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Abstract: - Plant diseases caused by viruses pose a significant threat to agricultural productivity, affecting a wide 

range of plant species. With the increasing incidence of these diseases, the demand for rapid and accurate detection  

methods has grown. Image processing techniques have emerged as a potent tool for spotting disease symptoms in 

plants in response to this demand. This review paper focuses on the application of image processing techniques to 

precisely identify viruses in plant leaves, offering automated detection and texture value calculations. The paper 

presents accurate selection of research papers published over the past five years, chosen based on their titles, 

abstracts, and conclusions. These papers have been meticulously analyzed and included in this comprehensive 

review. The paper covers a number of topics related to plant disease detection, such as data sources, feature 

extraction strategies, pre-processing approaches, data enrichment strategies, and the use of various models for 

disease detection and classification. Additionally, it explores techniques for enhancing image quality and 

addressing overfitting issues, ultimately aiming to increase the precision of illness identification. Researchers can 

learn more about the possibilities of data-driven methods in the field of plant disease identification from this work, 

which is a great resource. By enhancing system performance and accuracy, the discussed techniques offer 

innovative solutions for addressing the impact of organisms on plant yields. Researchers and professionals in the 

agricultural domain will find this review paper a valuable reference in their pursuit of advanced methods for 

classifying and detecting plant diseases. 

Keywords: Plant disease identification, image processing technique, feature extraction, Deep learning, Machine 

learning. 

 
1. Introduction 

Without the use of technology, farmers attempted to diagnose plant illnesses, which frequently resulted in a waste 

of time and money. Consequently, this had a detrimental impact on the country's economy. In response to this 

problem, we have turned to technology, specifically image processing, to identify and diagnose plant diseases. 

This technique involves capturing images of diseased plants and analyzing these images to identify the specific 

diseases affecting them. It provides a workable way to identify and diagnose diseases early on. Plant diseases can 

manifest in various ways, affecting different sections of the plant, such as the stems, roots, and leaves. Weather 

fluctuations can also contribute to the occurrence of diseases, further compromising crop health. This essay aims 

to explore the methods employed for the treatment of various plant diseases, with subsequent sections discussing 

different scenarios of disease identification. Plants can fall victim to diseases due to a combination of factors, 

including pathogenic microbes like fungi, bacteria, and parasites, soil pH, temperature fluctuations, moisture 

levels, humidity variations, and other environmental factors. These illnesses may significantly affect the growth 

of plants, vitality, and structural integrity, ultimately affecting the livelihoods of those who depend on these crops. 

Despite the challenges, many promising techniques are being developed to tackle this issue. One such 

advancement is deep learning, which has revolutionized agriculture by offering innovative approaches for plant 

disease identification. Using machine learning techniques, which are essential for automating the diagnosis of 

plant diseases, is another interesting approach. Moreover, efficient analysis and diagnosis of plant diseases is being 

achieved by the application of image processing techniques. These technologies provide a glimmer of hope for 

maintaining crop health and food security by using photos of plant leaves to accurately identify and diagnose plant 

illnesses [3]. 
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A. Deep Learning Developments for Plant Disease Identification in Agriculture 

Deep learning (DL), as a subset of machine learning (ML), has proven to be more responsive and effective. Unlike 

ML, where feature extraction and classification are separate steps, DL combines these tasks by employing multiple 

layers of processing. DL networks excel at recognizing complex patterns within the data, making them more 

suitable for handling unstructured data. Within the field of agriculture, DL methods including convolutional neural 

network (CNNs) and recurrent neural networks (RNNs) have gained prominence for identifying plant diseases 

from images of leaves. This paper reviews the latest research in this domain, including works by Turkoglu, who 

explored ResNet [36], Too, who delved into DenseNets [37], and Picon, who worked on ResNet-50 [38]. Other 

contributions, like Arsenovic's PlantDiseaseNet [39], X's DCNN [40], Pandian's Conv-5 DCNN [5], Jadhav's 

AlexNet [18], Sun's DM deep learning optimizer [24], and Akshai's DenseNet [22], all leveraged deep learning 

(DL) methods and convolutional neural networks (CNNs). One key advantage of CNNs is their minimal 

preprocessing requirements, as they excel in extracting features through the convolutional layer. This paper 

explores the pivotal role of deep learning in advancing agriculture's capacity, The figure1 below provides an 

overview of key aspects of DL in agriculture for plant disease identification." 

 
 

 

Figure 1: Overview of Deep Learning in Agriculture for Disease Identification. 

B. Using Machine Learning Methods to Identify Plant Diseases 

Machine learning (ML) has become a potent instrument, surpassing image processing, thanks to its use of loss 

functions. Loss functions enable ML models to make predictions about future behavior. When machine learning 

operates without explicit supervision, it excels in forecasting outcomes. ML-trained models become increasingly 

efficient over time as they accumulate experiences. The versatility of ML finds applications across diverse 

industries, from agriculture and from autonomous vehicles to digital assistants deep learning more responsive 

combines feature extraction and classification learns complex data patterns automatic feature development RNNs 

and CNNs such as Alexa and Siri, medical self-diagnosis, voice recognition, product recommendations, and more. 

Regarding the field of early diagnosis and categorization of plant diseases, ML methods open doors to innovative 

algorithms. This study delves into the most recent research in this domain and reveals the widespread adoption of 

ML techniques. For instance, Sharma's work on the CNN model [26] and Ghosh's investigation into CNN + kNN 

[9] underscore the utility of ML in plant disease detection. The accompanying figure 2 encapsulates the key features 

of ML demonstrating its function in the agriculture industry for the identification and categorization of diseases. 
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Figure 2: Overview of Machine Learning for Disease Classification and Detection in Agriculture. 

C. Utilizing Image Processing Methods to Identify Plant Diseases 

Image processing serves as a crucial tool for enhancing image quality and extracting essential data. This versatile 

technique finds applications in various fields, including medicine and agriculture, where it helps with tasks like 

pattern recognition, remote sensing, and color processing. The deployment of efficient and reliable image 

processing methods is instrumental in identifying diseases from plant leaf images. Image processing techniques 

encompass several key steps, including image capture, segmentation, classification, feature extraction, and image 

pre-processing. In this paper, we examine studies that use image processing methods to identify plant diseases. 

Notably, studies such as those by Malathy et al. [10] and Kumari et al. [41] have demonstrated impressive 

classification accuracy of up to 97% when diagnosing plant diseases, surpassing other approaches. The 

accompanying block figure 3 illustrates the multifaceted nature of overview of ML in Agriculture for disease 

detection and classification ML loss function models without explicit supervision improved over time with 

experience versatile and applicable in various industries applications in agriculture for disease detection and 

classification image processing in various industries, with a focus on disease detection in plant leaves and the 

critical steps involved in this process. 

 

 
 

 

 
 

Figure 3: Overview of Image Processing Methods for Plant Leaf Disease Identification. 
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The introduction is the first of the six components that make up this essay, and the other sections are organized as 

follows. In the introduction section, you should provide the background information and context for your research 

and second is literature review the literature review, as discussed earlier, involves summarizing and analyzing 

existing research related to your topic. Emphasize important studies; the third portion is devoted to research 

methodology. Describe the strategies and tactics you employed to carry out your research in this area. Comparative 

Analysis is the fourth section. Within the section on comparative analysis, you typically compare and contrast 

different aspects of your research and section fifth is Result Analysis Here, present and analyze the results of your 

research. Use tables, graphs, and statistics to illustrate your findings and last section is conclusion and future scope 

The conclusion section should summarize the key findings of your study and their implications and in the future 

scope section, suggest directions for further research or extensions of your study. 

2. Methodology 

A methodology section in a review article on image processing-based leaf disease detection techniques would 

typically involve summarizing the different methods used. This section elucidates the strategies and criteria 

adopted for the selection of pertinent articles for this review. 

2.1 Preparation Stage: - 

The research process involved gathering articles from journals and conferences published between 2019 and 2023. 

The primary mode of collection was based on keyword searches in reputable databases like Google Scholar, 

SCOPUS Indexed Journal, and IEEE Xplore. From the aforementioned keywords, a total of [55] articles were 

initially retrieved. These underwent a screening process to narrow down relevant ones. It is display in table 1 

 

 
Step Description 

Step1 Research period: 2019-2023 

Step2 Data sources: IEEE Xplore, SCOPUS, Google Scholar 

Step3 Keywords: [List of Keywords] 

Step4 Initial Articles Retrieved: [55] 

Step5 Screening Process 

Step6 Relevant Articles: [45] 

 

Table 1: Data Collection and Screening Process Overview. 

2.2 Implementation Stage 

The conducted phase involves a comprehensive review and synthesis of the selection standards for assessing 

current models, which include DL, image processing, and ML, particularly CNNs, in their effectiveness for 

detecting diseases in various crops and plants, utilizing diverse datasets. This flowchart is depicted through figure 

4. A flowchart outlines the research methodology employed for this study as follows: 

Start 

Find relevant papers: Conduct keyword searches on IEEE Xplore, SCOPUS indexed Journals, and Google 

Scholar to identify pertinent research papers. 

Filter for relevance: Assess the identified papers based on their titles, abstracts, conclusions, and full texts 

to determine their relevance to the research needs. 

Is the paper relevant? 

• Yes: Proceed to the next steps. 

• No: End. 
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Identify techniques: Examine the detection and classification techniques utilized in the selected papers. 

Analyze outcomes: Investigate the performance metrics and results achieved by these models. 

Summarize findings: Write a synopsis and consolidation of the most important conclusions and revelations 

from the literature review. 

Organize reviewed literature: Arrange and categorize the literature to create a structured review. 

Stop 

An overview of the use of ML for disease classification and detection in agriculture. The full research process 

used in this study to assess disease detection algorithms in crop and plant datasets is represented by this flowchart. 

 

 
Figure 4: Crop and Plant Disease Detection Model Evaluation Flowchart. 
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2.3. Literature Search and Selection Process 

An initial extraction using the above keywords yielded 45 articles focusing on plant disease detection and 

categorization. These five-year (2019–2023) publications were gathered from IEEE Xplore, SCOPUS Indexed 

Journal, and Google Scholar. The sifting process was tripartite. Firstly, based on the titles, the number was refined 

to 50 articles. Subsequent scrutiny of abstracts and conclusions further reduced the count. A thorough perusal of 

the full text of these papers finally left us with 42 pertinent articles. The distribution of these articles over the years 

(2019-2023) can be observed in figures 5 and 6. The goal was to craft a comprehensive systematic review based 

on these findings. 

 

Figure 5: Shows the criteria for inclusion and exclusion that were applied to this study. 

 

 

 

 
 

 

 

 

 

Figure 6: Displays the annual number of papers from 2019 to 2022. 
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3. Literature review 

In this comprehensive literature review, we delve into various critical aspects of plant disease detection using image 

data. We begin by examining the diverse sources researchers have tapped into for collecting plant image data, 

shedding light on the breadth of data acquisition in this field. Next, we investigate the pre- processing methods 

used to improve the picture data's quality, ensuring it is optimal for further analysis. Data augmentation techniques 

are then discussed, providing insights into how researchers expand their datasets to improve model performance. 

Feature extraction methods take center stage, where we investigate the approaches used to extract essential 

information from plant images. The review proceeds by concentrating on the models used to diagnose and classify 

plant diseases, emphasizing the critical functions of DL and ML. Image quality improvement techniques are 

explored, offering solutions for refining the visual data. Strategies for reducing overfitting in plant disease detection 

models are discussed, addressing a common challenge in this field. We then delve into the specific plant species 

and disease classes evaluated in the studies, showcasing the diversity of plant-related research. Finally, we assess 

the crucial aspect of accuracy in plant disease identification, summarizing the core findings and contributions of 

the literature. This comprehensive review provides valuable insights into the multifaceted landscape of plant disease 

detection using image data. After a thorough analysis of multiple research papers, we have structured this literature 

review into distinct section as depicted in figure 7. 

 

 
 

Figure 7: Comprehensive Framework for Plant Disease Detection Pipeline. 
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1. Data Acquisition Sources in Plant Image Data Collection 

The initial stage in identifying and classifying leaf diseases involves obtaining data in the form of images of plant 

leaves. This section discusses the various sources from which researchers collect plant image data. It covers 

datasets such as Kaggle's Plant Village, real field environments, publicly available datasets, specific plant species 

data, hyperspectral UAV images, and other unique sources. These sources serve as the foundation for plant disease 

detection studies, influencing the quality and diversity of the data. The sources from which data has been obtained 

for the literature are visualized in Figure 8, This chart provides a breakdown of the various origins of data used in 

the studies." 

In the study by S. Phani P, et al. [1], The "Plant Village dataset," which provides a collection of 4,062 photos of 

grape leaves displaying signs connected to various ailments such as Black Rot, Esca measles, Leaf spot, and 

healthy states, was used to detect grape leaf diseases. X., Zhang et al. [2] underscores the substantial impact of 

plant diseases on agricultural production and the critical need for early detection to mitigate this impact. The 

research predominantly relies on the 'Plant Village' dataset, sourced from Kaggle, with a particular focus on potato 

leaves. This dataset provided a comprehensive collection of images for studying various plant diseases. Mahum 

et al. [4] utilized the "The Plant Village" dataset in combination with manually collected data to gather relevant 

images of potato leaves, aiming to create a comprehensive dataset for disease detection. Pandian et al. [5] A set of 

about 55,448 photos showing both healthy and unhealthy leaves from different plant types were acquired. These 

pictures are from a dataset that was made available to the public. Vallabhajosyula et al. [6] We collected RGB 

photos of fourteen different crop varieties and found 38 different kinds of leaf damage. These images were sourced from 

the PlantVillage dataset, a readily available resource accessible through Kaggle. Ashwinkumar et al. [7] Their 

plant image data came from PlantVillage, an open-source dataset that was obtained via a download from Kaggle. 

This dataset included 38 classes of damaged leaves and RGB photos of 14 different crop species. A sizable dataset 

consisting of 1500 potato leaf photos and 5932 rice leaf images was gathered by Sharma et al. [8] from reliable 

agricultural databases. Their deep learning model was trained and tested using these sources as a basis. Ghosh, S 

et al. [9] three different datasets—LeafSnap, Flavia, and MalayaKew—to perform their research, highlighting the 

value of a variety of trustworthy sources when gathering plant image data. Chelleapandi et al. 

[14] made use of the 54,306 photos in the Plant Village Dataset, which depicts 14 plant species and 38 disease 

types. The Git-Hub repository of SP Mohanty provided the dataset. jain et al. [17] They used the Kaggle-hosted 

new plant diseases dataset to source their image data. The chosen photos show three distinct crops, rice, grapes, 

and maize, illustrating the wide range of plants examined for disease detection. In Jadhav et al.'s [18] research, 

picture data connected to soybeans from several soybean farms in Kolhapur district, Maharashtra, India, served as 

the main source of data for gathering information about plants. This demonstrates how actual environmental data 

collection may be used to produce a dataset that nearly mimics the circumstances of soybean farms in the Kolhapur 

area. Chowdhury et al. [19] mainly used the PlantVillage dataset, which gave them access to about 18,100 photos 

of tomato leaves, for their research. The dataset included a thorough set of ten classes, nine of which represented 

different types of damaged tomato leaves and one representing healthy leaves. In their study, Lijo, J. et al. [20] 

gathered a sizable dataset of 10,000 photos showing both healthy and sick leaves. The photographs were taken 

from the Plant Village collection, which included a wide range of plant species, including tomato, pepper, potato, 

mango, strawberry, and grape. Their research benefited greatly from this varied dataset, which included 

information on a variety of bacterial and fungal infections. Sun et al. [24] gathered their information from the 

publicly available PlantVillage dataset. For their investigation, this dataset was an invaluable source of plant photos. 

Eighty percent of the data were put aside for training and twenty percent were set aside for testing the suggested 

model. Sujatha et al. [16] collected their data from citrus leaves in a real environment at a citrus research center in 

Sargodha City, using DSLR cameras with a 72-dpi resolution, under expert guidance. This source of data is 

valuable for the study. In the study conducted by Abbas et al. [21], the primary source of data was the open-source 

PlantVillage dataset. This dataset provided them with both healthy and diseased tomato leaf images, offering a 

comprehensive dataset to train and test their models. Akshai et al. [22] relied on the PlantVillage dataset as their 

primary source of data for their research. From this dataset, they acquired a total of 4060 grape leaf images, 

encompassing both healthy specimens and those afflicted with various diseases. Umit 
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Atila et al. [23] utilized the PlantVillage dataset for their research, a comprehensive resource containing 55,448 

original images from 14 different plant species, both healthy and diseased. Wang et al. [25] utilized the 

PlantVillage dataset as their primary source of data. This dataset comprises 3000 plant leaf images and is 

distinguished by its inclusion of 15 subcategories, encompassing diverse plant species and various disease severity 

levels. Such comprehensive datasets are pivotal in enhancing the robustness of disease detection models. Sharma, 

P et al. [26] sourced their image data from various places, including the Plant Village database, the internet, and 

local farms. In total, they collected 17,929 images, with a specific focus on tomato plants and 10 disease classes. 

Karthik R et al. [27] utilized the Plant Village Dataset for their research. This dataset contains images representing 

three tomato leaf diseases. Dengshan Li et al. [28] collected a dataset for their research, focusing on identifying 

rice plant diseases and pests. This dataset was gathered from provinces in China between June and August 2018. 

It encompassed images captured using mobile phones and a specific Sony WIFI-controlled camera, as well as 

videos recorded with an iPhone7, with the primary goal of addressing crop-related issues. The source of plant 

image data used in this research by Nithish, E.K et al. [30] is not explicitly mentioned in the provided paragraph. 

The study aimed to enhance the dataset for detecting diseases in tomato leaves. Chen, J et al. [31] obtained their 

dataset from Xiamen, China's Fujian Institute of Subtropical Botany. This large dataset (about 1000 photos) 

showed the many illnesses that affected the leaves of maize and rice. The photos, which were taken in actual 

environments, showed the leaves in various lighting scenarios over a background of crowded fields. In Pham, T.N, 

et.ai.'s research [33], Approximately 450 photos of mango leaves were captured with a 3096 × 3096 resolution 

camera in Giang Province, Vietnam. Images of both healthy and diseased mango leaves were included in this 

dataset. Marzougui, F et.ai. [34] collected 500 photos in total, 250 of which showed healthy leaves and the 

remaining 250 of which showed damaged ones. The data was obtained by the researchers directly from genuine 

situations. The Samsung Intelligent LCD camera was used to take the pictures. Selvam, L et.ai. [35] gathered over 

1085 photos of ladyfinger leaves, including those that were disease-free, ill from overuse of fertilizer, and healthy 

leaves. These photos were taken with an 8 MP Samsung A7 smartphone camera, straight from fields in the 

Tiruvannamalai district. M, Turkoglu et al. [36] collected information from actual field settings, concentrating on 

a variety of species such as cherry, walnut, apricot, and peach. In their thorough investigation, Too, E.C et al. [37] 

categorized and identified plant illnesses in a variety of plant species using the well-known PlantVillage dataset. 

In the research conducted by Picon, A. et al. [38], To comprehend and recognize certain plant diseases, a real- 

world dataset focused on wheat plants was used. The study conducted by Arsenovic, M. et al. [39] used real-world 

datasets that included photos of different plants taken in an agricultural field setting. The study conducted by X., 

Zhang et al. [40] using hyperspectral UAV photos and real-world datasets to detect yellow rust in wheat plants. 

The study conducted by Al Haque et al. [42] gathered a thorough dataset of ten thousand guava photos taken with 

a Nikon D7200 DSLR camera in a variety of settings. These photos showed four different conditions: healthy 

guava, fruit rot, anthracnose, and fruit canker. The information came from actual settings as well as, to some 

degree, the internet. M. Francis et al. [43], Pre-processing involved cropping and downsizing the photos to 64 x 

64- pixel proportions. These methods set up the pictures for examination. In this study by Sahithya, V. et al. [44], 

Images of lady fingers were taken in a real-world setting with a digital camera with a dimension of 1584 x 3456. 
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Figure 8: Distribution of Data Acquisition Sources. 

 

 
2. Pre-Processing Techniques for Plant Image Data 

To prepare the image data for subsequent processing, several pre-processing techniques were applied. 

Technologies for pre-processing are crucial for getting raw picture data ready for analysis. Researchers employ 

methods like non-linear filtering, image resizing, enhancement, Gaussian filtering, image shearing, zooming, 

flipping, and more to enhance image quality, reduce noise, and ensure data cleanliness. Figure 9, illustrates the 

utilization of various pre-processing techniques in the analyzed studies. Each horizontal bar represents a specific 

pre-processing method employed in the research. The bars are color-coded in a calming sky blue. The length of 

each bar corresponds to the number of studies that incorporated the respective technique. Notably, the y-axis is 

inverted, placing the most frequently used technique at the top for easy reference. This visual representation 

provides a clear overview of the prevalence of different pre-processing techniques within the analyzed studies, 

aiding in the understanding of the techniques' adoption in this research context." 

When preprocessing is underway, Ashwinkumar et al. [7] employed non-linear filtering techniques, specifically 

bilateral filters, to enhance image quality by reducing noise in the acquired images. The image data was pre- 

processed by Malathy et al. [10] using methods for restoring the image and scaling. These processes aim to reduce 

image noise and enhance the sharpness, ensuring better quality images are available for the subsequent stages of 

their research. Wassan et al. [11] gathered historical weather data for their study. The data, which covered the 

months of January 2015 through February 2019, was gathered from several US weather stations. While this data 

is primarily weather-related, it is crucial for understanding the impact of frost events on plants. Chouhan et al.'s 

study [13], pre-processing of image data was a key focus. They improved the quality of the image data by using 

a variety of procedures like scaling, restoration, and image enhancement, readying it for further study. In order to 

guarantee that the data is clean and prepared for feature extraction and modeling, certain pre-processing procedures 

are essential. Chelleapandi et al. [14] involved rigorous pre-processing procedures, including image shearing, 

zooming, flipping, and brightness adjustment, conducted via the Image Data Generator. These techniques 
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enhanced the quality and diversity of the image dataset, preparing it for deep learning analysis. In their research, 

Jain et al. [17] employed a 3 × 3 Gaussian filter during the pre-processing phase. This method effectively 

eliminates noise from the images, ensuring that subsequent analysis is based on clear and distinct image features. 

The pre-processing techniques Jadhav et al.'s [18] required resizing the pictures to fit into two distinct, specially 

designed proportions for GoogleNet and AlexNet. In particular, 550 photos of soybean leaf samples were 

processed to dimensions of 224 × 224 × 3 for GoogleNet, and 649 photographs of soybeans were downsized to 

227 × 227 × 3 for AlexNet. These dimensions highlight how crucial it is to prepare images specifically for a given 

deep learning model. Chowdhury et al. [19] Pre-processing methods used in this investigation included 

normalization and scaling. For EfficientNet and U-net segmentation algorithms, the images were enlarged to 224 

× 224 and 256 × 256 in dimensions, respectively. To improve data consistency and quality, z-score statistics were 

also used to standardize the picture data. Lijo, J. et al. [20] The obtained photos were scaled to a standard dimension 

of 256 × 256 pixels during the pre-processing phase. In order to guarantee consistency and compatibility in further 

processing and analysis, this step is essential. Chen, J et al. [31] To streamline the dataset, a pre-processing step was 

undertaken to standardize the shorter sides of the images, ensuring uniformity in image size. Pham, T.N, et.ai. [33] 

The obtained images of mango leaves were downscaled to a more reasonable resolution during the preprocessing stage. 

Furthermore, pixel intensities were adjusted using contrast enhancement techniques, which raised the overall 

quality of the images for further study. Kumari, C.U. et al. [41] involved converting plant images to grayscale and 

segmenting clusters, particularly focusing on the leaf segments affected by diseases. Al Haque et al. [42] Pre-

processing techniques were employed to prepare the collected guava images for analysis. In this study by Sahithya, 

V. et al. [44] Pre-processing involved resizing the images to a consistent standard size. In the research by M. R. 

Howlader et al. [45], Python code was utilized in the pre-processing stage to resize every image collected to a 

uniform size of 256 by 256 pixels. 

 

 

 
 

Figure 9: Pre-Processing Techniques Used in Plant Image Data. 
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3. Data Augmentation Techniques for Expanding Datasets 

To overcome limited data challenges, researchers use data augmentation techniques to increase dataset size. 

Techniques include neural style transfer, adjustments to image position and color, GANs, PCA, scaling, rotation, 

flipping, SMOTE, and more, contributing to dataset diversity and mitigating class imbalances. This section 

explores different methods for increasing the number of images in a dataset, a practice known as data 

augmentation. Researchers have employed various techniques to expand their datasets, and this section provides 

an overview of these methods. To illustrate how various data augmentation strategies have been applied in the 

papers we've analyzed, we've produced a pie chart. Each Augmentation method is represented as a slice within 

the pie chart, and the size of each slice indicates how many studies have utilized that specific technique. The chart, 

complete with a helpful legend, is labeled as Figure 10, It provides a straightforward way to comprehend the 

distribution of data enhancement techniques within the studies we've examined. This visual representation 

simplifies the process of grasping how these techniques have been applied across the various studies. 

In this research, by X., Zhang et al. [2] used a sophisticated convolutional neural network (CNN) model designed 

specifically for the effective detection of leaf diseases. They addressed the challenge of limited data by utilizing 

data augmentation techniques. The dataset that contained 1700 photos of potato leaves was used to train the model.  

Pandian et al. [5] Various image augmentation techniques were applied to enhance the dataset. These methods 

included principal component analysis, deep convolutional generative adversarial networks, neural style transfer, 

and color and position modifications for images. These methods were employed to expand the initial 55,448 

images into a more extensive dataset containing 234,008 images. Vallabhajosyula et al. [6] to bolster the dataset's 

size and mitigate overfitting, we employed four distinct data augmentation methods. These comprised methods 

for picture augmentation, translation, rotation, and scaling. Chelleapandi et al. [14] The ImageDataGenerator 

program was essential to data augmentation since it allowed for a variety of modifications, including flipping, 

shearing, zooming, and brightness adjustment, which increased the dataset and guaranteed the stability of the 

model. Chowdhury et al. [19] Three affine transformation procedures were used as part of the data augmentation 

techniques: translation (both vertically and horizontally), rotation (both clockwise and counterclockwise), and 

scaling. These methods increased the size of the image dataset, which strengthened the model training. Lijo, J. et 

al. [20] used a number of data augmentation methods to increase the variety of the dataset and lower the overfitting risk. 

These methods included noise reduction, brightness enhancement, contrast enhancement, and rotation. Abbas et al. 

[21] underlined how important it is to enhance data in order to prevent overfitting. They added artificial yet realistic 

tomato leaf images to their original dataset by using the Conditional Generative Adversarial Network (C- GAN) to 

create synthetic images. Akshai et al. [22] Recognizing the need for a more diverse dataset to enhance the 

robustness of their models and mitigate overfitting, Akshai et al. employed several data augmentation techniques. 

Specific strategies included image rotation, shifting, and zooming to artificially expand their dataset without 

compromising the integrity of the original images. Umit Atila et al. [23] augmented the original dataset, expanding 

it from 55,448 images to 61,486 images. This amplification likely involved techniques such as rotation, flipping, and 

other variations to diversify the dataset, which enhances model generalization. Sharma, P et al. [26] To address the 

homogeneity of the Plant Village dataset, the researchers introduced data augmentation techniques. These 

techniques included random transformations like brightness adjustment, contrast modification, and blur. The 

purpose of these augmentations was to enhance the dataset's diversity and improve the model's performance. Ji, M 

et al. [29] used a variety of data augmentation techniques, such as rotation, zooming, flipping, shearing, and color 

changes, to enhance their dataset. By using these strategies, the dataset's variety was increased, giving the model 

more diverse training samples. Nithish, E.K et al. [30] applied two primary data augmentation techniques: random 

resized Crop, which adjusted image sizes, and random rotation at 30 degrees. These techniques expanded the 

dataset fourfold, increasing the diversity of examples available for model training. Chen, J et al. [31] employed data 

augmentation techniques to increase the dataset's volume and variety. Implemented techniques included rotation, 

flipping, scaling, and translation. Beyond merely expanding the dataset, these augmentations also aimed to combat 

the prevalent challenge of model overfitting. Marzougui, F et.ai. [34] To bolster the dataset and enhance model 

performance, data augmentation techniques were employed. Marzougui and the team 
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expanded the dataset using Kera’s Image Data Generator class, applying operations such as horizontal flipping, 

30-degree rotations, and both horizontal and vertical shifts. The "nearest" setting was selected as the fill mode to 

handle areas outside the input boundaries, effectively augmenting the data. To enrich the dataset and enhance the 

model's robustness, Selvan [35] employed five data augmentation techniques: rotation, horizontal flipping, 

shearing, zooming, and shifting in both height and width directions. These techniques increased the diversity and 

volume of ladyfinger leaf images for comprehensive analysis. Al Haque et al. [42] In order to increase the dataset 

and lessen the overfitting of the model, data augmentation techniques such as horizontal flipping, zooming, height 

and breadth shifting, rotation, nearest fill, and shearing were applied. 

 

 

 
 

Figure 10: Distribution of Data Augmentation Techniques in Literature. 

 
4. Feature Extraction Techniques in Plant Disease Detection 

This section explores feature extraction methods used in plant disease detection studies. Techniques range from 

employing advanced CNN models like DenseNet and MobileNet to using Residual Networks, attention 

mechanisms, custom DCNN architectures, and statistical measures for characterizing image clusters. Feature 

extraction is crucial for disease classification to illustrate the distribution of different feature extraction methods 

used in the field of plant disease diagnosis; a pie chart is created. Each technique is represented as a segment 

within the pie chart, and the size of each segment is proportional to the number of studies or applications that have 

incorporated that specific technique. The chart is appropriately titled "Feature Extraction Techniques in Plant 

Disease Detection” to offer context, and it serves as an informative visual representation of the prevalence of these 

techniques in the field. This visualization helps viewers discern which techniques are more commonly employed 

in plant disease detection applications. The chart is presented as Figure 11, to further facilitate reference and 

understanding. 

Mahum et al. [4] utilized the harness the power of an Efficient DenseNet model, which inherently focuses on 

feature extraction for disease classification. Pandian et al. [5] The feature extraction process made use of carefully 

selected convolutional layers optimized for the task. To extract essential data from plant images, Ashwinkumar et 

al. [7] employed the MobileNet model, a well-known CNN-based strategy. Ghosh, S et al. [9] uses CNNs to extract 

features, showing how deep learning methods can be applied to tasks involving the classification of plants. In Chen 

et al.'s [15] research, various feature extraction methods were explored, with an emphasis on feature 
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extraction using RESNET18, a convolutional neural network. This emphasizes how important feature extraction 

methods are when it comes to identifying plant diseases. Wang et al. [25] introduction of the DBA_SSD model, 

which integrates a residual network and an attention mechanism, offers a refined approach to feature extraction. 

This novel architecture ensures that significant features from plant images are extracted, promoting accurate 

disease detection. Karthik R et al. [27] employed CNN for the automatic extraction of relevant features for disease 

detection. They presented two distinct deep architectures to achieve this. The first relies on residual learning 

coupled with a CNN, and the second enhances the first by integrating an attention mechanism. This attention 

mechanism aids the model in focusing on specific areas of the image, presumably where disease symptoms are 

more prominent. Dengshan Li et al. [28] made use of a unique deep convolutional neural network (DCNN) 

architecture to extract relevant characteristics from movies and photos. Kumari, C.U. et al. [41] used statistical 

metrics like energy, correlation, variance, mean, contrast, standard deviation, and homogeneity along with feature 

extraction techniques to describe the segmented clusters in plant photos. Sahithya, V. et al. [44] used the Grey 

Level Co-occurrence Matrix (GLCM) approach to extract features. This method included elements of texture, 

color, and geometry. Chouhan et al [13].'s research likely extracted features relevant to plant disease detection, 

which can include texture, shape, or color-based features. Jain et al. [17] mainly concentrated on removing two 

kinds of features—texture and color—from photos of plants. While color features were calculated utilizing factors such 

as skewness, standard deviation, kurtosis, and mean from the color moment equation, texture features were 

obtained using a Gray-Level Co-occurrence Matrix (GLCM). This emphasizes how crucial feature extraction is 

for identifying plant diseases. 

 

 

Figure 11: Dispersion of feature extraction methods in the identification of plant diseases. 

 
5. Models for Identifying and Categorizing Plant Diseases 

In this section, Researchers use various models to classify and detect plant illnesses. These models often rely on 

deep learning techniques, including CNNs and specialized architectures tailored for plant disease detection. The 

choice of model influences the accuracy and efficiency of disease identification. This chart generates a pie chart 

to visualize the distribution of various models used in the context of plant disease identification and categorization. Each 

model is represented as a segment within the pie chart, and the size of each segment corresponds to the 
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number of studies or applications that have employed that specific model. The chart is aptly titled "Models Used 

for plant disease Identification and Categorization" to provide context. It serves as an effective visual 

representation, allowing viewers to discern which models are more commonly utilized in the field. The chart is 

presented as Figure 12, for easy reference and understanding. 

In the study by S. Phani P, et.al. [1], utilized cutting-edge deep learning algorithms such as SSD, YOLOX, and 

Faster R-CNN models, improved by methods of attention like Efficient Channels Attention, Squeeze & Excitation 

networks, and Convolutional Block Emphasis Module. The determination of grape leaf disease was done using 

these types of models. Mahum et al. [4] utilized a previously trained Efficient DenseNet framework, upgrading it 

with an incremental transition layer to efficiently identify potato leaves into five distinct illness classes. 

Ashwinkumar et al. [7] demonstrated the efficacy of the MobileNet-based CNN in the identification of plant 

diseases by using it to diagnose tomato leaf diseases such as early blight, late blight, target spot, and leaf mold. 

Sharma et al. [8] using CNNs to detect illnesses in potato and rice crops. Deep learning has the ability to automate 

the identification of plant diseases, as evidenced by the CNN model's better accuracy in disease categorization. 

Ghosh, S et al. [9] used CNNs in conjunction with more conventional machine learning techniques, such as 

Support Vector Machine and K-Nearest Neighbors, to classify plants. Their study demonstrates the potential of 

hybrid methods in this field. Wassan et al. [11] didn't focus on plant disease identification but instead on predicting 

frost events and their impact on plants, such as leaves and flowers. They employed CNNs for their predictive 

model, demonstrating the versatility of CNNs in various agricultural applications. Bedi et al. [12] presented a 

hybrid method that merged convolutional automatic encoders with CNN. This model demonstrates the potential 

of such hybrid strategies for disease diagnosis and classification; it was particularly created for identifying 

bacterial spot illness in peach leaves. Chouhan et al.'s study [13] The research incorporated feature extraction 

methods like scale-invariant and feature transform. These techniques are instrumental in revealing significant 

characteristics within the image data, which are essential for robust and in-depth analysis. Effective feature 

extraction is a critical component of plant disease detection, as it enables the model to discern patterns and make 

accurate classifications. Chelleapandi et al. [14] These comprised DenseNet, MobileNet, MobileNetV2, 

InceptionV3, InceptionResnetV2, ResNet50, and VGG16, VGG19. To compare its effectiveness with the pre- 

trained models, the researchers also created and evaluated a specially constructed CNN model. chen et al. [15] 

adopted a thorough method for identifying diseases, utilizing deep learning and machine learning models. Based 

on the ideas of meta-learning, they presented the LFM-CNAPS (local feature matching conditional neural adaptive 

processes) model. Across 26 different plant species, this novel model was able to identify 60 different illnesses. 

Jadhav et al. [18] used two different CNNs, named AlexNet and GoogleNet, to classify and identify three different 

diseases in soybean leaves: bacterial blight, brown spot, and frogeye leaf spot. This demonstrates how specific 

CNN models are used to identify and classify plant diseases. The Sun et al. [24] model was created with the 

purpose of recognizing and categorizing 26 disease classes that affect 14 distinct plant species. The DM deep 

learning optimizer, selected for its better performance in comparable situations, served as the foundation of this 

model. Sujatha et al. [16] For the purpose of classifying diseases, the research combined ML and deep learning 

(DL) techniques. They employed Random Forest, Stochastic Gradient Descent, and Support Vector Machine 

(SVM) for machine learning. Conversely, the DL methodologies encompassed Inception- v3, VGG-16, and VGG- 

19. Abbas et al. [21] used the widely recognized DenseNet model as their main model for tomato leaf disease 

identification and classification. Furthermore, the study's methodology included a novel integration of C-GAN- 

produced synthetic pictures. Akshai et al. [22] Their method of identifying and classifying diseases was based on 

three distinct CNN models. They combined the DenseNet, ResNet, and VGG models to identify different grape 

leaf diseases. Designed to extract key elements from the grape leaf photos for efficient disease diagnosis, every 

model offered distinct structural benefits. Umit Atila et al. [23] emphasized the usage of deep learning models 

extensively. This study relied heavily on the EfficientNet design, namely the B4 and B5 models. Their 

performance was contrasted with that of other popular CNN models, such as Inception V3, AlexNet, ResNet50, 

and VGG16. Wang et al. [25] 's main contribution is the SSD architectural improvement known as the DBA_SSD 

model. The model attains impressive precision in disease identification and categorization by the integration of 1 

x 1 convolution, a residual network, and an attention mechanism. DBA_SSD performs better than other popular 

target detection algorithms such as YOLOv4, YOLOv3, Faster RCNN, and YOLOv4 small. Sharma, P et al. [26] 
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Two CNN model’s performances were compared in the study. While segmented regions-of-interest displaying 

illness, symptoms were used to train S-CNN, another model, F-CNN, was trained using entire leaf pictures. 

Karthik R et al. [27] In the study, two deep learning architectures were given. The first model learned features 

without the requirement for explicit feature engineering by using residual learning with a CNN. By adding an 

attention mechanism to improve the feature extraction process and enable the model to concentrate on more 

important regions of the image for disease identification, the second model improved upon the first. Dengshan Li 

et al. [28] The primary model for classifying and diagnosing pests and diseases that affect rice plants was a 

proprietary DCNN architecture. When it came to identifying unskilled rice movies, it fared better than other 

designs such as VGG16, ResNet-50, ResNet-101, and YOLOv3. Ji, M et al. [29] employed the UnitedModel CNN 

model to identify illnesses of the grape leaf. The paragraph notes that the model was used to categorize three major 

grape leaf diseases: isariopsis leaf spot, esca, and black rot, but it does not go into great depth on the model's 

architecture. Nithish, E.K et al. [30] identified five distinct tomato leaf illnessesa CNN model: yellow leaf curl, 

Septoria leaf spot, early blight, mosaic virus, and bacterial spot. Shrestha, G et al. [32] We out a study with the 

goal of employing CNNs to identify different diseases in three different plant species: bell pepper, tomato, and 

potato. This study attempted to identify numerous diseases, including bell pepper bacterial spot, early and late 

blight in potatoes, target spot, mosaic virus, yellow leaf curl virus, bacterial spot, Septoria leaf spot, leaf mold, 

early and late blight, and spider mites in tomato plants. The study by Pham, T.N, et al. [33] has the main goal of 

classifying and identifying illnesses in mango leaves. They used a feed-forward deep neural network model to do 

this. Marzougui, F et.ai [34] 's Deep learning's potential for plant disease identification is highlighted in this work. 

Their method fared better than conventional and shallow structural models, proving that deep learning techniques 

are useful for classifying and diagnosing plant illnesses. In their study, Selvam, L et.ai. [35] created a CNN model 

for ladyfinger plant diagnosis. The CNN model was created to recognize and classify various ladyfinger leaf states, 

such as damaged, healthy, and harmed by overuse of fertilizer. M, Turkoglu et al. [36] The study used a combined 

technique to identify and classify eight different plant diseases. In particular, a number of sophisticated Deep 

Learning architectures, including GoogLeNet, ResNet-50, ResNet-101, Inception-v3, InceptionResNetv2, and 

SqueezeNet, were combined with three classifiers: SVM, ELM, and KNN. Too, E.C et al. [37] In order to 

determine how successful various Deep Learning architectures were at identifying plant diseases, the study team 

decided to compare and contrast them. VGG- 16, the ResNet series (ResNet-50, ResNet-101, ResNet-152), 

Inception-V4, and DenseNets-121 were among the architectures assessed in the study. Picon, A. et al. [38] 

harnessed the capabilities of the ResNet-50 Deep Learning algorithm to craft a mobile application, aiming for the 

precise identification of plant diseases, particularly focusing on hot spots. M. et al. [39] In the study, a cutting- 

edge deep learning model named PlantdiseaseNet was presented. This model was created with the purpose of 

detecting and classifying plant diseases, especially for the demanding agricultural field environment. Zhang et al. 

[40] presented a unique Deep Learning (DL) model called the multiple Inception-Resnet model that was able to 

identify yellow rot in wheat plants by combining spectral and spatial data from hyperspectral UAV photos. 

Kumari, C.U. et al. [41] developed a model to accurately identify illnesses in tomato and cotton leaves by 

combining neural network technology with image processing techniques. Al Haque et al. [42] entailed using a 

CNN to identify crop canker, anthracnose, and rot as guava illnesses. M. Francis et al. [43] To detect diseases in 

the leaves of tomato and apple plants, a CNN was utilized. The main objective of the study was to categorize 

tomato and apple leaf species into groups of healthy and sick leaves. Sahithya, V. et al. [44] Three different 

illnesses in lady finger leaves were identified using two categorization techniques: ANN and SVM: powdery 

mildew, leaf spots, and yellow mosaic vein. M. R. Howlader et al. [45] profound CNN was used to accurately 

identify and classify illnesses that harm guava leaves, such as rust, whiteflies, and algal leaf spots. 
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Figure 12: Models Used for Plant Disease Identification and Categorization. 

 
6. Image Quality Improvement Techniques 

Techniques to enhance image quality and remove noise are critical in plant disease detection. Researchers employ 

methods such as brightness adjustment, contrast modification, and image blur. These improvements ensure better 

image data for analysis. We focus on various filtering techniques aimed at refining the clarity and details of the 

images. Figure 13, presents a horizontal bar chart depicting the utilization of various image quality improvement 

techniques in the realm of identifying plant diseases. Each technique is symbolized by a horizontal bar, with the 

length of each bar indicating the number of research papers employing that specific method. The chart bears the 

title 'Image Quality Improvement Techniques in Plant Disease Detection,' providing viewers with essential 

context. To enhance clarity, the y-axis is inverted, positioning the most commonly adopted technique at the chart's 

top for improved visualization. Additionally, gridlines on the x-axis have been incorporated to enhance readability. 

Overall, this chart provides a succinct and visual summary of the prevalence of image quality improvement 

techniques in the realm of identifying plant diseases, facilitating the identification of the most frequently employed 

methods." 

In the study Mahum et al. [4] use of an Efficient DenseNet model suggests an inherent focus on quality feature 

extraction from the images. Vallabhajosyula et al. [6] During the initial image processing phase, special attention 

was given to optimizing the photos' contrast and brightness. This enhancement significantly improved the overall 

quality of the dataset. A bilateral filter was used by Ashwinkumar et al. [7] during pre-processing to enhance 

image quality by eliminating noise from plant leaf images. Malathy et al. [10] the importance of image quality in 

plant disease detection. Analytical approaches, such as image restoration, were used to elevate the quality, clarity, 

and reliability of the images used in the study. Chowdhury et al. [19] The application of resizing and normalization 

during pre-processing enhances image quality and prepares the data for further analysis, highlighting the 

importance of image quality in disease detection. M. R. Howlader et al. [45] used the Rectified Linear Unit (ReLU)  

activation function to enhance the overall appearance of the images. F(N) = Max (0, N) is the representation of 

the operation, where N is the total amount of neurons. 
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Figure 13: Overview of Image Quality Improvement Techniques. 

 
7. Strategies for Reducing Overfitting in Plant Disease Detection 

Overfitting is a common challenge in machine learning. Researchers use strategies like data augmentation, 

regularization techniques, and early stopping to prevent models from fitting the training data too closely, thus 

improving the model's generalization. we address the issue of overfitting, which occurs when a model produces 

significantly different accuracy values for training and testing datasets. Given below this chart have to illustrate 

the distribution of strategies employed to reduce overfitting in the context of plant disease detection. Each literature 

is represented as a slice of the pie, and the size of each slice corresponds to the number of research papers that 

have utilized that particular Model. The chart is titled 'Strategies for Reducing Overfitting in Plant Disease 

Detection,' providing essential context. By displaying this information in a pie chart, viewers can readily discern 

the prevalence of different overfitting reduction strategies within the field. The chart is presented as Figure 14, to 

reference it within the document. 

Pandian et al. [5] To prevent the model from overfitting, data augmentation techniques were implemented. These 

techniques help ensure that the model generalizes well to new data and doesn't become excessively specialized to 

the training set. Vallabhajosyula et al. [6] To ensure our model's robustness and prevent it from becoming too 

specialized to the training data, we successfully decreased overfitting by using strategies for data augmentation. 

Bedi et al. [12] Addressing the pervasive issue of overfitting in deep learning models, the researchers implemented 

"early halting." By setting a patience value to 5, they efficiently halted the training once the model started to 

overfit, ensuring its generalization capability when applied to unseen data. The paper [15] emphasizes the use of 

forward propagation within the LFM-CNAPS model to address potential overfitting issues. This strategy ensures 

that the model remains generalizable across varied disease classes and plant species. Chowdhury et al. [19] The 

study employed Global Average Pooling (GAP) as an approach to minimize overfitting. This technique is effective 

in preventing models from learning noise in the data and improving generalization. Lijo, J. et al. [20] utilization 

of data augmentation techniques, as mentioned above, served as a strategy for reducing overfitting. The 

investigators sought to enhance the generalization and effectiveness of the model's predictions by adding changes 

to the dataset. Wang et al. [25]'s DBA_SSD model, with its incorporation of 1 × 1 convolution, is strategically 

designed to counteract overfitting. Overfitting can lead to poor model generalization on unseen data, and measures 

such as this ensure that the model remains robust and accurate across diverse data inputs. Ji, M et al. [29] To 

mitigate model overfitting, the researchers implemented several measures. Those included dropout techniques, 
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data augmentation schemes, and the implementation of an early stop mechanism. These techniques are meant to 

keep the model from learning the training set by heart and improve its ability to generalize to fresh, untrained data. 

Nithish, E.K et al. [30] Various data augmentation strategies were employed in the research to mitigate model 

overfitting. These strategies help the model generalize better to unseen data by exposing it to a wider range of 

augmented examples during training. Chen, J et al. [48] data augmentation techniques served a dual purpose. 

While they expanded the dataset by introducing variations of the original images, they also acted as an effective 

strategy to minimize overfitting, ensuring that the model remains generalized and versatile. M. Francis et al. [43] 

incorporated a dropout value of 0.25 in the CNN architecture to mitigate overfitting, ensuring the model's 

generalization to new data. M. R. Howlader et al. [45] The study employed various data augmentation strategies 

and the Rectified Linear Unit (ReLU) activation function to address concerns about overfitting. These methods 

were critical in enhancing the performance of the model. 

 
 

 

 
Figure 14: Distribution of Strategies for Reducing Overfitting. 

 
8. Plant Species and Disease Classes in Evaluated Studies 

This section discusses the various plant species and categories of illnesses studied in the literature. Different 

studies concentrate on particular plant species, like tomato, mango, and ladyfinger, while evaluating various 

disease classes for detection. Our attention is directed toward the disease categories identified within the particular 

plant species that served as the foundation for the studies under review. The chart, presented as Figure 15, 

illustrates a histogram showcasing the distribution of plant species and disease classes within a set of evaluated 

studies. This visual representation compiles data related to different plant species and their corresponding disease 

classes. By tallying the occurrences of distinct categories representing various plant species and disease classes, 
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the chart effectively conveys their prevalence. The y-axis of the histogram denotes the counts, while the x-axis 

enumerates the categories, facilitating a clear understanding of which plant species and disease classes receive the 

most attention in these studies. To enhance readability, the x- axis labels are thoughtfully rotated. The chart is 

aptly titled "Distribution of Plant Species and Disease Classes in Evaluated Studies." Overall, this histogram offers 

a comprehensive overview of the distribution of these categories across the analyzed studies. 

In the study by S. Phani P, et.al. [1], mainly concentrates on identifying grape leaf diseases, with particular classes 

covering Leaf Spot, Black Rot, Esca measles, and healthy circumstances. Mahum et al. [4] The study zeroes in on 

potato leaves, classifying them into five distinct categories: Potatoes Leaves Rolls (PLR), Potato Verticillium wilt 

(PVw), Potatoes Late Blight (PLB), Potato Early Blight (PEB), and Potatoes Healthy (PH). Vallabhajosyula et al. 

[6] Our approach centered on developing a deep ensemble neural network capable of diagnosing 38 different disease 

classes across 14 plant species. Malathy et al. [10] focused on apple photos, identifying illnesses such sooty spot, 

powdery mildew, and bittersweet rot in particular. Their emphasis on these diseases underlines the significance of 

timely detection and intervention to prevent loss in apple cultivation. Bedi et al. [12] concentrated on peach leaves, 

aiming to identify bacterial spot disease, a prevalent issue in peach cultivation. The LFM-CNAPS model, as 

proposed by Chen et al. [15], was used to identify an extensive range of 60 diseases across 26 different plant 

species, showcasing its versatility and breadth in plant disease diagnosis. Jadhav et al.'s [18] research primarily 

focuses on soybean, with the study aiming to identify three specific diseases that affect this plant species (bacterial 

blight, brown spot, and frogeye leaf spot). This comprehensive categorization facilitates the assessment of the 

efficacy and precision of the proposed models. Sun et al. [24] model was geared towards recognizing 26 distinct 

disease classes that affect the foliage of fourteen distinct plant species. This showcases the comprehensive nature of 

the study in covering a wide range of diseases across multiple crops. Abbas et al [21] used a technique to pinpoint 

nine distinct illnesses in tomato leaves. These provide a wide range of tomato leaf disease detection, such as yellow 

leaf curl virus, bacterial spot, Septoria leaf spot, two-spotted spider mite, target spot, early blight, leaf mold, late 

blight, and mosaic viruses. Akshai et al. [22] primary focus was on grape leaves, specifically identifying three 

prevalent diseases: black rot, leaf blight, and esca. The aim was to offer a comprehensive disease detection 

mechanism for grape leaves, considering the economic and agricultural significance of this crop. Wang et al. [25] 

encompasses various plant species and disease severity levels, covering a comprehensive range of 15 

subcategories. This wide coverage ensures that the model is tested against a diverse array of diseases, enhancing 

its reliability. Karthik R et al. [27] specifically concentrated on tomato plants, examining three key disease classes 

Leaf mold, late blight, and early blight are all included in the Plant Village Dataset. Dengshan Li et al. [28] 's the 

primary focus was on rice plants, with a particular emphasis on rice brown spot, rice stem borer symptoms, and 

rice sheath blight. A particular emphasis was placed on heavily infested instances to enhance grain production by 

controlling these issues. Ji, M et al. [29] specifically focused on grape leaf diseases, with the classification and 

diagnosis targeting three main afflictions: black rot, esca, and isariopsis leaf spot. Nithish, E.K et al. [30] 

concentrated on tomato leaf diseases with a specific goal of diagnosing five diseases: bacterium spot, yellow leaf 

curl, early blight, septoria leaf spot, and mosaic virus. Shrestha, G et al. [32] covered three plant species: potato, 

tomato, and bell pepper. Within these species, the research delved into the identification of twelve distinct disease 

classes, including two for potato, nine for tomato, and one for bell pepper. This comprehensive analysis 

encompassed a diverse range of diseases affecting the leaves of these plant species. Too, E.C et al. [37] covered 

an extensive range of plants, including the following: potato, peach, raspberry, apple, bell pepper, blueberry, 

cherry, corn, orange, grape, soybean, strawberry, tomato, and squash. This expansive coverage ensures a 

comprehensive understanding of disease detection across different plant species. Picon, A. et al. [38] 

predominantly focused on diseases affecting wheat plants, emphasizing the importance of addressing agricultural 

challenges in staple crops. M. et al. [39] covered a wide range of plant species, containing tomato, sugar beets, 

apple, bell pepper, cherry, grapes, onion, peach, potato, plum, or wheat crops, emphasizing the diversity of plants 

studied. Kumari, C.U. et al. [41] The suggested technique effectively identified illnesses in tomato and cotton 

leaves, such as Septoria leaf spot, leaf mold, and targeting spot in tomatoes. 
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Figure 15: Distributions of Plant Species and Disease Classes in Evaluated Studies. 

 
9. Accuracy in Plant Disease Identification 

An important part of the research is determining how accurate the disease identification models are. Scholars 

frequently present accuracy measures to assess how well their algorithms classify and identify plant diseases. The 

review of current methods for the identification and categorization of plant diseases, with an emphasis on their 

accuracy, is the main focus of this phase. The chart, presented as Figure 16, is a pie chart designed to visualize the 

distribution of studies based on their accuracy levels within the field of plant disease identification. The chart 

effectively classifies these studies into four primary groups: "High Accuracy," "Average Accuracy," "Low 

Accuracy," and "Other." 

In the "HighAccuracy" category, you'll find studies that have achieved impressive accuracy levels, such as those 

involving CNN models with ResNet architecture, deep ensemble neural networks, DenseNet, DenseNets 

architecture, MobileNet-based CNN, and a proposed method. These studies have demonstrated accuracy levels 

that are in proximity to, or surpass, the 97% mark. 

The "Average Accuracy" category encompasses studies that exhibit accuracy levels within the range of 87.4% to 

97%. These studies employ a variety of models and techniques, including potato leaf disease detection, high 

accuracy in identifying apple, rice, and potato diseases, C-GAN models, GoogleNet, VGG- 16, EfficientNet 

models, DBA_SSD models, AlexNet, UnitedModel, and custom CNN models. 



Tuijin Jishu/Journal of Propulsion Technology 
ISSN: 1001-4055 

Vol. X No. Y (20--) 

4983 

 

 

 
 

For the "Low Accuracy" category, it accommodates studies characterized by relatively lower accuracy levels, 

such as those featuring CNN models with an 87% accuracy rate, test accuracy results at 88.8%, a training accuracy 

of 91.32% coupled with testing accuracy of 85.45%, custom DCNN systems designed for efficiency, RF- 

classifiers with a 77% accuracy, and studies with balanced accuracy levels of 87%. 

The "Other" category encompasses studies that don't neatly fit into the aforementioned accuracy groupings. These 

studies involve multiple accuracies for different diseases, SVM and ANN models exhibiting varying accuracy 

rates, the use of PlantDiseaseNet techniques yielding a classification accuracy of 93.67%, DCNN models 

exhibiting improved accuracy, as well as studies demonstrating high accuracy in detecting bacterial leaf spots and 

tomato diseases. Some studies in this category present various accuracy levels where specific values are not 

provided. 

In the study by S. Phani P, et.al. [1], The YOLO-X and SSD models, which were combined with attention 

approaches, outperformed the other examined models in terms of accuracy and real-time performance. The 

YOLO-X models proved particularly efficient, excelling in detecting smaller objects and those obscured by 

background interference, thus offering robust and accurate results for real-time grape disease diagnosis in 

vineyards. Singh, G, et.al. [2] use of deep learning techniques, including base learning and transfer learning, the 

study aimed to identify and classify citrus diseases. The proposed CNN model, particularly when employing the 

ResNet architecture, delivered an outstanding accuracy rate of 99.62%. This remarkable achievement surpassed 

the performance of other contemporary models, highlighting the efficacy of the proposed approach in accurately 

identifying and categorizing plant diseases, particularly those affecting potato leaves. Mahum et al. [4] The 

implemented algorithm showcased a remarkable accuracy of 97.2%, outpacing several existing models in the 

domain of potato leaf disease detection. Vallabhajosyula et al. [6] Using the PlantVillage dataset, we assessed the 

performance of our deep ensemble neural network technique and obtained an astounding accuracy rate of 99.99%. 

This underscores the effectiveness of our approach in accurately diagnosing plant diseases. Through the 

implementation of the proposed MobileNet-based CNN, Ashwinkumar et al. [7] shown a remarkable 98.7% 

accuracy in recognizing and classifying different illnesses of tomato leaves, highlighting the usefulness of the 

model for diagnosing plant illnesses. In terms of rice and potato disease identification, the CNN model put forth 

by Sharma et al. [8] shown impressive accuracy rates of 99.58% and 97.66%, respectively. These high levels of 

accuracy highlight how well their deep learning method works for diagnosing plant diseases. Ghosh, S et al. [9] 

the study showcases impressive classification accuracy, with the CNN + K-Nearest Neighbors approach achieving high 

accuracy levels, such as 99.5% in Flavia, 97.4% in LeafSnap, and 80.02% in MalayaKew datasets, underscoring 

the effectiveness of their hybrid model. Malathy et al. [10] The effectiveness of the suggested CNN model was 

demonstrated when it was able to identify certain diseases in apple pictures with an astounding 97% accuracy rate. 

This high accuracy emphasizes the potential and efficacy of the CNN model in plant disease detection. Bedi et al. 

[12] approach achieved remarkable accuracy rates. For the testing dataset, the accuracy was an impressive 98.38%, 

while the training dataset showcased an even higher accuracy of 99.35%. This high level of accuracy not only 

validated their method but also emphasized its superiority compared to other available techniques in the realm of 

plant disease detection. The DenseNet model, as highlighted by Chelleapandi et al. [14], reached a remarkable 

99% accuracy rate in classifying and diagnosing plant diseases. This highlights the deep learning models' great 

accuracy potential, especially when it comes to plant disease identification. Employing the LFM-CNAPS model 

rooted in meta-learning, Chen et al. [15] were able to identify diseases in all examined plant species with an 

impressive accuracy rate of 93.09%. This accomplishment highlights the model's effectiveness and meta-learning's 

promise for plant disease identification. Jadhav et al.'s [18] For the purpose of diagnosing illnesses from soybean 

leaves, the AlexNet model obtained an accuracy of 98.75%, whereas the GoogleNet model obtained an accuracy 

of 96.25%. These high accuracy rates highlight how well the suggested models identify diseases. Sun et al. [24] 

proposed model employing the The DM deep learning optimizer produced results with an astounding 97% accuracy. 

This demonstrates the high degree of reliability of the model in detecting and classifying plant illnesses and attests 

to the effectiveness of the DM optimizer in this regard. Sujatha et al. 

[16] In terms of diagnosing illnesses in citrus plants, DL models performed better than ML models. Whereas DL 

models, such as Inception-v3, VGG-16, and VGG-19, produced much better illness detection accuracy levels, 
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ranging from 87.4% to 89.5%, ML models acquired accuracies ranging from 76.8% to 87%. This demonstrates 

the DL systems' improved performance in the particular setting of citrus plant illnesses identification. Abbas et al. 

[21] presented remarkable results. The C-GAN model, responsible for generating synthetic images, achieved an 

impressive accuracy of 99.51%. Subsequently, when the DenseNet model was applied for disease classification, 

the accuracy rates achieved were 98.65% for five classes, 97.11% for ten classes, and 98.65% for seven classes of 

tomato leaf images, reinforcing the model's proficiency in disease detection and classification. Akshai et al. [22] 

among the three CNN models employed, DenseNet emerged as the most effective, achieving a remarkable 

accuracy rate of 98.27% in detecting the specified diseases in grape leaves. Such an impressive accuracy rate not 

only affirms the model's efficiency but also underscores the potential of CNNs in plant disease identification. Umit 

Atila et al. [23] On the original dataset, the B5 model of EfficientNet demonstrated an accuracy of 99.91%, 

whereas the B4 model demonstrated an accuracy of 99.97% on the enhanced dataset. This demonstrates the 

EfficientNet architecture's potential for classifying plant leaf diseases. Wang et al. [25] The proposed DBA_SSD 

model attains an impressive accuracy of 92.20% in detecting and classifying plant diseases. Such high accuracy 

rates underscore the model's potential in real- world applications and its reliability in disease detection. Sharma, P 

et al. [26] Notable outcomes were found when comparing the F-CNN and S-CNN models. On one dataset, the F-

CNN model's accuracy was 96.3%; however, when tested on separate datasets, it fell to 42.3%. In contrast, the S-

CNN model consistently performed well, maintaining an accuracy rate of 98.6% on independent data. This 

highlights the potential advantages of using segmented and annotated images for training deep learning models in 

the context of plant disease detection. Karthik R et al. [27] achieved notable success in their disease identification 

efforts. By incorporating the attention mechanism into their model, they used a 5-fold cross- validation setup and 

got an astounding overall accuracy of 98% on the validation sets. The efficacy of their methodology and the possible 

advantages of using attention mechanisms in plant disease detection models are shown by this high accuracy. 

Dengshan Li et al. [28] pecific accuracy values were not provided in the paragraph, it is claimed that the bespoke 

DCNN system showed promising detection results, especially for indications of rice stem borer and rice sheath 

blight. The system also achieved a fast detection speed of approximately 0.1 seconds per frame, indicating its 

efficiency in processing video data. Ji, M et al. [29] A test accuracy of 98.57% and a validation accuracy of 99.17% 

were attained by the suggested UnitedModel. These impressive accuracy rates show how well deep learning works 

for correctly diagnosing grape diseases, including black rot, esca, and isariopsis leaf spot. Nithish, E.K et al. [30] 

The suggested CNN model successfully identified these five diseases from tomato leaf photos with an astounding 

97% accuracy rate, demonstrating the algorithm's efficacy in disease detection. The outcome of the research by 

Shrestha, G et al. [32] demonstrated a noteworthy 88.8% test accuracy in identifying diseases impacting the leaves 

of plants such as bell pepper, potato, and tomato. This accuracy statistic highlights how well the CNN model 

classifies and recognizes a range of plant illnesses in diverse plant species. The deep neural network model 

proposed in the research by Pham, T.N, et.ai. [33] displayed a notable level of performance. In the identification 

of mango leaf diseases, it had a testing accuracy of 85.45% and a training accuracy of 91.32%. The efficacy of the 

algorithm in precisely categorizing various disease categories in mango leaves is demonstrated by these accuracy 

metrics. M, Turkoglu et al. [36] he combination of the ResNet- 50 model with the SVM classifier demonstrated 

remarkable efficacy, achieving an F1 score of 97.14% and an overall accuracy of 97.86%. Too, E.C et al. [37] all 

the architectures assessed, the DenseNets architecture stood out for its exceptional performance, achieving a 

remarkable testing accuracy of 99.75% in plant disease identification. This underscores the potential and 

superiority of the DenseNets model in this domain. Picon, A. et al. [38] When the model's performance was 

measured using Balanced Accuracy, it demonstrated a remarkable 87% accuracy rate, demonstrating the model's 

dependability in the diagnosis of diseases affecting wheat plants. 

M. et al. [39] PlantDiseaseNet methods showed remarkable efficacy, with a 93.67% classification accuracy (CA). 

This demonstrates how well the model can recognize and categorize plant diseases in actual agricultural situations. 

X., Zhang et al. [40] DCNN model exhibited a significantly improved accuracy of 85% compared to the RF- 

classifier, which achieved an accuracy of 77%. This illustrates how successful deep learning methods are 

specifically DCNN, for enhancing disease detection in wheat plants within a real agricultural environment. 

Kumari, C.U. et al. [41] The model demonstrated remarkable accuracy rates: it identified two different types of 

tomato illnesses from tomato leaves with an astounding 100% accuracy, 90% accuracy for bacterial leaf spots, 
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and 80% accuracy for target spots on cotton leaves. These outcomes show how well the suggested approach can 

correctly identify and classify diseases of plants. Al Haque et al. [42] The proprietary CNN model demonstrated 

the efficacy of the methodology in illness detection, identifying guava diseases with an astounding detection rate 

of 95.61%. M. Francis et al. [43] In the datasets containing apple and tomato leaf samples, the CNN model had 

an 87% accuracy rate in identifying illnesses, reflecting its effectiveness in plant disease identification. Sahithya, 

V. et al. [44] models successfully diagnosed these diseases, with SVM achieving an accuracy of 85% in the 

presence of noisy images and 92% without noise, while ANN achieved 97% accuracy with noise and 98% without 

noise in the image. M. R. Howlader et al. [45] The suggested approach demonstrated its proficiency in identifying 

illnesses including fruit rot, anthracnose, and fruit canker on guava leaves with an amazing accuracy rate of 

98.74%. 

 

 

Figure 16: Distribution of Accuracy Levels in Plant Disease Identification. 

 

 
Overall, the pie chart serves as a visual summary that elucidates the distribution of these studies across distinct 

accuracy categories. This clear visualization makes it simple to comprehend the prevalence of different accuracy 

levels within the domain of plant disease identification studies. The chart is appropriately titled "Distribution of 

Studies by Accuracy Level in Plant Disease Identification" to provide added clarity and context. 

4. Comparative Analysis 

We conduct a thorough evaluation of the different disease detection and classification models used in agriculture 

in the comparative analysis section. The primary objective is to scrutinize the performance and capabilities of 

these models in accurately identifying and categorizing different plant diseases. Each model's technical 

underpinnings and key techniques are thoroughly examined, shedding light on their distinctive approaches. 

Additionally, the datasets utilized in these studies are considered, evaluating their representativeness and 

suitability for real-world applications. A wide spectrum of disease types is investigated, ensuring the breadth of 
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the research's applicability. The accuracy rates achieved by these models are scrutinized, providing valuable 

insights into their efficacy. The primary goal of this section is to assist researchers and practitioners in choosing 

the best method for their unique needs related to agricultural disease detection and categorization by outlining the 

advantages and disadvantages of each model. Summary of existing review table 1 displays the comparison 

analysis. 

Summary of existing review table 1. 
 

 

Ref 

No. 

Disease 

Identify/Classify 

Model Used 

Key 

Techniques 

Used 

Used dataset Disease Types 

Investigated 

Accuracy 

(%) 

Primary Focus 

Highlight 

[1] R-CNN, YOLO- 

X, and SSD with 

Attention 

Mechanisms 
that operate faster 

Deep Learning Plant Village 

Dataset (Grape 

Leaves) 

Black Rot, Esca 

measles, Leaf 

spot, Healthy 

High 

Precision 

and Real- 
time 

Performance 

Efficient Disease 

Detection with 

Attention 

Mechanisms 

[2] CNN (ResNet) CNN-Based 

Identification 

'Plant Village' 

Dataset (Potato 

Leaves) 

Potato Diseases Impressive 

Accuracy 

Potato Disease 

Identification 

with CNN 

(Focus: Potato 
Leaves) 

[4] Efficient 

DenseNet 

Deep Learning 

with Pre- 

processing 

'The Plant 

Village'Datase t 

(Potato 

Leaves) 

Potato Diseases 97.2% 

Accuracy 
Improved Potato 

Leaf Disease 

Classification 

(Focus: Potato 
Leaves) 

[5] Conv-5 DCNN Data 

Augmentation 

and Deep 

Learning 

Public 

Datasets 

Various Plant 

Species 

98.41% 

Accuracy 

High Accuracy 

Disease 

Classification 

with Conv-5 

DCNN (Focus: 

Various Plant 
Species) 

[6] Deep Ensemble 

Neural Network 

Data 

Augmentation 

and Ensemble 

Models 

Plant Village 

Dataset 

(Multiple Plant 

Species) 

Plant Diseases 99.99% 

Accuracy 

Enhanced Plant 

Disease 

Identification 

with 

Deep Ensemble 

Neural Network 

(Focus: Multiple 

Plant Species) 

[7] MobileNet- based 

CNN 

Image Pre- 

processing and 

CNN 

Tomato Leaf 

Diseases 

Tomato 

Diseases 

98.7% 
Accuracy 

Tomato Disease 

Identification 

Using 

MobileNet-based 
CNN (Focus: 
Tomato Leaves) 

[8] CNN 

(Comparative 

Study) 

CNN-Based 

Diagnosis 

Large Datasets 

(Rice and 

Potato Leaves) 

Rice and Potato 

Diseases 

High 

Accuracy 

Comparative 

CNN Analysis 

for Rice and 

Potato Disease 

Identification 
(Focus: Rice and 

Potato Leaves) 



Tuijin Jishu/Journal of Propulsion Technology 
ISSN: 1001-4055 

Vol. X No. Y (20--) 

4987 

 

 

 

[9] CNN + SVM, 

CNN + kNN 

Hybrid Models Diverse 

Datasets 

(LeafSnap, 

Flavia, 

MalayaKew) 

Plant 

Classification 

Impressive 

Accuracy 

Hybrid Models 

for Accurate 

Plant 
Classification 
(Focus: Plant 
Classification) 

[10] CNN Image Pre- 

processing and 

CNN 

Image Dataset 

(Apples) 

Apple Diseases 97% 

Accuracy 

Apple Disease 

Identification 

with CNN 
(Focus: Apple 

Diseases) 

[11] CNN 

(Convolutional 
Neural 
Networks) 

CNN-Based 

Frost 

Prediction 

Historical 

Weather Data 

Frost 

Prediction 

98.6% 

Accuracy 

Frost Event 

Prediction with 

CNN (Focus: 
Frost 
Prediction) 

[12] Hybrid CNN and 

Convolutional 

Autoencoders 

Hybrid CNN Peach Leaf 

Diseases 

Bacterial Spot 

Detection 

High 

Accuracy 

Peach Leaf 

Disease 
Detection Using 
Hybrid Models 
(Focus: Peach 
Leaves) 

[13] RESNET18, 

LFM-CNAPS 

Feature 

Extraction and 

Meta-learning 

Leaf Images 

(Various Plant 

Species) 

Plant Disease 

Classification 

93.09% 

Accuracy 
Meta-learning 

Approach for 

Comprehensive 

Plant Disease 

Classification 

(Focus: Plant 
Classification) 

[17] CNN Image Pre- 

processing and 

Feature 

Extraction 

New Plant 

Diseases 

Dataset 

(Maize, 

Grapes, Rice) 

Disease Features Not 

Specified 

Pre-processing 

Images and 

Extracting 

Features to 

Identify Diseases 

(With an 

Emphasis 
on Disease 

Features) 

[18] AlexNet, 

GoogleNet 

CNN-Based 

Disease 

Recognition 

Soybean Leaf 

Images 

Frogeye Leaf 

Spot, Brown 

Spot, Bacterial 

Blight 

High 

Accuracy 

Disease 

Identification 

with AlexNet 

and GoogleNet 

(Focus: Soybean 
Leaves) 

[19] Not specified but 

mentioned 

EfficientNet and 

U-net 

Data 

preprocessing, 

normalization, 

data 

augmentation 

PlantVillage 

dataset 

(Tomato 

Leaves) 

Various tomato 

leaf diseases 

Not specified Utilization of 

EfficientNet and 

U- net for 

Tomato Disease 

Detection and 

(GAP) used 
Overfitting 
Reduction 

[20] Not specified Data scaling, 

data 

augmentation 

Plant Village 

dataset 

(Various Plant 

Leaves) 

Various 

bacterial and 

fungal plant 

illnesses 

Not specified Data 

Augmentation 

for Diversity and 

Overfitting 
Reduction 
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[24] DM (Discount 

Momentum) deep 

learning optimizer 

Disease 

classification, 

multiple crop 

types 

PlantVillage 

dataset 

(Multiple 

Crops) 

26 disease 

classes among 

14 crop types 

97% Efficient Disease 

Classification 

with DM Deep 

Learning 
Optimizer 

[16] ML (SVM, 

Stochastic 

Gradient Descent, 

Random Forest) 

and DL 

(Inception- v3, 
VGG-16, VGG- 
19) 

Comparison of 

ML and DL 

models 

Citrus leaves 

from citrus 

research center 

Citrus disease 

classification 

ML models: 

76.8% - 
87%; DL 

models: 

87.4% - 
89.5% 

DL Models 

Outperform ML 

Models for Citrus 

Disease 

Detection 

[21] DenseNet model 

and C- GAN for 

synthetic images 

Data 
augmentation, 
synthetic 
image 
generation 

PlantVillage 

dataset 

(Tomato 

Leaves) 

Multiple tomato 

leaf diseases 

Various 

(e.g., 

98.65% for 5 

classes) 

Effective 
Identification and 
Classification of 
Tomato Leaf 
Diseases 

[22] VGG, DenseNet, 

ResNet 
Data 

augmentation 

(rotation, 

shifting, 
zooming) 

PlantVillage 

dataset (Grape 

Leaves) 

Black rot, leaf 

blight, esca 

98.27% Efficacy of CNN- 

Based Models for 

Grape Disease 

Detection 

[23] EfficientNet (B4, 

B5), AlexNet, 

ResNet50, 

VGG16, 
Inception V3 

Comparison of 

EfficientNet 

with other 

CNN models 

PlantVillage 

dataset 

(Multiple Plant 

Species) 

Multiple plant 

diseases 

EfficientNe 

t: 99.91% - 

99.97% 

Efficiency of 

EfficientNet for 

Plant Disease 

Classification 

[25] DBA_SSD Enhanced SSD 

architecture, 

attention 

mechanism 

PlantVillage 

dataset 

(Various Plant 

Leaves) 

Plant diseases 

(15 subcategor 

es) 

92.20% Effective Object 

Detection 

Algorithm for 

Plant Diseases 

[26] F-CNN and S- 

CNN 

(Segmented 

images) 

Data 

augmentatin 

(brightness 

adjustment, 
contrast, blur) 

Various 

datasets 

(Tomato 

Leaves) 

Tomato leaf 

diseases 

F-CNN: 

96.3%, S- 

CNN: 98.6% 

Benefit of Using 

Segmented 

Images for 

Disease 
Detection 

[27] CNN models with 

residual learning 

and attention 

mechanism 

Data 

augmentation 

Plant Village 

dataset 

(Tomato 

Leaves) 

Tomato leaf 

diseases 

98% Effective Disease 

Detection in 

Tomato Plants 

[28] Personalized 
architecture for 
deep 
convolutional 
neural networks 
(DCNNs) 

Data 

augmentation 

Rice plant 

images and 

videos 

Rice diseases 

and pests 

Not specified Effective 

Detection of Rice 

Diseases and 

Pests in Videos 

[29] Convolutional 

Neural Network 

(UnitedModel) 

Data 

augmentation 

(rotation, 

zooming, 

flipping, 
shearing, color 
alterations) 

Not specified Diseases of 

grapes: esca, 

black rot, and 

isariopsis leaf 

spot 

Test: 

98.57%, 

Validation: 

99.17% 

Successful 

Diagnosis of 

Grape Leaf 

Diseases with 

Deep Learning 
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[30] Convolutional 

Neural Network 

(CNN) 

Data 

augmentation 

(RandomResiz 

ed Crop, 

Random 
Rotation) 

Not specified 

(Tomato 

Leaves) 

Five tomato leaf 

diseases 

97% Data 

Augmentation 

for Tomato 

Disease 

Detection 

[48] Not specified Data 

augmentation 

(rotation, 

flipping, 

scaling, 

translation) 

Fujian Institute 

of Subtropical 

Botany dataset 

(Rice and 

Maize Leaves) 

Various rice and 

maize diseases 

Not specified Expanding Real- 

World Dataset 

for Disease 

Identification 

[32] Convolutional 

Neural Network 

(CNN) 

Disease 

classification, 

multiple plant 

species 

Potato, 

Tomato, Bell 

Pepper Leaves 

Multiple 

diseases in 

potato, tomato, 

and bell pepper 
plants 

88.8% Disease 

Identification in 

Multiple Plant 

Species 

[33] Feed-forward 

deep neural 

network 

Preprocessing 

(downscaling, 

contrast 

enhancement) 

Giang 

Province, 
Vietnam 

dataset 

(Mango 
Leaves) 

Powdery 

mildew, 

anthracnose, 

gall midge, 

healthy leaves 

Training: 

91.32%, 

Testing: 

85.45% 

Effective Mango 

Disease 

Identification 

[34] Not specified Data 

augmentation 

(horizontal 

flipping, 

rotations, 
shifts) 

Not specified Not specified Not specified Deep Learning 

for Disease 

Detection 

[35] Convolutional 

Neural Network 

(CNN) 

Data 

augmentation 

(rotation, 

flipping, 

shearing, 

zooming, 
shifts) 

Tiruvannamala 

i district 

dataset (Lady 

Finger Leaves) 

Lady finger 

leaves with 

diseases and 

excessive 

fertilizer use 

Not specified Robust Model for 

Ladyfinger Leaf 

Identification 

[36] SVM, 

Extreme Learning 

Machine, K- 

Nearest 
Neighbor, Deep 

Learning models 

Multiclass 

classificatio 
n, various 
Deep 
Learning 
architectures 

Actual field 

dataset (cherry, 

walnut, peach, 

and apricot) 

Various plant 

diseases 

F1: 97.14, 

Accuracy: 

97.86% 

Comparative 

Evaluation of 
Deep Learning 
Models for the 
Identification of 
Plant Diseases 

[37] Not specified Evaluation of 

multiple Deep 

Learning 

architectures 

PlantVillage 

dataset 

(Multiple Plant 

Species) 

Multiple plant 

diseases 

Testing 

accuracy: 

99.75% 

Determining the 

Most Effective 

Deep Learning 

Architecture for 

Disease 
Detection 

[38] ResNet-50 Extension of a 

deep residual 

neural network 

Real-world 

dataset (Wheat 

plants) 

Wheat plant 

diseases 

87% Developing a 

Mobile 

Application for 

Plant Disease 
Detection 
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[39] PlantDiseaseNet Deep Learning 

model for 

agricultural 
settings 

Real-world 

datasets 

(Multiple Plant 

Species) 

Multiple plant 

diseases 

93.67% Disease 

Detection in Real 

Agricultural 

Settings 

[40] Multiple 

Inception- Resnet 

model 

Hyperspectral 

UAV images 

for disease 

detection 

Real-world 

datasets 

(Wheat 

Leaves) 

Yellow rust in 

wheat plants 

85% Improved 

Disease 

Detection with 

Hyperspectral 
Images 

[41] Image processing 

and neural 

networks 

Feature 

extraction 

(GLCM) 

Cotton and 

Tomato leaves 

Cotton (target 

spot, bacterial 

leaf spot), 

Tomato (leaf 
mold, septoria 

leaf spot) 

Cotton: 80% 

-90%, 

Tomato: 

100% 

Successful 

Disease 

Identification in 

Cotton and 

Tomato Leaves 

[42] Custom CNN 

model 

Data 

augmentation 

(horizontal 

flipping, 

zooming, 

shifting, 
rotation, 
shearing) 

Real-world 

dataset (Guava 

Leaves) 

Guava diseases 

(fruit canker, 

anthracnose, 

fruit rot) 

95.61% Effective Guava 

Disease 

Detection 

[43] CNN Preprocessing 

(resizing, 

cropping) 

Not specified 

(Apple and 

Tomato 
Leaves) 

Apple and 

tomato leaf 

diseases 

87% Effective Disease 

Identification in 

Apple and 
Tomato Leaves 

[44] SVM, ANN Feature 

extraction 

(GLCM), 

multiple 

classification 

techniques 

Real-world 

dataset (Lady's 

Finger Leaves) 

Lady's finger 

leaf diseases 

(powdery 

mildew, leaf 

spots, yellow 

mosaic vein) 

SVM: 85% 

- 92%, 

ANN: 97% 

- 98% 

Disease 

Detection in 

Lady's Finger 

Leaves 

[45] Deep CNN Preprocessing 

(resizing) 

Not specified 

(Guava 

Leaves) 

Guava diseases 

(algal leaf spots, 

rust, whiteflies) 

98.74% Effective 
Detection of 
Guava Leaf 
Diseases 

 

5. Conclusion 

In conclusion, an extensive analysis of the use of image processing methods for the identification of plant leaf 

diseases is given in this review study. Plant diseases are still a major danger to agricultural productivity, hence 

there is a growing need for precise and effective detection techniques. One effective method for overcoming this 

difficulty is the combination of deep learning, machine learning, and image processing techniques. Through an 

extensive literature review, we have explored various aspects of disease detection in plants, from model selection 

and feature extraction strategies to data sources and pre-processing approaches. We have also delved into the 

methods for improving image quality and addressing overfitting issues, ultimately aiming to enhance the accuracy 

of disease identification. The studies reviewed in this paper have showcased the breadth and depth of research in 

this field. Researchers have leveraged diverse data sources, enhanced the quality of image data, and employed a 

range of feature extraction methods to identify diseases in various plant species. Machine learning and deep 

learning models have played a pivotal role, achieving impressive accuracy rates in disease classification. 

Additionally, image quality enhancement techniques and strategies to mitigate overfitting have contributed to the 

robustness of these models. 
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6. Future scope 

Research and development opportunities abound in the field of plant leaf disease detection utilizing image 

processing techniques. As technology continues to advance, the following areas are worth exploring: 

1. Real-time Detection: - It would be very helpful to build real-time illness detection tools for use in the field. 

This could involve the integration of image processing techniques with IoT (Internet of Things) devices to 

provide farmers with immediate feedback on crop health. 

2. Multispectral and Hyperspectral Imaging: - The use of multispectral and hyperspectral imaging for disease 

detection can provide more detailed information about plant health. Future research should focus on the 

integration of these technologies into disease identification systems. 

3. Early Disease Detection: - Detecting diseases at their earliest stages is crucial for effective disease 

management. Future studies should concentrate on improving the sensitivity and accuracy of early disease 

detection models. 

4. Integration with Agricultural Practices: - Bridging the gap between disease detection and agricultural 

practices is essential. Researchers should explore ways to incorporate disease identification into farming 

processes, enabling timely intervention. 

5. Global Data Sharing: - To improve the accuracy of disease classification models, a global database of plant 

diseases and associated symptoms should be established. Collaboration and data sharing among researchers 

worldwide can contribute to this initiative. 

6. User-Friendly Applications: - Developing user-friendly mobile applications that allow farmers and 

agricultural experts to easily identify and manage plant diseases can have a significant impact on crop yields. 

7. Robustness Against Environmental Variations: - As environmental conditions play a vital role in disease 

development; models should be made more robust and adaptable to varying conditions. 
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