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 Abstract- 

In this paper, a classifier has been designed using Support Vector Machine (SVM) to classify Electromyography 

(EMG) signals. Given the EMG signals, the SVM-based classifier aims to classify ten individual and combined 

fingers motion command into one of the predefined set of movements. Prior to classification, EMG data is 

segmented with a DWT such as Mean Absolute Value (MAV), Root Mean Square (RMS) and SD are extracted 

for each window and combined to a feature set. Extracted features are used as inputs to the classification system. 

A linear SVM (one-against-one method) is used for the multiclass classification of EMG signals. DWT sizes that 

affect the classification performance have been reported. The best feature set that ensures maximum 

discrimination between the finger movements has also been reported. Validation shows that support vector 

machine can classify EMG signals correctly with a higher classification accuracy at 91.7% suitable for designing 

for proposed method. 

 Keywords: Classification, Electromyography, Feature Extraction, Support Vector Machine. 

 

I. Introduction 

The EMG signals are highly complex and non-linear signal. These signals are widely used in clinical trials for the 

diagnosis of neurological and neuromuscular problems [1]. Because of the complexity of EMG signals many 

times even experienced researchers are fail to provide enough information about these signals. EMG signals 

involve a great deal of information about the nervous system with anatomical and psychological properties of 

fingers. It is a record of electrical potentials generated by fingers [2]. The changes in the voltage difference 

between electrodes are sensed and amplified before it is transmitted to a computer program to display the tracing 

of the voltage potential recordings [3]. 

 There are numerous neuromuscular disorders that influence the spinal cord, nerves or fingers. Early finding and 

diagnosis of these diseases by clinical examination is crucial for their management as well as their anticipation 

through prenatal diagnosis and genetic counseling. This information’s are also valuable in research, which may 

lead to the understanding of the nature and eventual treatment of these diseases [4]. 

Ii. Research Motivation 

EMG signals are very complex and inherit several types of noises that pose greater challenges to the medical 

community. It has been widely used as a diagnostic technique to access muscular health and related disorders. 

The technique involves the placement of electrodes over the muscle to monitor its muscular activity via electrical 

signals. It is practiced as a popular clinical application for human computer interface involved in the diagnosis of 

myopathy that involves muscle cramps, spasm, stiffness, and dysfunction. The skeletal fingers represent the 

largest group of fingers that manages body posture, motion, heat generation, and directly controlled by the brain 
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in decision making. Also, growing awareness and concerns about physiological and psychological health 

significantly lead to a rise in the EMG device market over the globe. 

Since the beginning of the development of computer technology, the main interface of human-computer 

interaction has been dialog boxes controlled by keyboard and mouse. However, with the development of hardware 

and software, for example, with the advent of mobile phones, augmented reality helmets, IoT, more intelligent 

interaction interfaces were required, which can be classified as follows:  

(1) Voice control [1, 2];  

(2) Control gestures (with video cameras [3], special gloves [4] or special sensors, such as Kinect);  

(3) The brain-computer interface [5,6].  

The use of these interfaces provides convenience in situations where there is no possibility or need to interact with 

external physical devices. One of the most accurate and effective ways to control gestures is to control muscle 

activity, which occurs with any movement. Therefore, the use of signals of bioelectrical activity of fingers to 

control a device is an urgent task for today. Electromyography (EMG) is used to record this activity. In addition, 

the scope of EMG signals is very wide: they can be used in medicine to study muscle activity abnormalities; when 

evaluating the effectiveness of rehabilitation measures; for monitoring the human condition, etc. When analyzing 

the bioelectrical activity of different fingers, one can understand which fingers were involved, and, therefore, with 

the best classification method, determine the movement that is made with their help. 

Iii. Problem Statement  

For people with hand fingers disabilities, independently performing daily tasks that require hand function such as 

holding objects, opening/closing doors and eating meals is a major challenge. For this population, the use of an 

assistive device targeting in particular the hand could be beneficial. According to the type of disability, this device 

can be a prosthesis or an orthosis. Among different kinds of hand prosthesis, micro-controlled hand prosthesis has 

gained rising interest among researchers. Micro-controlled technique uses signals acquired from finger to control 

the assistive device [5]. In micro-controlled hand prostheses, the signals acquired from users’ fingers is classified 

to predict hand movement intention. Then the predicted movement will be used to control the artificial hand. 

Although micro controlled devices have been introduced for many years, due to their insufficient classification 

accuracy and robustness, they have not yet been accepted by a considerable portion of the targeted population [2]. 

Traditionally, EMG signals were pre-processed to remove unwanted signals. Then signal is segmented into 

windows and signal features were calculated over each window. Signal features would then be fed to a classifier 

to be classified [6]. One significant challenge, which is present to this day, is choosing the right combination of 

features. Many researchers have tackled this issue by analyzing different feature combinations and evaluating 

their performance in terms of accuracy, time efficiency and robustness [3]. 

Iv. Feature Extraction  

The benefit the feature extraction is to avoid extensive data and time consuming for signal processing. Therefore, 

many feature extraction types are used to reduce the raw data dimensions and produce new vectors that will enter 

the classification stage instead of the raw data. So, the new vectors must contain all the required information to 

obtain fast training [6,7]. In this work, the EMG signals are analysed in offline mode using MATLAB 2015a. The 

recoded signals are then segmented in a window size of 200ms and an increment of 150ms. The window is 

analysed using Root Mean Square (RMS), Difference Absolute Standard Deviation Value (DASDV), Mean 

Absolute Value (MAV), Standard deviation (SD) and Principal Component Analysis (PCA) is used for dimension 

reduction because of reduction in time and space complexities. The dimensions of the new components will be 

uncorrelated and orthogonal to each other [8,9,10]. 
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Fig 1. DWT Method. 

V. Wavelet Analysis 

A transform can be thought of as a remapping of a signal that provides more information than the original. The 

Fourier transform fits this definition quite well because the frequency information it provides often leads to new 

insights about the original signal. Fourier analysis provides a good description of the frequencies in a waveform, 

but not their timing. However, the inability of the Fourier transform to describe both time and frequency 

characteristics of the waveform led to a number of different approaches. None of these approaches was able to 

completely solve the time–frequency problem. Timing information is often of primary interest in many biomedical 

signals. A wide range of approaches have been developed to try to extract both time and frequency information 

from a waveform. Basically they can be divided into two groups: time–frequency methods and time–scale 

methods. The wavelet transform can be used as yet another way to describe the properties of a waveform that 

changes over time, but in this case the waveform is divided not into sections of time, but segments of scale [11]. 

Wavelets are an excellent tool for biomedical signal analysis. Wavelets are utilized for the study of signals that 

are non-stationary and is time varying in characteristics. The EMG signal carries transient signals linked to muscle 

movement. EMG signals have typically multiple temporary components (MUAP), which are very impressive to 

separate and classify according to their physiological importance. A wavelet based decomposition is a vital tool 

for analyzing EMG signal; The EMG signal is decomposed in various levels (resolution) of the wavelet [5]. The 

noisy elements of the wavelet decomposition are pruned, and the signal is rebuilt from the remaining. The rebuild 

de-noised signals exhibit muscle action. The wavelet transform (WT) is a useful analytical tool for the study of 

non-stationary and fast transient signals. One of the principal characteristics of WT is that it can be applied for a 

discrete time filter bank. The Fourier transforms of the wavelets are mentioned to as WT filters. The WT serves a 

very suitable technique for the analysis of EMG signals. Guglielminotti and Merletti [12] theorized that if the 

wavelet is chosen so as to match the shape of the MUAP, the resulting WT produces the best possible energy 

localization in the time-scale plane. Based on the study, Laterza and Olmo [8] concluded that the WT is especially 

useful for MUAP discovery in the presence of additive white noise. In this circumstance, the noise participations 

are disseminated over the whole-time scale plane, independently of the wavelet applied. 

Vi. Proposed Algorithm  

The procedure of an extraction of the EMG features from wavelet coefficients and reconstructed EMG signals.  

Wavelet transform and feature extraction methods Wavelet transform method is divided into two types:  discrete 

wavelet transform (DWT) and continuous wavelet transform (CWT). DWT was selected in this study because of 

the concentration in real-time engineering applications [1-2]. DWT is a technique that iteratively transforms an 

interested signal into multi-resolution subsets of coefficients. Like the conventional time-frequency analysis, the 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 5 (2023)  

__________________________________________________________________________________ 

 

5288 
  

DWT transforms the EMG signal with a suitable wavelet basis function (WF). Therefore, the WF plays a key 

role in the multi-resolution analysis.  

In this study, we investigated  the usefulness of the multi-resolution analysis through  studying of the EMG 

features with different scales and local  variations and also the elimination of the undesired  frequency 

components. In addition, the selection of an  optimal WF is proposed. 

 

Fig 2. Block diagram for the wavelet-based automated classification system. 

Proposed Machine learning algorithm 

1. Support Vector Machines (SVM) 

Support Vector Machines (SVM) is a popular machine learning algorithm used for classification and regression 

tasks. Linear SVM is a specific type of SVM that works well for linearly separable data. In the context of 

electromyographic (EMG) signal classification, Linear SVM can be used to classify different muscle activities 

based on EMG signals. 

Approach EMG signal classification using Linear SVM: 

Steps-  

a. Data Collection: Collect EMG signal data from sensors placed on fingers. 

b. Signal Filtering: Preprocess the raw EMG signals by applying filters (e.g., bandpass filters) to remove noise 

and artifacts. 

c. Feature Extraction: Extract relevant features from the preprocessed signals. Common features for EMG 

signals include mean absolute value, waveform length, zero crossing rate, and others. 

2. K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) is a simple and widely used machine learning algorithm for both classification and 

regression tasks. It is a type of instance-based learning, where the model makes predictions based on the majority 

class (for classification) or the average (for regression) of the k-nearest data points in the feature space. 
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Steps-  

• Training Phase: 

For each data point in the training set, the algorithm stores the features and their corresponding class labels (for 

classification) or target values (for regression). 

No explicit training process occurs in KNN. The model effectively memorizes the entire training dataset. 

• Prediction Phase: 

Given a new, unseen data point, the algorithm calculates its distance (usually Euclidean distance) to all data points 

in the training set. 

It identifies the k-nearest neighbors of the new data point based on the calculated distances. 

• Classification (for KNN Classification): 

For classification, the algorithm assigns the class label that is most frequent among the k-nearest neighbors to the 

new data point. 

• Regression (for KNN Regression): 

For regression, the algorithm assigns the average of the target values of the k-nearest neighbors to the new data 

point. 

The choice of the parameter "k" (the number of neighbors) is a critical factor in KNN. A small value of k makes 

the model sensitive to noise and outliers, while a large value of k may lead to a loss of important patterns. 

Therefore, the value of k should be chosen carefully based on the characteristics of the data. 

3. Decision tree  

A decision tree is a decision support hierarchical model that uses a tree-like model of decisions and their possible 

consequences, including chance event outcomes, resource costs, and utility. It is one way to display 

an algorithm that only contains conditional control statements. 

Decision trees are commonly used in operations research, specifically in decision analysis,[1] to help identify a 

strategy most likely to reach a goal, but are also a popular tool in machine learning. 

The accuracy of the decision tree can change based on the depth of the decision tree. In many cases, the tree’s 

leaves are pure nodes.[9] When a node is pure, it means that all the data in that node belongs to a single 

class.[10]  It is important to note that a deeper tree is not always better when optimizing the decision tree. A deeper 

tree can influence the runtime in a negative way. If a certain classification algorithm is being used, then a deeper 

tree could mean the runtime of this classification algorithm is significantly slower. There is also the possibility 

that the actual algorithm building the decision tree will get significantly slower as the tree gets deeper. If the tree-

building algorithm being used splits pure nodes, then a decrease in the overall accuracy of the tree classifier could 

be experienced. Occasionally, going deeper in the tree can cause an accuracy decrease in general, so it is very 

important to test modifying the depth of the decision tree and selecting the depth that produces the best results. 

To summarize, observe the points below, we will define the number as the depth of the tree. 

Possible advantages of increasing the number: 

• Accuracy of the decision-tree classification model increases. 

Possible disadvantages of increasing 

•  Runtime issues 

• Decrease in accuracy in general 

• Pure node splits while going deeper can cause issues. 

https://en.wikipedia.org/wiki/Decision_support_system
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Causal_model
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/Utility
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Decision_analysis
https://en.wikipedia.org/wiki/Decision_tree#cite_note-1
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Gini_impurity
https://en.wikipedia.org/wiki/Decision_tree#cite_note-9
https://en.wikipedia.org/wiki/Decision_tree#cite_note-10
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4. Boosted tree 

In machine learning, boosting is an ensemble meta-algorithm for primarily reducing bias, and also 

variance[1] in supervised learning, and a family of machine learning algorithms that convert weak learners to 

strong ones.[2] Boosting is based on the question posed by Kearns and Valiant (1988, 1989):[3][4] "Can a set of 

weak learners create a single strong learner?" A weak learner is defined to be a classifier that is only slightly 

correlated with the true classification (it can label examples better than random guessing). In contrast, a strong 

learner is a classifier that is arbitrarily well-correlated with the true classification. 

  Vii. Results And Discussion  

The purpose of this work is to study the EMG signals acquired from the finger movements by applying DWT in 

order to determine the suitable mother wavelet and level of decomposition, which yield the best classification 

performances. The EMG signals are decomposed into maximum level decomposing using different mother 

wavelets. The Surface EMG (SEMG) signals was denoised using discrete wavelet transform (DWT) and a 

threshold method. The DWT and threshold based denoising was implemented using MATLAB. 

Table 1. Finger movement’s features. 

Class            Mean  Median  SD 

1 -1.985x10-07 0.0009766 0.0337 

1 -1.527x10-07 0.001221 0.04983 

1 1.833x10-07 0.001221 0.0711 

1 -1.375x10-07 0.007325 0.03057 

1 3.207x10-07 0.001221 0.01745 

1 -6.108x10-08 0.0009766 0.0244 

2 6.115x10-08
 0.0009766 0.04443 

2 2.359x10-07 0.001221 0.06839 

2 -5.242x10-08 0.0007325 0.09294 

2 4.368x10-08 0.0007324 0.03987 

2 1.048x10-07 0.001221 0.01697 

2 6.115x10-08 0.0007325 0.02645 

3 -9.209x10-08 0.0009766 0.02535 

3 -1.679x10-08 0.001221 0.07129 

3 -5.86x10-08 0.0009766 0.687 

3 -1.172x10-07 0.0007325 0.0298 

3 -6.697x10-08 0.001221 0.03474 

3 0 0.0009766 0.06114 

4 0 0.0009766 0.01028 

4 0 0.001221 0.01128 

4 0 0.001465 0.01443 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Meta-algorithm
https://en.wikipedia.org/wiki/Bias-variance_tradeoff
https://en.wikipedia.org/wiki/Boosting_(machine_learning)#cite_note-1
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Boosting_(machine_learning)#cite_note-2
https://en.wikipedia.org/wiki/Michael_Kearns_(computer_scientist)
https://en.wikipedia.org/wiki/Leslie_Valiant
https://en.wikipedia.org/wiki/Boosting_(machine_learning)#cite_note-Kearns88-3
https://en.wikipedia.org/wiki/Boosting_(machine_learning)#cite_note-4
https://en.wikipedia.org/wiki/Classification_(machine_learning)


Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 5 (2023)  

__________________________________________________________________________________ 

 

5291 
  

4 0 0.0007325 0.02445 

4 0 0.001221 0.01287 

4 0 0.0009766 0.01036 

5 0 0.0009766 0.02531 

5 0 0.001465 0.0826 

5 0 0.001221 0.06669 

5 0 0.0007325 0.03362 

5 0 0.001221 0.01712 

5 0 0.0009766 0.06986 

 

                                      Table 2.  Classification Evaluation. 

METHOD CLASS CLASSIFICATION 

 1-INDEX 

FINGER with 2-

LITTLE 

FINGER 

  

1-INDEX 

FINGER with 3- 

MIDDLE 

FINGER 

1-INDEX 

FINGER with 4-

RING FINGER 

1-INDEX FINGER with 5- 

THUMB FINGER 

 

 A Sn Sp A Sn Sp A Sn Sp A Sn Sp 

LINEAR 

SVM 

50.00 50.00 50.00 58.3 59.95 57.11 66.7 75.07 62.51 33.3 33.4 33.4 

KNN 50.00 50.00 50.00 50.0 50.00 50.00 58.3 59.95 57.11 75.0 80.04 71.40 

DECISION 

TREE 

58.3 59.95 57.11 41.7 42.88 40.04 75.0 80.04 71.40 58.3 59.95 57.11 

BOOSTED 

TREE 

41.7 42.88 40.04 50.00 50.00 50.00 66.7 75.07 62.51 91.7 100 85.76 

             

 2- LITTLE 

FINGER with 1-

INDEX FINGER 

2-LITTLE FINGER 

with 3-MIDDLE 

FINGER 

2-LITTLE FINGER 

with 4-RING 

FINGER 

2-LITTLE FINGER with 

5-THUMB FINGER 

 A Sn Sp A Sn Sp A Sn Sp A Sn Sp 

LINEAR 

SVM 

41.7 42.88 40.04 75.0 80.04 71.40 100 100 100 58.3 59.95 57.11 

KNN 50.0 50.0 50.0 58.3 59.95 57.11 91.7 100 85.76 58.3 59.95 57.11 
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DECISION 

TREE 

58.3 59.95 57.11 50.0 50.0 50.0 58.3 59.95 57.11 58.3 59.95 59.95 

BOOSTED 

TREE 

50.0 50.0 50.0 75.0 80.04 71.40 58.3 59.95 57.11 83.3 74.9 100 

             

 3-MIDDLE 

FINGER with 1-

INDEX FINGER 

3-MIDDLE 

FINGER with 2- 

LITTLE FINGER 

3-MIDDLE 

FINGER with 4-

RING FINGER 

3-MIDDLE FINGER with 

5- THUMB FINGER 

 A Sn Sp A Sn Sp A Sn Sp A Sn Sp 

LINEAR 

SVM 

41.7 42.88 40.04 75.0 80.04 71.40 91.7 100 85.76 91.7 100 85.76 

KNN 41.7 42.88 40.04 58.3 59.95 57.11 83.3 74.9 100 66.7 75.07 62.51 

DECISION 

TREE 

33.3 33.4 33.4 58.3 59.95 57.11 58.3 59.95 57.11 66.7 75.07 62.51 

BOOSTED 

TREE 

41.7 42.88 40.04 58.3 59.95 57.11 41.7 42.88 40.04 75.0 80.04 71.40 

             

 4-RING FINGER 

with 1-INDEX 

FINGER 

4-RING FINGER 

with 2-LITTLE 

FINGER 

4-RING FINGER 

with 3-MIDDLE 

FINGER 

4- RING FINGER with 5- 

THUMB FINGER 

 A Sn Sp A Sn Sp A Sn Sp A Sn Sp 

LINEAR 

SVM 

58.3 59.95 57.11 91.7 100 85.76 91.7 100 85.76 75.0 80.04 71.40 

KNN 66.7 75.07 62.51 91.7 100 85.76 83.3 100 74.96 75.0 80.04 71.40 

DECISION 

TREE 

50.0 50 50 50.0 50 50 58.3 59.95 57.11 58.3 59.95 57.11 

BOOSTED 

TREE 

75.0 80.04 71.40 66.7 75.07 62.51 41.7 42.88 40.04 75.0 80.04 71.40 

             

 5-THUMB 

FINGER with 1- 

INDEX FINGER 

FINGER5-THUMB 

FINGER with 2- 

LITTLE 

5-THUMB FINGER 

with 3- MIDDLE 

FINGER 

5-THUMB FINGER with 

4- RING FINGER 

 A Sn Sp A Sn Sp A Sn Sp A Sn Sp 

LINEAR 

SVM 

50.0 50 50 41.7 42.88 40.04 91.7 100 85.76 66.7 75.07 62.51 
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KNN 75.0 80.04 71.40 58.3 59.95 57.11 66.7 75.07 62.51 66.7 75.07 62.51 

DECISION 

TREE 

50.0 50 50 58.3 59.95 57.11 66.7 75.07 62.51 66.7 75.07 62.51 

BOOSTED 

TREE 

91.7 100 85.76 75.0 80.04 71.40 66.7 75.07 62.51 75.0 80.04 71.40 

             

 

Where, 

A = Accuracy in % 

Sn = Sensitivity in %        Sp = Specificity in %  

 

Fig 3. Index Finger and thumb Finger Boosted Tree Classification ROC curve. 

 

Fig 4. Index Finger and thumb Finger Boosted Tree Classification confusion matrix. 

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 5 (2023)  

__________________________________________________________________________________ 

 

5294 
  

 

Fig 5. Little Finger and 4th Ring Finger linear SVM Classification ROC Curve. 

 

 

Fig 6. Little Finger and 4th Ring Finger linear SVM Classification confusion matrix. 

 

Table 3.  Comparison between previous and proposed method Accuracy. 

S.N. Previous Method Accuracy Proposed Method Accuracy 

             90% [21] 91.7% 

 

VIII. Conclusion  

The purpose of this study was to devise a new method for decomposing and classifying surface EMG signals 

using spectral coding approach in finger movements order to extract useful information. The proposed method is 

based on spectral domain signal denoising, which highlights the lowest distortion and allows the system to retrieve 

the smallest signal feasible. The resulting technology can greatly enhance signal retrieval accuracy. Spectral 

energy peaks as feature sets when applied to multiclass machine learning models performed better with accuracy 

and other parameters.  

Support Vector Machine enhanced performance and it can help with the accurate classification. The subjects with 

exhibited significant different muscle activity at than those with the control group. The theme of the study also 

highlighted the importance of having a comprehensive understanding of the complex finger movements.  
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In this work, EMG signals are denoised and decomposed using various wavelet and energy localization in time 

scale plane is computed. It is found that this energy localization for different EMG signals is not similar. This 

energy localization of EMG signal can be used classify the EMG signal generated from different gesture and 

functionalities. For future direction, classification of the EMG signal will be done using the energy localization 

pattern. 
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