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Abstract: In this paper, we study the free transverse vibrational behaviour of a nanotube resting on an elastic
Winkler foundation when subjected to an axial magnetic field and/or a thermal field. The equation of transverse
motion of the nanotube is determined on the basis of non-local Eringen elasticity and Euller-Bernoulli beam
theory. By exploiting this equation and the boundary conditions, we determine a homogeneous system whose
eigenvalues have been determined using the Newton-Raphson algorithm. In this study, the effects of the non-
local parameter, the elastic foundation, the axial magnetic field and the thermal load at high temperature on the
linear natural frequencies were examined and identified numerically and/or graphically. At the end of this work,
the magnetic field is used to eliminate the decrease in the natural vibration frequencies of a nanotube undergoing
a change in temperature. In the course of this work, all the results are compared with those of the existing
literature and are in good agreement. Magnetic field strengths, temperature variations, elastic foundation
stiffness and nonlocal parameter values are taken from existing literature.

Keywords: Single-Walled Carbon Nanotube, nanobeam, Winkler foundation, Eringen’s nonlocal elasticity,
magnetic field, thermal loading, vibration, natural Frequencies.

1. Introduction

Thanks to their small size and exceptional mechanical, electrical and thermal properties, nanotubes are the focus
of a wide range of scientific research. In the field of vibrations, numerical, theoretical and practical research has
been carried out into the various cases (longitudinal vibrations, transverse vibrations, torsional vibrations) with
or without the action of physical fields.

Sardar and Reza [1] studied the effects of thermal stress and a magnetic field on the nonlinear transverse
vibration of a nanotube resting in an elastic medium. Their results for linear vibration indicate that low
temperatures increase natural frequencies, while high temperatures decrease them. Burak E. Yapanmis and
Sevki Akkoca [2] examined the effects of two elastic foundations (linear and nonlinear) and the magnetic field
on nonlinear vibration characteristics for two cases: a simply supported nanobeam and an embedded nanobeam.
With regard to linear vibrations, they concluded that increasing the elastic foundation coefficient or the
magnetic field intensity increases the values of linear natural frequencies. The same study states that increasing
the nonlocal parameter leads to a decrease in natural frequencies. A. Benzairand L. Boumia [3] analyzed the
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thermal effect on the vibration of a carbon nanotube using the Timoshenko beam model. They deduced that
natural frequencies without thermal effect are smaller than those at low ambient temperatures and larger than
those at high ambient temperatures. Ismail Esen and A. Eltaher [4] they presented the effects of magnetic and
thermal fields on the vibration of a cracked FG microbeam. They found that increasing the temperature
decreases the natural frequencies and that this effect is more significant in the presence of cracks. On the other
hand the effect of the magnetic field is opposite to that of the temperature. Subrat Kamar and Mohammad
Sedighi [5] proposed the results of different theories used to study the vibration of a carbon nanotube exposed to
a magnetic field, temperature distributions and variation in humidity concentration. For increasing moisture
concentration, they concluded that this reduced the frequency parameters for the different elasticity theories
used. Vibrations of double and single walled carbon nanotubes under the influence of thermal and magnetic
field are proposed by P. Ponnusamya and A. Amuthalakshmib [6]. They reported graphically the influence of
these two physical fields on natural frequencies for different modes and different nonlocal parameters. The
effects of magnetic and thermal fields on the vibration of a cracked nanobeam reacting in an elastic medium are
also examined by Danilo Karlicic and Milan Cajic [7]. Their study is carried out on clamped-clamped
nanobeams and simply supported nanobeams. They discovered that the natural frequencies of the first case are
greater and less sensitive to changes in the magnetic and thermal fields than those of the second case. Jingnong
Jiang and Lifeng Wang [8] studied the effect of thermal stress and nonlocal parameter on the vibration of a
nanobeam with different boundary conditions. M.G. Sobamowo [9] studied the influence of the nonlocal
parameter on the linear frequencies of a piezoelectric nanobeam in a low temperature and high temperature
environment. He also investigated the combined effect of nonlocal parameter variation and elastic foundation
parameter on the nonlinear frequencies of this piezoelectric nanobeam in low temperature and high temperature.

2. Objectives

The aim of this work is to study the variations in the natural vibration frequencies of a nanotube resting on a
Winkler elastic foundation in a thermal environment subjected to a magnetic field. By considering the effects of
temperature change, the nonlocal coefficient, the stiffness of the elastic foundation and the magnetic field
strength as control parameters, this study seeks to give an insight into the behaviour of the linear vibrational
frequencies of the nanotube following the variation of one or more of the above-mentioned parameters. At the
end of this study, we used the magnetic field to suppress the variations in the natural frequencies of a nanotube
suffered following a change in temperature.

3. Methods

Consider a clamped-clamped single-walled carbon nanotube (SWCNT) resting on a Winkler elastic foundation
subjected to a thermal load and a magnetic field, as shown in Figure 1.
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Fig.1. Schematic of a clamped-clamped nanotube resting on a Winkler foundation
subjected to thermal loading and magnetic fiel.

According to the theory of nonlocal elasticity founded by Eringen, the deformation at a point is a function of the
stress field at any point of the body. For one-dimensional bodies, the nonlocal equation for axial bending stress
is expressed as follows [10]:
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Where o,, is the axial stress, &,, is the axial strain and E is Young’s modulus of the carbon nanotube, e, is
material constant experimentally determined, a is a characteristic internal length and (eoa)2 is the nonlocal
parameter.

The relationship between strain and displacement given by Von Karman for a straight beam, assuming small
strains, moderate rotations and large transverse displacements, as follows [11]:

ou _o*w 10w,
Egy =——L—F+—-(— 2
"= o o >0 @
Where z-axis is vertical axis and w(x,t) denotes the nanotube transverse deflection. Substituting (2) into (1),
multiplying with zdA on both side of Eqg. (1) and integrating over the area A of cross-section of the carbon

nanotube and we use these following relationships:

J‘sz:O;l =I22dA;M :J'ZJXXdA ©)
We obtain:
o°M o*w
M —(eya)? =—El— 4)
o ax? ox?

Where 1 is the moment of inertia and M is the bending moment.

The equation of transverse motion of this nanotube can be written as follows [11]:

aQ d*w
5 = pA—atz =+ KWW_ Fm (5)
Where p is the mass density, A is the cross-sectional area, t denotes time, Q is the transverse shear force,

K, is the elastic foundation stiffness and F,, is the magnetic force per unit length.

According to the Euler-Bernoulli beam theory, the relationship linking the shear force Q, the bending moment
M and the axial force N is written as follows [11,12]:

Q_*M o'W

+ 6
ox  ox? ox? ©

Where N is the axial force exerted on the nanotube. It is given by the following relationship [11]:
EA L ow,,
N=N +—| (—)%dx 7
cor ), G )
Where N, is the axial force caused by the change in temperature. It is given by the following relation [13]:

o, AT

N, =—EA
1-2v

(8)

Where «, is the coefficient of thermal expansion v is the Poisson’s ratio and AT is temperature change.

Substituting Eq. (6) into Eq. (4), we obtain:
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Using the expression for M from Eq. (9) in Eqg. (4), the dynamic equation for the carbon nanotube will be
written as follows:

o*w . o%w a“w

El — N—_e
PV (0)( Nt

(20)
The introduction of equation (5) into equation (10) with the elimination of non-linear terms, gives us the final

expression of the equation governing the transverse vibration movement of the nanotube:

ow _ o'w 0w 0w o'w _ ow  d'w
A—+EI—+k W-Fy + N~ (ea)2(pA— kS F, SN, S 20 (31)
o tad o "o "ol ot

The magnetic force per unit length is expressed as follows [14]:

2
F—pAn2 Y (12)

m = X 6X2
Where 7 is the magnetic field permeability and H, is the longitudinal magnetic field.

With the following non-dimensional parameters:

Xoy Wo t [EL ga, Kkl N, L2 F,L2
X==W=—=T=—= [—u="—K,=—"—;N —=H, =" 13
L T T AT e T e Ty I T (13)
We obtain the non-dimensional equation of motion:
2) A2 2) 2
% 64W+KW+Ntemp0W %_ﬂz(%Jr W% tempﬂ_ mﬂ)zo (14)
) ox? oX oT “oX oX oX oX

Solving this equation requires the use of the separation of variables method, which leads us to write:
W(X,T)=W(X)e“" (15)

Introducing equation (15) into equation (14), we obtain the transverse displacement of the nanotube, which can
be expressed as follows [15, 16]:

o'W (X) W (X)

—7"W(X)=0 (16)
xt Txr 7
Where:
4 a)Z—KW 7= ﬂz(wz_Kw)"'Ntemp_Hm %)
1+(Hm_Ntemp)ﬂ2 1+(Hm_Ntemp)ﬂ2

Solving equation (16) leads to a linear modal form, which can be expressed as [17, 18]:
. 1 1 3 2 1 13 Z
W; (X) = Cysin( (ETI+E\)'7 +4y; )(X)) +C, cos( (577+E n°+4y )(X))+
. 1 1 1 1
cssnnh(,/(—5n+5\/n2+4yi“)(X))+c4 cosh( (=57 + 5" + 47 )(X))

For i varies from 1 to mode number N.

(18)
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We study a clamped-clamped nanotube. The boundary conditions give the following relationships:
w@)=0 , W'0)=0
w@®=0 , W'@®-=0 (19)

The system of eq. (18) offers the possibility of calculating the natural frequencies, by looking for a non-trivial
solution to find the solutions where the determinant of the matrix of the system of eq. (20) cancels, namely:

det(Y)=0 (20)

Where Y is the matrix of the system found after injecting the boundary conditions (19) into equation (18).
4, Results and discussion

In order to compare the results obtained in this work with those obtained by other researchers such as Farzad
Ebrahimi and Fatemeh Mahmoodi [21], we carried out a parametric study using the following values for the
dimensionless parameters: E=1, | =1, p=1, L=1and v=0.3. The results of the non-dimensional frequencies
from this study are listed below and compared with those from other studies. These comparisons show that our
results are in good agreement with previous studies.

In this work, we began by analysing the effects of varying the nonlocal parameter on the natural frequencies,
then we studied the effects of varying the other parameters (elastic foundation, magnetic field and thermal load)
with a fixed or variable nonlocal parameter, and finally we combined the effects of the magnetic field and the
thermal load by fixing the other two parameters. The results obtained are reported numerically in the form of

tables or graphically by curves. The coefficient of thermal expansion is «, =1.1x107% for high temperature [1,
21].

Effect of the nonlocal parameter

In Table 1, we studied the effect of the variation of the nonlocal parameter on the natural frequencies of
transverse vibration of a clamped-clamped carbon nanotube without magnetic field or thermal charge. We find

that the increase in the non-local parameter decreases the natural frequencies. This means that the non-local
effect reduces the stiffness of the material.

Table 1. Dimensionless natural frequencies for different dimensionless nonlocal parameters ( « ).

Mode

11 source 1 2 3

0 Present 22.373285 61.672822 120.903391
Ref.[21] 22.3733 61.6728 120.903

0.1 Present 21.109034 50.983166 85.716433
Ref[21] = - e

0.2 Present 18.289416 36.423927 54.523961
Ref.[20] 18.2894 36.4239 54.5240

0.3 Present 15.353604 27.001656 38.833960
Ref.[20] e e

0.4 Present 12.904730 21.139827 29.9624261
Ref.[20] 12.9047 21.1398 29.9624
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0.5 Present 10.991367 17.272969 24.332388
Ref.[21] 10.9910 17.2730 24.3320
0.6 Present 9.509194 14.565570 20.458870
Ref.[20] 9.5092 14.5656 20.4589
0.7 Present 8.348283 12.575842 17.636946
S 110 [ ——
0.8 Present 7.423595 11.056481 15.492388
Ref.[20] 7.4236 11.0565 15.4924
0.9 Present 6.674087 9.860423 13.808899
S 7010 [ —
1 Present 6.056555 8.895434 12.453027
Ref.[21] 6.05656 8.89543 12.453

Effect of the rigidity of the elastic foundation

To analyse the effect of elastic foundation stiffness, we ignored the effects of the magnetic field and thermal
load. The first three dimensionless natural frequencies are given and compared with previous studies in table 2
for different dimensional foundation stiffnesses and values of the nonlocal parameter ranging from 0 to 0.5. This
allowed us to conclude that increasing K,, leads to an increase in natural frequencies. This conclusion can be

quickly drawn by a simple interpretation of Figure 2, which shows the variation of the first natural frequency as
a function of the nonlocal parameter and the rigidity of the Winkler foundation. This figure also shows that
increasing the nonlocal parameter decreases the first natural frequency of the nanotube studied.

Table 2. The first three dimensionless natural frequencies of a clamped-clamped nanotube, for different
dimensionless foundation stiffness and different nonlocal parameters.

Mode
Kw 11 source 1 2 3
0 Present 22.373285 61.672822 120.903391
Ref.[20] 22.3733 61.6728 120.9034
0.1 Present 21.109034 50.983166 85.716433
Ref.[20] = s s s
0.2 Present 18.289416 36.423927 54.523961
0 Ref.[20] 18.2894 36.4239 54.5240
0.3 Present 15.353604 27.001656 38.833960
Ref.[20] = seemeeemeem s e
0.4 Present 12.904730 21.139827 29.9624261
Ref.[20] 12.9047 21.1398 29.9624
0.5 Present 10.991367 17.272969 24.332388
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S 712 —
0 Present 22.395622 61.680929 120.907527
Ref.[19] 22.3956 61.6809 120.908
0.1 Present 21.132707 50.992972 85.722266
Ref.[19] 21.1327 50.993 85.72223
0.2 Present 18.316734 36.437652 54533131
1 Ref.[19] 18.3167 36.4377 54,5331
03 Present 15.386136 27.020167 38.846833
Ref.[19] 15.3861 27.0202 38.8468
0.4 Present 12.943418 21.163466 29.979109
Ref.[19] 12.9434 21.1635 29.979109
05 Present 11.036763 17.301892 24.352928
Ref.[19] 11.0368 17.3019 24.3529
0 Present 22.595661 61.753842 120.944739
Ref.[19] 22.5957 61.7538 120.945
0.1 Present 21.344585 51.081143 85.774745
Ref.[19] 21.3446 51.0811 85.7747
0.2 Present 18.560785 36.560942 54.615587
Ref.[19] 18.5608 36.5609 54.6156
10 03 Present 15.675879 27.186199 38.962500
Ref.[19] 15.6759 27.1862 38.9625
0.4 Present 13.286537 21.375039 30.128839
Ref.[19] 13.2865 21.375 30.1288
0.5 Present 11.437226 17.560053 24537015
Ref.[19] 11.4372 17.5601 24,537
0 Present 23.464098 62.076864 121.109991
Ref.[19] 23.4641 62.0769 121.11
0.1 Present 22.261880 51.471188 86.007598
Ref.[19] 22.2619 51.4712 86.0076
50 0.2 Present 19.608741 37.103941 54.980563
Ref.[19] 19.6087 37.1039 54.9806
03 Present 16.903644 27.912174 39.472477
Ref.[19] 16.9036 27.9122 39.4725
0.4 Present 14.715028 22.291081 30.785499
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Ref.[19] 14.715 22.2911 30.7855
05 Present 13.069436 18.664283 25.339003
Ref.[19] 13.0694 18.6643 25.339
0 Present 24.506405 62.478292 121.316240
Ref.[19] 24.5064 62.4783 121.316
0.1 Present 23.357896 51.954626 86.297780
Ref.[19] 23.3579 51.9546 86.2978
0.2 Present 20.844729 37.771715 55.433405
Ref.[19] 20.8447 37.7717 55.4334
10 03 Present 18.323023 28.793913 40.100828
Ref.[19] 18.323 28.7939 40.1008
0.4 Present 16.325810 23.385728 31.587133
Ref.[19] 16.3258 23.3857 31.5871
05 Present 14.859682 19.958844 26.307130
Ref.[19] 14.8597 19.9588 26.3071
0 Present 26.468167 63.273510 121.727688
Ref.[19] 26.4682 63.2735 121.7278
0.1 Present 25.408489 52.908253 86.875237
Ref.[19] 25.408489 52.9083 86.8752
0.2 Present 23.119315 39.073040 56.328167
Ref.[19] 23.1193 39.073 56.3282
200 03 Present 20.874222 30.480968 41.328881
Ref.[19] 20.8742 30.481 41.3289
0.4 Present 19.145027 25.434077 33.132264
Ref.[19] 19.145 25.4341 33.1323
05 Present 17.911174 22.323876 28.143651
Ref.[19] 17.9112 22.3239 28.1437
0 Present 31.631691 65.601349 122.953772
Ref.[19] 31.6317 65.6013 122.954
0.1 Present 30.750468 55.671206 88.5850264
500 Ref.[19] 30.7505 55.6712 88.585
0.2 Present 28.887761 42.739940 58.930996
Ref.[19] 28.8878 42.7399 58.931
03 Present 27.124402 35.058372 44.811566
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Fig.2. Representation of the variation in the first fundamental frequency of the clamped-clamped carbon
nanotube as a function of the variations of the elastic foundation stiffness and the nonlocal parameter

Effect of the thermal load:

when H, =0 and AT =0

In table 3, we have studied the effects of the variation of the thermal load at high temperature on the natural
frequencies of the clamped-clamped nanotube without magnetic load and with or without elastic foundation for
three values of the nonlocal parameter (0, 0.5 and 1). The results obtained show that a positive temperature
variation at high temperatures decreases the natural frequencies of the nanotube. This means that high

temperatures reduce the rigidity of the nanotube.

Table 3. The first three dimensionless natural frequencies of a clamped-clamped nanotube resting on
Winkler foundation and exposed to variable thermal field at high temperature without magnetic fields (

Hp=0).
Mode

Kw AT source 1 2 3

0 0 Present 22.373285 61.672822 120.903391
Ref.[21] 22.3733 61.6728 120.903
Present 10.991367 17.272969 24.332388
Ref.[21] 10.9914 17.273 24.3324
Present 6.056555 8.895434 12.453027
Ref.[21] 6.05656 8.89543 12.453
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100 0 Present 22.373209 61.672720 120.903279
Ref.[21] 32.3730 61.6724 120.903
0.5 Present 10.990951 17.272346 24.331530
Ref.[21] 10.9897 17.2705 24.3290
1 Present 6.055701 8.894196 12.451304
Ref.[21] 6.05318 8.89054 12.4462
200 0 Present 22.373134 61.672617 120.903166
Ref.[21] 22.3727 61.6720 120.903
0.5 Present 10.990535 17.271723 24.330672
Ref.[21] 10.9881 17.268 24.3256
1 Present 6.054847 8.892957 12.449580
Ref.[21] 6.0498 8.88564 12.4394
300 0 Present 22.373058 61.672514 120.903054
Ref.[21] = —emeem s e
0.5 Present 10.990119 17.271100 24.329814
Ref.[21] = —meem s e
1 Present 6.053993 8.891719 12.447856
Ref.[21] = —memem s
10 0 0 Present 22.595661 61.753842 120.944739
Ref.[19] 22.5957 61.7538 120.945
0.5 Present 11.437226 17.560053 24.537015
Ref.[19] 11.4372 17.5601 24.537
1 Present 6.832412 9.440802 12.848264
Ref.[19] = —mmeem s s
100 0 Present 22.595586 61.753740 120.944627
0.5 Present 11.436827 17.559440 24.536164
1 Present 6.831655 9.439635 12.846593
200 0 Present 22.595511 61.753637 120.944515
0.5 Present 11.436427 17.558827 24535313
1 Present 6.830898 9.438469 12.844923
300 0 Present 22.595436 61.753535 120.944402
0.5 Present 11.436027 17.558214 24.534463
1 Present 6.830141 9.437301 12.843252
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The figure 3 shows the effect of an increase in temperature on the dynamic behaviour of the nanotube studied. It
is clear that this decreases the first natural frequency of vibration of the nanotube. The figure also shows that
this law of variation is linear. This result is in good agreement with the result of Sardar and Reza [1].

The figure 4 shows that the conclusions drawn for the first mode are valid for the other two modes of vibration.
A law that can be generalised to all the modes of vibration of the nanotube studied in this work.

11.4374

Mode 1 with p=0.5 and Kw=10 |

11.4372 1

114371

11.4368

11.4366

11.4364

first dimensionless natural frequency

11.4362

11.436 ; : = % :
0 50 100 150 200 250 300

Temperature changes in kelvin

Fig.3. First dimensionless linear frequency of clamped-clamped nanotube as a function of temperature
variations for x=05and K, =10

257

Mode 1 with Kw=0
Mode 2 with kw=0

Mode 3 with Kw=0
Mode 1 with kw=10
Mode 2 with Kw=0
Mode 3 with kw=10

201

first three dimensionless natural frequencies

0 50 100 150 200 250 300
Temperature changes in kelvin

Fig.4. First three dimensional linear frequencies of the clamped-clamped nanotube as a function of
temperature variations for 4 =0.5 with or without elastic foundation

Effect of the magnetic load

In table 4, we have studied the effect of varying the magnetic field on the natural frequencies of transverse
vibration of the clamped-clamped carbon nanotube at room temperature without or with an elastic foundation of
dimensionless regidity K,, =10 for three values of the nonlocal parameter (=0, z=05and x=1).

We find that the natural frequencies of the nanotube increase with increasing longitudinal magnetic field
intensity. We can therefore conclude that increasing the intensity of the magnetic field increases the rigidity of
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our nanotube. This result is consistent with those of other authors such as Burak E. Yapanmis and Sevki Akkoca
[2].
Table 4. The first three dimensionless natural frequencies of a clamped-clamped carbon nanotube on a
Winkler foundation ( K,, =10) subjected to the effect of a magnetic field without thermal loading for three
values of the the nonlocal parameter (=0, x=05and x=1).

Mode
Kw Hm 1] source 1 2 3
10 0 0 Present 22.595661 61.753842 120.944739
Ref.[19] 22.5957 61.7538 120.945
0.5 Present 11.437226 17.560053 24.537015
Ref.[19] 11.4372 17.5601 24537
1 Present 6.832412 9.440802 12.848264
Ref[19] = s e
1 0 Present 22.866110 62.125495 121.352918
Ref[2] = s s
0.5 Present 12.808811 19.663107 27.456435
Ref.[2] 12.8088 19.663 27.456
1 Present 0.181104 13.009122 17.920336
Ref[2] = s s e
15 0 Present 26.334949 67.097868 126.926138
Ref[2] = s e
0.5 Present 25.092562 38.504413 53.655669
Ref.[2] 25.092 38.504 53.655
1 Present 24.715258 35.927098 50.059829
Ref[2] = s s e
30 0 Present 29.559490 72.018748 132.630207
Ref[2] = s e
0.5 Present 33.592578 51.544389 71.803885
Ref.[2] 33.592 51.544 71.803
1 Present 34.278362 49.923781 69.619646
Ref[2] = s s e

In Figure 5, we show the effect of varying the nonlocal parameter on the nanotube natural frequency by plotting
the natural frequency (@) as a function of this parameter ( « ) for five magnetic field strengths. Over a range of
variation in x from 0 to 0.5, we find that increasing the nonlocal parameter decreases the first natural frequency,
but that with increasing magnetic field strength, this decreasing variation in natural frequencies can be reversed
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to give an increasing frequency evolution. The figure also shows that the increase in the magnetic field effect
increases the first natural frequency.

35 T T T T T T T T

\g

N
o

N
o

Hm=0
Hm=5
Hm=15
Hm=25
Hm=30 Kw=10

10 | | . . . . . . .
0 0.05 01 0.15 02 0.25 03 0.35 04 0.45 05

nonlocal parameter

first dimensionless natural frequency
o

Fig.5. The effect of the magnetic load Hm on the first natural frequency of the nanotube for different
values of the nonlocal parameter and for K, =10

Vibratory behaviour of the clamped-clamped carbon nanotube under the combined effects of a thermal
load and a magnetic field

In the figure 6, we have plotted the variation of the first fundamental frequency of the clamped carbon nanotube
as a function of the variation of the dimensionless magnetic field intensity and the change in temperature for a
non-local parameter x=0.5 and a dimensionless stiffness K,, =10 of the elastic foundation.

Analysis of this figure shows that an increase in the magnetic field leads to an increase in the natural frequency
and that a positive change of 300 K in temperature compared with ambient temperature leads to a slight
decrease in this frequency. We also noticed that at a fixed magnetic field, the frequency varies linearly with the
change in temperature. This result is illustrated in figure 7. The same figure we have shown through a plot that
the magnetic field can be used to keep the natural frequencies constant despite the change in temperature. this
comes down to the fact that the normal force caused by the thermal charge and that caused by the magnetic field
have opposite signs in the equation governing the movement (equation 14).

35

first dimensionless natural frequency
W
o

10

dimensionless Hm 0 ] Delta T in kelvin

Fig.6. Representation of the variation in the first fundamental frequency of the clamped-clamped carbon
nanotube as a function of the variations of the dimensionless magnetic field effect (H,, ) and the

temperature (Delta T) change for x=05 and K, =10
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Fig.7. Representation of the variation in the first fundamental frequency of the clamped-clamped carbon
nanotube as a function of the variation of thethe temperature for H,, =0 and H;, = Ny,

5. Conclusion

In this paper, we work on a clamped-clamped nanotube resting in an elastic Winkler foundation. This nanotube
is considered exposed to a magnetic field and/or a thermal loading. The aim is to study the effects of the
magnetic field, the temperature change (at high temperature), the rigidity of the foundation elastic and the
change of the nonlocal parameter, on the variations in natural frequencies. The equation of motion of our studied
nanotube was obtained by applying nonlocal elasticity and Euler-Bernoulli beam theory. The transverse motion
is assumed to be harmonic and boundary conditions of the proposed model have been introduced to find
ahomogeneous system whose determinant produces a nonlinear equation solved numerically by the Newton-
Raphson iteration method.

The results obtained in our work demonstrated an excellent level of concordance with those obtained from the
literature, confirming the reliability of our resolution process.

Based on this work, we can draw the following conclusions:

. An increase in the strength of the magnetic field leads to an increase in the natural frequencies.

. In the high-temperature range, the increase in temperature leads to a reduction in the natural
frequencies of the nanotube under study.

. The negative effect of an increase in temperature on the natural vibration frequencies of the nanotube
can be eliminated by applying a magnetic field.

) For nanotubes resting on an elastic foundation, the nonlocal effect reduces the rigidity of the material
and that of the foundation increases the rigidity of the structure.

. The nonlocal parameter can have a considerable effect on the variation of the natural frequency. It is

therefore important to use the theory of nonlocal elasticity to study the vibrations of nanotubes (nanobeams).

In summary, this work allowed us to deepen our knowledge of the behavior of nanotubes and their physical
properties. Through this modest work we wish to contribute to the enrichment of the field of nanostructure
mechanics.
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