ISSN: 1001-4055 Vol. 45 No. 1 (2024)

Orthogonal Symmetric Reverse Bi- (σ, τ) Derivations in Semiprime Rings

C. Jaya Subba Reddy¹, V.S.V.Krishna Murty²

¹Professor, Department of Mathematics, S. V.University, Tirupati- 517502, A. P., India

²Research Scholar, Department of Mathematics, S.V.University, Tirupati-517502, A.P., India

Abstract:- Suppose that D_1 and D_2 are two symmetric reverse bi- (σ,τ) -derivations of a semi prime ring R. In this paper, we establish some equivalent conditions for the orthogonality between two symmetric reverse bi- (σ,τ) -derivations D_1 , D_2 of R. We prove that D_1 and D_2 are orthogonal if and only if any one of the following conditions is satisfied (i) $D_1(u,v)$ $D_2(v,w) + D_2(u,v)D_1(v,w) = 0$ (ii) $D_1D_2 = 0$ (iii) $D_1(u,v)D_2(v,w) = 0$ $D_2(u,v)D_1(v,w)$ (iv) D_1D_2 is a bi- (σ,τ) -derivation, for all $u,v,w \in R$.

Keywords: Semiprime ring, Reverse Biderivation, Reverse Bi- (σ,τ) -derivation, Orthogonal Reverse Bi- (σ,τ) -derivation

1. Introduction

The concept of orthogonality for a pair of derivations of a semiprime ring was introduced by M. Bresar and J.Vukman [7] and they proved some equivalent conditions on derivations of semiprime rings to be orthogonal which are related to classical result of E. Posner [4]. M.N. Daif et al. [9] established some results concerning biderivations. C. Jaya Subba Reddy et al. [1,3] and M.N. Daif et al. [8] proved some results on the orthogonality of derivations, biderivations. K. Kaya et al. [5] and M.Ashraf [6] studied (σ, τ) -derivations in prime rings. The study of orthogonality of symmetric bi- (σ, τ) -derivations in semi prime rings was carried out by C.Jaya Subba Reddy et al. [2] and S.Srinivasulu et al. [10]. In the present paper, we extend the results related to symmetric bi- (σ, τ) -derivation established in [2] to symmetric reverse bi- (σ, τ) -derivations on orthogonality.

2. Preliminaries

Throughout this paper, R denotes an associative ring with centre Z(R). A ring R is said to be semiprime if $uRu = \{0\}$ implies u = 0. We say that R is 2-torsion-free if 2u = 0, $\forall u \in R$, implies u = 0. An additive mapping $d: R \to R$ is said to be a derivation (respectively, reverse derivation) on R if d(uv) = d(u)v + ud(v) (respectively, d(uv) = d(v)u + vd(u) holds $\forall u, v \in R$. Suppose that σ and τ are automorphisms of R. An additive mapping $d: R \to R$ is said to be a (σ, τ) -derivation (respectively, reverse (σ, τ) -derivation) on R if $d(uv) = d(u)\sigma(v) + \tau(u)d(v)$ (respectively, $d(uv) = d(v)\sigma(u) + \tau(v)d(u)$, $\forall u, v \in R$.

A biadditive mapping $D: RX R \to R$ is called symmetric if $D(u,v) = D(v,u), \forall u,v \in R$. A symmetric biadditive mapping $D_1: RX R \to R$ is said to be a symmetric biderivation on R if $D_1(uv,w) = uD_1(v,w) + D_1(u,w)v, \forall u,v,w \in R$. A symmetric biadditive mapping $D_1: RX R \to R$ is said to be a symmetric bi- (σ,τ) -derivation (respectively, symmetric reverse bi- (σ,τ) -derivation) on R if $D_1(uv,w) = D_1(u,w)\sigma(v) + \tau(u)D_1(v,w)$ (respectively, $D_1(uv,w) = D_1(v,w)\sigma(u) + \tau(v)D_1(u,w)$) holds $\forall u,v,w \in R$. Two symmetric reverse bi- (σ,τ) -derivations are said to be orthogonal if $D_1(u,v)RD_2(v,w) = 0 = D_2(v,w)RD_1(u,v)$, for all $u,v,w \in R$.

We assume throughout the paper that R is a 2-torsion-free semi prime ring while σ and τ are automorphisms of R and d is a reverse (σ,τ) -derivation of R such that $d\tau = \tau d$, $\sigma d = d\sigma$. We also assume two symmetric reverse bi- (σ,τ) -derivations $D_1:RX\ R \to R$ and $D_2:RX\ R \to R$ such that $D_1\tau = \tau\ D_1$, $D_2\tau = \tau\ D_2$, $\sigma\ D_1 = D_1\sigma$. $\sigma\ D_2 = D_2\sigma$.

Lemma:1 [[7], Lemma 1]

If R is a 2-torsion free semi prime ring and $u, v \in R$, then the following conditions are equivalent:

$$1.urv = 0$$
, for all $r \in R$. $2.vru = 0$, for all $r \in R$. $3.urv + vru = 0$, for all $r \in R$

If anyone of the above conditions is fulfilled, then uv = vu = 0

Lemma 2: [[3], Lemma 2]

Let R be a semiprime ring. Suppose that two bi-additive mappings $D_1: R X R \rightarrow R$ and

$$D_2$$
: $R X R \to R$ satisfies $D_1(u, v)RD_2(v, u) = 0$, for all $u, v \in R$, then $D_1(u, v)RD_2(v, w) = 0$, for all $u, v, w \in R$.

3. Main Results

Theorem 1:

Let R be a 2 torsion free semi prime ring. Then the following conditions are equivalent:

1. Two symmetric reverse bi- (σ, τ) -derivations D_1 and D_2 are orthogonal.

$$2.D_1(u,v)D_2(v,w) + D_2(u,v)D_1(v,w) = 0, \ \forall u,v,w \in R.$$

Proof: $(1) \Longrightarrow (2)$

Suppose that D_1 and D_2 are orthogonal reverse bi- (σ, τ) -derivations

Then,
$$D_1(u,v)RD_2(v,w)=0$$
 and also $D_2(u,v)RD_1(v,w)=0, \ \forall \ u,v,w\in R$

which means
$$D_1(u, v)D_2(v, w) = 0$$
 and $D_2(u, v)D_1(v, w) = 0$ (Since $1 \in R$)

and so
$$D_1(u, v)D_2(v, w) + D_2(u, v)D_1(v, w) = 0, \forall u, v, w \in R$$

$$(2) \Longrightarrow (1)$$

Suppose that
$$D_1(u, v)D_2(v, w) + D_2(u, v)D_1(v, w) = 0, \forall u, v, w \in R$$
 (3.1)

Replace w by uw in the equation (3.1)

$$D_1(u, v)D_2(v, uw) + D_2(u, v)D_1(v, uw) = 0$$

$$(D_1(u,v)D_2(v,w) + D_2(u,v)D_1(v,w))\sigma(u) + D_1(u,v)\tau(w)D_2(v,u) + D_2(u,v)\tau(w)D_1(v,u) = 0$$

Using (3.1) and the fact that τ is an automorphism, we deduce that

$$D_1(u, v)w_1D_2(v, u) + D_2(u, v)w_1D_1(v, u) = 0, \forall u, v, w_1 \in R$$

By Lemma 1, we get $D_1(u, v)RD_2(v, u) = 0$

By Lemma 2, we get $D_1(u, v)RD_2(v, w) = 0$

Therefore D_1 and D_2 are orthogonal reverse bi- (σ, τ) -derivations. Hence Proved.

Theorem 2:

Let R be a 2 torsion free semi prime ring. Then the following conditions are equivalent:

1. Two symmetric reverse bi- (σ,τ) -derivations D_1 and D_2 are orthogonal. 2. $D_1D_2=0$.

Proof:
$$(1) \Rightarrow (2)$$

Suppose that D_1 and D_2 are orthogonal symmetric reverse bi- (σ,τ) -derivations

we prove that $D_1D_2 = 0$

Since D_1, D_2 are orthogonal, we can have $D_1(u, v)RD_2(v, w) = 0$,

and so
$$D_1(u, v)$$
 $rD_2(v, w) = 0$, $\forall u, v, w, r \in R$

Therefore,
$$D_1(D_1(u, v) r D_2(v, w), m) = 0, \forall u, v, w, r, m \in R$$

$$D_{1}(rD_{2}(v,w),m) \ \sigma(D_{1}(u,v)) + \tau(rD_{2}(v,w))D_{1}(D_{1}(u,v),m) = 0, \forall u,v,w,r,m \in R$$

$$(D_1(D_2(v,w),m)\sigma(r) + \tau(D_2(v,w)D_1(r,m))\sigma\big(D_1(u,v)\big) + \tau\big(rD_2(v,w)\big)D_1(D_1(u,v),m) = 0,$$

 $\forall u, v, w, r, m \in R$

$$D_1(D_2(v, w), m)\sigma(r)\sigma(D_1(u, v)) + \tau(D_2(v, w))D_1(r, m))\sigma(D_1(u, v)) + \tau(rD_2(v, w))D_1(D_1(u, v), m) = 0$$

Using $\tau D_2 = D_2 \tau$; $\sigma D_1 = D_1 \sigma$ and σ and τ are automorphisms of R, we obtain

$$D_1(D_2(v,w),m)r_1D_1(u_1,v_1)+D_2(v_1,w_1)D_1(r,m)\ D_1(u_1,v_1)+\ r_1D_2(v_1,w_1)D_1(D_1(u,v),m)=0,$$

 $\forall u_1, v_1, w_1, r_1, u, v, w, m \in R$

 $D_1(D_2(v, w), m)r_1D_1(u_1, v_1) = 0$ (By using the condition of orthogonality of D_1D_2)

In Particular if we put $u_1 = D_2(v, w)$ in the above equation, we get

$$D_1D_2(v, w) r_1D_1(D_2(v, w), v_1) = 0, \forall v_1, r_1, v, w \in R$$

$$D_1D_2(v,w) r_1 D_1D_2(v,w) = 0,$$

$$D_1D_2(v, w) = 0$$
 (Using the Semiprimeness of R.) and so $D_1D_2 = 0$

$$(2) \Longrightarrow (1)$$

Let D_1 and D_2 be two reverse bi- (σ,τ) -derivations such that $D_1D_2=0$

we prove that D_1 and D_2 are orthogonal.

$$D_1D_2(uv, w) = D_1(D_2(uv, w), m)$$

=
$$D_1((D_2(v, w)\sigma(u) + \tau(v)D_2(u, w), m)$$

=
$$D_1(D_2(v, w)\sigma(u), m) + D_1(\tau(v)D_2(u, w), m)$$

$$= D_1(\sigma(u), m)\sigma(D_2(v, w)) + \tau(\sigma(u))D_1(D_2(v, w), m) + D_1(D_2(u, w), m)\sigma(\tau(v)) + \tau(D_2(u, w)D_1(\tau(v), m))$$

Therefore. $D_1D_2(uv, w) = D_1(\sigma(u), m)\sigma(D_2(v, w)) + \tau(\sigma(u))D_1(D_2(v, w), m) +$

$$D_1(D_2(u, w), m)\sigma(\tau(v)) + \tau(D_2(u, w))D_1(\tau(v), m)$$

$$= D_1(\sigma(u), m)\sigma(D_2(v, w)) + \tau(\sigma(u))D_1D_2(v, w) + D_1D_2(u, w)\sigma(\tau(v)) + \tau(D_2(u, w)D_1(\tau(v), m))$$

$$= D_1(\sigma(u), m)\sigma(D_2(v, w)) + \tau(D_2(u, w)D_1(\tau(v), m) \text{ (Since } D_1D_2 = 0)$$

Using $D_2\sigma = \sigma D_2$; $\tau D_2 = D_2\tau$; and σ and τ are automorphisms of R, we get

=
$$D_1(u_1, m)D_2(v_1, w_1) + D_2(u_1, w_1)D_1(v_1, m)$$

Taking
$$u_1 = u$$
, $v_1 = v$, $m = w_1 = w$, we get $D_1(u, w) D_2(v, w) + D_2(u, w) D_1(v, w) = 0$

$$D_1(u, w) D_2(w, v) + D_2(u, w) D_1(w, v) = 0, \forall u, v, w \in R$$
 (Since $D_1 D_2$ are symmetric)

By Theorem 1, we can conclude that D_1 and D_2 are orthogonal reverse bi- (σ, τ) -derivations.

Theorem 3:

Let R be a 2 torsion free semiprime ring. Two symmetric reverse bi- (σ, τ) -derivations D_1 and D_2 are orthogonal if and only if $D_1(u, v)D_2(v, w) = D_2(u, v)D_1(v, w) = 0$, for all $u, v, w \in R$.

Proof: $(1) \Longrightarrow (2)$

Case (i):

 D_1 and D_2 are orthogonal reverse bi- (σ,τ) -derivations $\Leftrightarrow D_1(u,v)D_2(v,w)=0$ Let D_1 and D_2 be orthogonal.

Then we prove $D_1(u, v)RD_2(v, w) = 0 = D_2(v, w)RD_1(u, v), \forall u, v, w \in R$.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055 Vol. 45 No. 1 (2024)

Since $1 \in R$, we have $D_1(u, v)D_2(v, w) = 0 = D_2(v, w)D_1(u, v), \forall u, v, w \in R$ (3.2)

and hence we can conclude that $D_1(u, v)D_2(v, w) = 0$

Conversely, suppose that $D_1(u, v)D_2(v, w) = 0, \ \forall \ u, v, w \in R.$ (3.3)

Replacing w = uw in the equation (3.3), we get $D_1(u, v)D_2(v, w)\sigma(u) + D_1(u, v)\tau(w)D_2(v, u) = 0$,

 $\forall u, v, w \in R$

By using (3.3) in the above equation, we obtain,

 $D_1(u,v)\,\tau(w)D_2(v,u)=0,\,\forall\,u,v,w\in R.$

 $D_1(u, v) w_1 D_2(v, u) = 0, \forall u, v, w_1 \in R.$ (Since σ is an automorphism of R)

 $D_1(u,v)RD_2(v,u) = 0$

 $D_1(u, v)RD_2(v, u) = 0$ (By Lemma 2)

Hence, D_1 and D_2 are orthogonal reverse bi- (σ,τ) -derivations.

Case (ii): D_1 and D_2 are orthogonal reverse bi- (σ,τ) -derivations $\Leftrightarrow D_2(u,v)D_1(v,w)=0$

Let D_1 and D_2 be orthogonal, then $D_1(u, v)RD_2(v, w) = 0 = D_2(v, w)RD_1(u, v)$, $\forall u, v, w \in R$.

Since $1 \in R$, we have $D_1(u, v)D_2(v, w) = 0 = D_2(v, w)D_1(u, v), \forall u, v, w \in R$.

By the symmetricity of D_1 and D_2 , we can have

 $D_2(v, w) D_1(u, v) = 0$ implies $D_2(w, v)D_1(v, u) = 0$

which is same as $D_2(u, v)D_1(v, w) = 0$, $\forall u, v, w \in R$. Hence, proved.

Conversely, Suppose that $D_2(u, v)D_1(v, w) = 0, \ \forall u, v, w \in R.$ (3.4)

Replacing w = uw in the above equation (3.4),

 $D_2(u, v)D_1(v, w)\sigma(u) + D_2(u, v)\tau(w)D_1(v, u) = 0$

By using the equation (3.4) in the above equation and τ is an automorphism of R, we obtain

 $D_2(u, v)RD_1(v, u) = 0$

 $D_2(u, v)RD_1(v, w) = 0, \forall u, v, w \in R \text{ (By Lemma 2)}$

Hence, D_1 and D_2 are orthogonal reverse bi- (σ,τ) -derivation.

Theorem 4:

Let R be a 2 torsion free semiprime ring. Two symmetric reverse bi- (σ, τ) -derivations D_1 and D_2 are orthogonal if and only if D_1D_2 is a bi- (σ, τ) -derivation.

Proof: D_1 and D_2 are orthogonal $\Leftrightarrow D_1D_2$ is a bi- (σ, τ) -derivation

Suppose that D_1 and D_2 are orthogonal reverse bi- (σ, τ) -derivations.

By the definition of orthogonality of D_1 and D_2 ,

we can write
$$D_1(u, v)RD_2(v, w) = 0 = D_2(u, v)RD_1(v, w), \ \forall u, v, w \in R$$
 (3.5)

We have to prove that D_1D_2 is a bi- (σ, τ) -derivation

Using the same process we followed in Theorem 2, we obtain

$$D_{1}D_{2}(uv,w) = D_{1}(\sigma(u),m)\sigma(D_{2}(v,w)) + \tau(\sigma(u))D_{1}(D_{2}(v,w),m) + D_{1}(D_{2}(u,w),m)\sigma(\tau(v)) + \tau(D_{2}(u,w))D_{1}(\tau(v),m)$$

Using $\sigma D_2 = D_2 \sigma$; $\tau D_2 = D_2 \tau$ and σ and τ are automorphisms of R, we obtain

ISSN: 1001-4055 Vol. 45 No. 1 (2024)

$$= D_1(u_1, m)D_2(v_1, w_1) + \tau(u_1)D_1(D_2(v, w), m) + D_1(D_2(u, w), m)\sigma(v_1) + D_2(u_1, w_1)D_1(v_1, m),$$

$$\forall u, v, w, u_1, v_1, w_1, m \in R$$

$$=D_{1}(u_{1},m)D_{2}(v_{1},w_{1})+\tau(u_{1})D_{1}D_{2}\left(v,w\right)+D_{1}D_{2}(u,w)\sigma(v_{1})+D_{2}\left(u_{1},w_{1}\right)D_{1}(v_{1},m),$$

$$\forall\,u,v,w,u_{1},v_{1},w_{1},m\in R$$

Replacing $m = w_1$ in the above equation,

$$=D_1(u_1, w_1)D_2(v_1, w_1) + \tau(u_1)D_1D_2(v, w) + D_1D_2(u, w)\sigma(v_1) + D_2(u_1, w_1)D_1(v_1, w_1)$$

Using the orthogonality of D_1 and D_2 , the above equation becomes

$$D_1D_2(uv, w) = \tau(u_1)D_1D_2(v, w) + D_1D_2(u, w)\sigma(v_1), \forall u, v, w, u_1, v_1 \in R$$

Taking $u_1 = u$ and $v_1 = v$, the above equation becomes

$$D_1D_2(uv, w) = \tau(u)D_1D_2(v, w) + D_1D_2(u, w)\sigma(v)$$
 and hence D_1D_2 is a bi- (σ, τ) -derivation.

Conversely, Suppose that D_1D_2 is a bi- (σ, τ) -derivation.

Since D_1D_2 is a bi- (σ, τ) -derivation, we can have

$$D_1 D_2(uv, w) = D_1 D_2(u, w) \sigma(v) + \tau(u) D_1 D_2(v, w)$$
(3.6)

By the earlier discussion, we can write

$$D_1D_2(uv,w) = D_1(u_1,w_1)D_2(v_1,w_1) + \tau(u_1)D_1D_2(v,w) + D_1D_2(u,w)\sigma(v_1) + D_2(u_1,w_1)D_1(v_1,w_1),$$

 $\forall\; u,v,w,u_1,v_1,w_1\in R$

In particular, taking $u_1 = u$, $v_1 = v$, $w_1 = w$, we get

$$D_1 D_2(uv, w) = D_1(u, w) D_2(v, w) + \tau(u) D_1 D_2(v, w) + D_1 D_2(u, w) \sigma(v) + D_2(u, w) D_1(v, w),$$

$$\forall u, v, w \in R$$
(3.7)

Combining the equations (3.6) and (3.7), we obtain

$$D_1D_2(u,w)\sigma(v) + \tau(u)D_1D_2(v,w) = D_1(u,w)D_2(v,w) + \tau(u)D_1D_2(v,w) + D_1D_2(u,w)\sigma(v) + D_2(u,w)D_1(v,w)$$

$$0 = D_1(u, w)D_2(v, w) + D_2(u, w)D_1(v, w)$$

Hence, we can conclude that D_1 , D_2 are orthogonal.

References:

- [1] B. Ramoorthy Reddy and C. Jaya Subba Reddy, "Commutativity of Prime Ring with Orthogonal Symmetric Biderivations," *Mathematical Journal of Interdisciplinary Sciences*, 7(2) (2019), 117-120.
- [2] C. Jaya Subba Reddy, and B. Ramoorthy Reddy, "Orthogonal Symmetric Bi- (σ, τ) Derivations in Semiprime Rings", *International Journal of Algebra*, 10(9) (2016),423–428.
- [3] C. Jaya Subba Reddy and B. Ramoorthy Reddy,"Orthogonal Symmetric Biderivations in Semiprime Rings", *International Journal of Mathematics and Satistics Studies*, 4(1), 2016, 22-29.
- [4] E.C.Posner, Derivations in prime rings, *Proc.Amer.Mth.Soc.* 8(1957), 1093-1100.
- [5] K. Kaya, E. Guven, and M. Soyturk, "On (σ, τ) derivations of prime rings," *The Pure and Applied Mathematics*, 13(3) (2006) 189–195.
- [6] M. Ashraf, "On (σ, τ) derivations in prime rings," *Archivum Mathematicum*, 38(4) 2002, 259–264.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055 Vol. 45 No. 1 (2024)

- [7] M. Bresar and J. Vukman, "Orthogonal derivations and an extension of a theorem of Posner", *Radovi Mat*, 5 (1989), 237, vol. 246, 1989.
- [8] M. N. Daif, M. T. El-Sayiad, and C. Haetinger, "Orthogonal Derivations and Biderivations", *JMI International Journal of Mathematical Sciences*, 1(1) (2010) 23–34.
- [9] M. N. Daif, M. S. T. El-Sayiad, and C. Haetinger, "Reverse, Jordan and left biderivations" *Oriental Journal Of Mathematics*, 2(2) (2010), 65–81.
- [10] S.Srinivasulu and K.Suvarna, "Orthogonality of (σ, τ) derivations and bi- (σ, τ) –derivations in semiprime rings", International Journal of Mathematical Archive, 7(3) (2016), 131-135.