matrix and Exposed to Magnetic Field in a Thermal Environment. Composite 

Structures 261 (April): 113552 (2021). 

[5] Subrat Kumar Jena, S. Chakraverty, Mohammad Malikan and Hamid Mohammad-Sedighi: Hygro-

Magnetic Vibration of the Single-Walled Carbon Nanotube with Nonlinear Temperature Distribution 

Based on a Modified Beam Theory and Nonlocal Strain Gradient Model. International Journal of Applied 

Mechanics 12 (05): 2050054 (2020). 

[6] P. Ponnusamy and A. Amuthalakshmi: Influence of Thermal and Magnetic Field on Vibration of Double 

Walled Carbon Nanotubes Using Nonlocal Timoshenko Beam Theory. Procedia Materials Science, 2nd 

International Conference on Nanomaterials and Technologies (CNT 2014), 10 (January): 243–53 (2015). 

[7] Danilo Karličić, Dragan Jovanović, PredragKozić and Milan Cajić: Thermal and Magnetic Effects on the 

Vibration of a Cracked Nanobeam Embedded in an Elastic Medium. Journal of Mechanics of Materials 

and Structures 10 (February): 43–62 (3025). 

[8] Jiang Jingnong and Lifeng Wang: Analytical Solutions for Thermal Vibration of Nanobeams with Elastic 

Boundary Conditions. Acta MechanicaSolidaSinica 30 (5): 474–83(2017). 

[9] M. G. Sobamowo: Analysis of Nonlinear Vibration of Piezoelectric Nanobeam Embedded in Multiple 

Layers Elastic Media in a Thermo-Magnetic Environment Using Iteration Perturbation Method. Journal 

of Solid Mechanics 14 (2): 221–51(2922). 

[10] Valipour P., Ghasemi S. E., Mohammad R. K. and Ganji D. D.: Theoretical analysis on nonlinear 

vibration of fluid flow in single walled carbon nanotube. Journal of Theoretical and Applied physics 

10(3): 211-218 (2016).  

[11] Zheng Lyu, Yaowen Yang and Hu Liu: High-Accuracy Hull Iteration Method for Uncertainty 

Propagation in Fluid-Conveying Carbon Nanotube System under Multi-Physical Fields. Applied 

Mathematical Modelling 79 (March), 362-380 (2020). 

[12] Soltani P. And A. Farshidianfar.: Periodic solution for nonlinear vibration of a fluid-conveying carbon 

nanotube, based on the nonlocal continuum theory by energy balance method. Applied Mathematical 

Modelling 36 (8): 3712-24 (2012).  

[13] T. Murmu and S. C. Pradhan: Thermo-mechanical vibration of a single-walled car-bon nanotube 

embedded in an elastic medium based on nonlocal elasticity theory. Computational Materials Science 

46(4), 854–859 (2009).  

[14] T. Murmu, M. A. McCarthy and S. Adhikari: Nonlocal elasticity based magnetic field affected vibration 

response of double single-walled carbon nanotube Systems. Journal of Applied Physics 111 (11): 113511 

(2012).  

[15] El khoudar Y., Adri A., Outassafte O., El hantati I., Rifai S., and Benamar R.: Analysis of geometrically 

nonlinear free vibrations of functional graded beams in a thermal environment.EccomasProceedia 

COMPDYN 2021, pp. 5191-5200. Athens, Greece (2021). 

[16] El khoudar Y., Adri A., Outassafte O., Rifai S. and Benamar R.: An analytical approach to geometrically 

nonlinear free and forced vibration of piezoelectric functional gradient beams resting on elastic 

foundations in thermal environments. Mechanics of advanced Materials and Structures 30(1), 131-143 

(2023). 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 1 (2024) 

__________________________________________________________________________________ 

5183 

[17] El Khouddar Yassine, Ahmed Adri, Omar Outassafte, Issam El Hantati, Said Rifai and Rhali Benamar: 

Influence of Hygro-Thermal Effects on the Geometrically Nonlinear Free and Forced Vibrations of 

Piezoelectric Functional Gradient Beams with Arbitrary Number of Concentrated Masses. Archive of 

Applied Mechanics 92 (9): 2767–84 (2022).  

[18] El Khouddar Y., A. Adri, O. Outassafte, S. Rifai, and R. Benamer.: Non-Linear Forced Vibration 

Analysis of Piezoelectric Functionally Graded Beams in Thermal Environment. International Journal of 

Engineering 34 (11): 2387-2397 (2021). 

[19] Togun Necla and Süleyman Murat Bağdatlı.: Nonlinear Vibration of a Nanobeam on a Pasternak Elastic 

Foundation Based on Non-Local Euler-Bernoulli Beam Theory. Mathematical and Computational 

Applications 21 (1), (2016). 

[20] Suleyman M. Bagdatli: Non-Linear Transverse Vibrations of Tensioned Nanobeams Using Nonlocal 

Beam Theory. Structural Engineering & Mechanics 53 (July): 281, (2015). 

[21] Ebrahimi Farzad and Fatemeh Mahmoodi: Vibration Analysis of Carbon Nanotubes with Multiple Cracks 

in Thermal Environment. Advances in Nano Research 6 (1): 57–80, (2018). 


