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Abstract:- The objective of the present paper is to carry out Ricci Yamabe soliton in three-dimensional (g, §)-
trans-Sasakian manifold. We study partially Ricci Pseudo-symmetric, Weyl Ricci Pseudo-symmetric,
projectively flat, Einstein semi-symmetric and &-projectively flat (e, §)-trans-Sasakian manifold. Further, we
obtained conditions for Ricci Yamabe solitons to be shrinking or expanding or steady.
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1. Introduction

J.A.Oubina [6] initiated the notion of almost contact metric manifold called trans-Sasakian manifold in 1985,
which contain the classes of cosymplectic, Sasakian and Kenmotsu manifolds which are closely related to the
locally conformally Kahler manifolds of type (0,0),(a,0) and (0,8). The Kahler manifolds of type
(0,0), (e, 0) and (0,p) are known as cosymplectic, a-Sasakian and f-Kenmotsu manifolds respectively. In
particular, the trans-Sasakian manifold reduces to a Sasakian if « = 1, f = 0 and Kenmotsu manifolds if a =
0, B=1.

A.Bejancu and K.L.Duggal [1] initiated the notion of (&)-Sasakian manifolds and the extended work on this was
carried out by X.Xufeng and C.Xiaoli [15] and Rakesh Kumar et al. [9]. U.C.De and A.Sarkar [14] investigated
which is conformally flat, Weyl semi-symmetric, ¢-recurrent, (g)-Kenmotsu manifolds. In [1], the researchers
obtained Riemannian curvature tensor of (&)- Sasakian manifolds and have established various relations of
curvatures which are in different forms. Authors H.G.Nagaraja et al. [4] introduced and studied (e, §)-trans-
Sasakian manifolds which generalizes the manifolds of both (g)-Sasakian and (&)-Kenmotsu. Also further
investigation was taken up by many scholars Y.B.Maralabhavi et al. [17], G.S.Shivaprasanna et al. [2,3]. In
1988, Hamilton [10] initiated the notion of Ricci flow and Yamabe flow concurrently. The solutions of the Ricci
flow and Yamabe flow are known as Ricci soliton and Yamabe soliton respectively. Currently, Guler and
Crasmareanu [12] initiated the study of a new geometric flow which is a scalar combination of Ricci and
Yamabe flow under the name Ricci-Yamabe map. This is also known as Ricci Yamabe flow of the type (p, q).
The Ricci Yamabe flow is an evolution for the metrics on the Riemannian or semi-Riemannian manifolds
defined by [12]

= g(t) = —2pRic(t) + qR(®I(®), go = 9(0). (1)

A soliton to the Ricci Yamabe flow is known as Ricci Yamabe solitons if it moves only by one parameter group
of diffeomorphism and scaling. To be precise a Ricci Yamabe soliton on Riemannian manifold (M, g) is a data
(9,V,2,p, q) satisfying

Ly 9) (U, U3) + 2pS(Uy, Up) + (24— qr) g(Uy, Uy) = 0, (1.2)

where r, S and L, is the scalar curvature, the Ricci tensor and the Lie-derivative along the vector field on M
respectively and p, q, 4 are real constants. The Ricci Yamabe soliton is said to be expanding, shrinking and
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steady if A is positive, negative and zero respectively. Equation (1.2) is known as Ricci Yamabe soliton of
(p, q)-type, which is a generalisation of Ricci and Yamabe solitons. The Ricci Yamabe soliton is p-Ricci soliton
if =0 and g-Yamabe soliton if p=0.

Let (M, g) be 3-dimensional (g, §)-trans-Sasakian manifold . Then the projective curvature tensor P is defined
as follows [11]:

P(Uy,U;)Us = R(Uy, U;)Us _%[S(UZvU3)U1 — S(Uy, U3)U,. (1.3)

The present paper is organized as follows: A brief review of Ricci Yamabe soliton and trans-Sasakian
manifolds. Section 2 contains preliminaries of almost contact metric manifolds and Weyl conformal curvature
tensor. In section 3, 4, 5, 8, it is shown that a Ricci Yamabe soliton in 3-dimensional (e, §)-trans-Sasakian
manifold with partially Ricci pseudosymmetric is a Einstein manifold if f(z) # (a? — %), with Weyl Ricci
pseudosymmetric is an n —Einstein manifold and with ¢ —projectively semi-symmetric condition is an
n —Einstein manifold. In section 6, 7, we study projectively flat and & —projectively flat Ricci Yamabe soliton.

2. Preliminaries

Let (M, g) be an almost contact metric manifold with odd-dimension consisting of a g Riemannian metric, n a
1-form, ¢ a vector field, (1, 1) tensor field forming (¢, {,n, g) contact metric structure satisfying

¢?U, = -Uy +n(U)7, n@=1¢i=0, ne¢=0. (2.1)
Manifold of almost contact metric M is said to be (¢)-almost contact metric manifold when

9¢.¢) =&  nU) =¢egU,9), 22)
gl Uy, 9U,) = g(Uy,Uy) —en(Un(U,), YU, U, € TM, (2.3)

where ¢ = g(¢,{) = +1. Manifold of (g)-almost contact metric can be called as (g, §)-trans-Sasakian
manifold if

(Vy, §)U, = a [g(Uy, Ux)T — en(Uy)Us] + B [g(pUs, U2)T — 8 n(Uy)dUy], (2.4)

holds good for some smooth functions e and B on M and § = +1,¢ = +1.Fora = 1, B = 0, an (¢,6)-
trans-Sasakian manifold gets reduced to an (g)-Sasakian and fora = 0, § = 1 it reduces to a manifold of (8)-
Kenmotsu. Let (M, g) be a (g, 6)- trans-Sasakian manifold. Then from (2.4), it can be conveniently seen that

Vy, { = —eapU, — 5> Uy, (2.5)
(Vy, MU, = —a g(Us, ¢Uy) + B g(pUy, $Uy), 2.6)
{a+2ap 6 = 0. (2.7)

In a 3-dimensional (g, §)- trans-Sasakian manifold, R is the curvature tensor and S is Ricci tensor will be
represented by [5]

R(UL, UDU; = (242 ) [9(U2, UDU; = g(Uy, U3)Uo) + BI(g(Uz, Us)n(U1)§

= g1, Us)n(U2)$) + n(Us) ((U2) Uy = n(U1) V)], (238)
R(Uy, U;)¢ = (B — a®) n(UDU, —n(U,)U; ], (2.9)
R, U)U, = (B — a®)[n(U)Uy — & g(Us, Uz){ ], (2.10)
S(Uy, Up) = Ag(Uy, Uy) + B n(Upn(Usy), (2.11)
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where A =g— (a? — B?), B =3(a?-p? —eg and €6 = 1.

In view of (1.2) and (2.5) we obtain

SW,Uy) = (=222 (0, U) + (B) nwin ), (212)
SWs,9) =& (M=B)n(wy), (2.13)
0¢ = (=)< (2.14)

For a three-dimensional almost contact metric manifold M, the Weyl conformal curvature tensor W is defined as
W (Uy,U;)Us = R(Uy, Up)Us — [S(Up, Up)Uy — S(Uy, U)U, + g(Uy, U3)QU;
— 9, U)QU) + () [g (U2, U)Uy = g(Uy, U)Uy] . (2.15)

In view of (2.1), (2.3), (2.10), (2.13), (2.14) and (2.15) we get

W, U)U; = (B2 — @) + & (“222) | [ (U3)U, — & g(Us, U] = [S(U, U)S — en(U5)QU, 1, (2.16)

{2p}
W, U8 = [(8? - a®) + & (222 [0, — ()¢ ] - [e ((%) n(U,)¢ — QUZ)], (217)
W(,{Us = 0. (2.16)

A 3-dimensional (g, §)- trans-Sasakian manifold (M, g) is known as Einstein semi-symmetric if and only if
R.E = 0[18], where £ is the Einstein tensor given by

E(U,, Us) = S(U,, Us) =5 g(Us, Us). (2.19)

A 3-dimensional (g, §)- trans-Sasakian manifold (M, g) is known as partially Ricci pseudosymmetric if and only
if the relation given by [13]

R.S = f(DQ(g,9) (2.20)

holds on the set U= (u € M: Q(g,S) # 0 at u), where f € C*(M) forr €U. R.S, Q(g,S) and (U, A, U,) are
defined as follow

(R(UpUz)-S)(Vsz) = —S(R(Up Uz)Vsz) - 5(V1'R(U1» Uz)Vz)» (2-21)
(9,9 = ((Us Ay U2).S) (W3, V), (2.22)
(U1 Ng Uz)Us = g(U,, Ux)U; — g(Uy,U3)Uy, (2.23)

forall Uy, U,, U3, V; and V, on M.

A 3-dimensional (g, §)- trans-Sasakian manifold (M, g) is known as Weyl Ricci pseudosymmetric if the tensor
W.S and Q(g, S) are linearly dependent [7,8,16] that is given by

W.S =LsQ(g,5), (2.24)

and holds on the set Ug = (u € M: W # 0 at u), where Lg is some function on Us.
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3. Ricci Yamabe soliton in 3-dimensional (g 8)- trans-Sasakian manifold with Partially Ricci
Pseudosymmetric condition

Suppose that (M, g) be a partially Ricci pseudosymmetric 3-dimensional (¢, §)- trans-Sasakian manifold, then
by (2.20), (2.22), we get

(R(U,, Uy).8)(Us, V) = fF@[(Uy Ay Uy).S)(Us, V)] (3.1)
By using (2.21) in (3.1), we get

S(R(Wy, Uz)Us, V) + S(Us, R(U3, UpV3) = () [S ((Uy Ag U2)Us, Vi) + S(Us, (Uy A U,)V1)- (3.2)
Adopting U; = V; = ¢ in (3.2), we obtain

S(R(S,U)U3,0) + S(Us, R($,U2)S) = f(DIS((C Ag U2)Us,€) + S(Us, (§ Ag U2)D)]- 33)

In view of (2.1), (2.2), (2.3), (2.8), (2.13) and (2.23), the above equation reduces to

qr—22
2p

[F@) + (B* —a®) 1[sW, Up) - (

)9 U3)| = 0. (3.4)

{qr—22}
2p

Which implies either £ (1) = —(5% — a?) or S(U,, Uy) = ( ) 9(Uy, Us).

Thus, we can state the result as:

Theorem 3.1. A Ricci Yamabe soliton in 3-dimensional (g, §)- trans-Sasakian manifold with partially Ricci
pseudosymmetric is an Einstein manifold if f(7) # (a? — 8?).

Comparing (3.4) with (2.11) we yield

2= () r—p(p? ~a®). (3.5)
Theorem 3.2. Ricci Yamabe soliton in 3-dimensional (g, §)- trans-Sasakian manifold with partially Ricci
pseudosymmetric is shrinking or expanding or steady accordingly as (%)r <p(B?—a?)
or (£2)r > p(p? — a®) or (L) r = p(8? — a?).

If g = 0 then (3.5) becomes

A= —pz—r + p(a? - B).

Corollary 3.1. p-Ricci soliton in 3-dimensional (g, §)- trans-Sasakian manifold with  partially Ricci
pseudosymmetric is shrinking or expanding or steady accordingly as §> (a? —B?) or 2 < (a?-pB?) or g =
(a? = B?).

If p=0 then (3.5) implies

qr
A==
2

Corollary 3.2. g-Yamabe soliton in 3-dimensional (&, §)- trans-Sasakian manifold with partially Ricci
pseudosymmetric is shrinking or expanding or steady accordingly asr < 0 orr > 0 orr = 0.
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4. Ricci Yamabe soliton in 3-dimensional (g 8)- trans-Sasakian manifold with Weyl Ricci
Pseudosymmetric condition

Let (M, g) be a Weyl Ricci pseudosymmetric 3-dimensional (&, §)- trans-Sasakian manifold. Then by (2.24) we
obtain

(W(Ul' Uz)-S)(Vsz) = Ls Q(g.)(V1,Vy; Uy, Up)]. (4.1)

Above equation also can be written as

S(W Uy, UV, V) + S(V, W (U3, Up)Vy) = L[S ((Us Ag Un)Vi, V) + S(Va, (Uy Ag Un)V2)|- 4.2)
Putting U, =V, = { in (4.2), we obtain

S(W (L, UV3, O) + SV, W (G, Up)0) = L[5 ((¢ Ag U2)V20) + S(Va, (C Ag U2)T)]: (4.3)

By virtue of (2.13), (2.16), (2.17) and (2.23), equation (4.3) implies

(67 —a?) +Ls + (“’*‘72)+“)] [sav) = (£2) gz, )]

2p
r—221
_ [g (q zpz )S(Vl, U,) — S(V,, QUZ)] —0. o
If
SWz 1) = (qrz;u)g(UZ'Vl) and (B2 —a®)+Ls+e ((p+qz)+m) # 0,

then using (2.12), (4.4) implies

SWo V) = () [¢ (22) g (W V) = En(un)]. (4.5)

Thus, we can state the following:

Theorem 4.3. Ricci Yamabe soliton in 3-dimensional (g, §)- trans-Sasakian manifold with Weyl Ricci
Pseudosymmetric is an n-Einstein manifold.

Contracting (4.5) and (2.11) we have

_ apr+par-2pps)(3(a?-p?)-5)
B 2p+2p(3(a2-p)-5)

2 (4.6)

Thus, we can state the following theorem:

Theorem 4.4. Ricci Yamabe soliton 3-dimensional (e, 6)- trans-Sasakian manifold with Weyl Ricci
apr+par-2pp8)(3(a?-p2)-5)
2ﬁ+2p(3(a2—ﬁ2)_%)

> 0or {qﬁr + (pqr — 2pBs) (3(0{2 - B?) - %)} =0

Pseudosymmetric is shrinking or expanding or steady accordingly as <0 or

apr+par-2pp8)(3(a?-p2)-5)
2p+2p(3(a2-p1)-5)

provided {2[3 +2p (3(a2 - B> - %)} # 0.
If g = 0 then (4.6) can be shown as

_ pBo(3(87-a?)+5)
p+p(3(a?-p2)-5)
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Corollary 4.3. p-Ricci soliton in 3-dimensional (g, &)- trans-Sasakian manifold with Weyl Ricci
pps(3(?-a?)+5)

p+p(3(a2-2-57) <0 or

Pseudosymmetric is shrinking or expanding or steady accordingly as

o ‘:((33((‘; 2:2213 >0 or (pp5 (3082 — a®) +)) = 0 provided (g +p (3(a* - ) - Z)) # 0.

If p = 0 then (4.6) yield

Corollary 4.4. g-Yamabe soliton in 3-dimensional (g, &)- trans-Sasakian manifold with Weyl Ricci
Pseudosymmetric is shrinking or expanding or steady accordinglyasr < Oorr > 0$orr = 0.

5. Ricci Yamabe solitons in 3-dimensional (g, &§)- trans-Sasakian manifold with Einstein Semi
Symmetric

Condition Let (M, g) be the Einstein semi symmetric 3-dimensional (g, §)- trans-Sasakian manifold, using
(2.19) we have

(R(UL, U).E)(V,,V,) =0, (5.1)
ERWU,, UV, V) + E(V, R(UL, Uy)V,) = 0. (5.2)
By virtue of (2.19) and (5.2) we get

S(R(U,, Up)V4, V2) + S(Vy, R(Uy, Up)V,) = Z[g(R(U, UV, Vo) + g(Vy, R(Uy, Up)V2)]. (5.3)

Adopting U; = ¢ in (5.3) and then taking V; = ¢ and using (2.1), (2.2), (2.3), (2.10) and (2.13) in (5.3), we
obtain

—21
SWa ) = T2+

24+ 19 (U, ). (5.4)

3
Thus, we state the theorem as:

Theorem 5.5. Ricci Yamabe soliton in 3-dimensional (e, §)- trans-Sasakian manifold with Einstein Semi
Symmetric is an Einstein manifold.

Contrasting (5.4) with (2.11) we obtain
(1-9)
1=2(q-p+22) - p(p? - a?). (55)
Thereby, we state the following:
Theorem 5.6. Ricci Yamabe solitons in 3-dimensional (g, §)- trans-Sasakian manifold with Einstein Semi

Symmetric is shrinking or expanding or steady accordingly as %(q—p+(@)) <p(p?—a?) or

r(q_p+(M)) > p(B% — a?) or g(q_ﬁ(w)) = p(B% - a?).

2 3 3

If g = 0 then (5.5) implies

A= —E(Hs) + p(a? — B?).

2 3
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Corollary 5.5. p-Ricci solitons in 3-dimensional (¢, §)- trans-Sasakian manifold with Einstein Semi Symmetric
is shrinking or expanding or steady accordingly as g(?) > (a? - B?) or g(?) <(a®?-pB%) or
(59 - @

If p = 0 then (5.5) becomes

,
1=%L
2

Corollary 5.6. g-Yamabe solitons in 3-dimensional (&, §)- trans-Sasakian manifold with Einstein Semi
Symmetric is shrinking or expanding or steady accordinglyasr < 0orr > 0orr = 0.

6. Projectively Flat Ricci Yamabe soliton in 3-dimensional (&, §)- trans-Sasakian manifold

If Ricci Yamabe soliton in 3-dimensional (e, §)- trans-Sasakian manifold is projectively flat, then

9(P(Uy, Ux)Us, ¢ V) = 0. (6.1)
Making use of (1.3) we have

gRU,, Ux)Us, ¢ V1) _% [S(Up, U3)g(Uy, ¢ V1) — S(Uy, U3)g(Us, ¢ V1)] = 0. (6.2)

Assuming U, = U; = {in (6.2)

gRU, DS P V1) —% (S, g1, ¢ V1) = SUL, DG, o V)] = 0. (6.3)
By virtue of (2.1), (2.2), (2.9), (2.13) and (6.3) we yield

gL e V) [(B2 - a®) +¢ (L2 = 0. (6.4)
Which implies

A=""—6p(a® —p2). (6.5)
Or

r= (“‘“’;72’32‘“2)) (6.6)

Thereby, we state the result as:

Theorem 6.7. Projectively flat Ricci Yamabe soliton in 3-dimensional (g, §)- trans-Sasakian manifold is
shrinking or expanding or steady according as =~ < 6p(a®—pB%) or =->6p(a’—p?) or

&qr

- =6p(a®—p?).

Above theorem leads to the following corollary:

Corollary 6.7. Projectively flat Ricci Yamabe soliton in 3-dimensional (g, §)- trans-Sasakian manifold is of
constant scalar curvature.

If g = 0 then (6.5) can be written as
A =6p(B* — a®).

Corollary 6.8. Projectively Flat p-Ricci soliton in in 3-dimensional (¢, §)- trans-Sasakian manifold is shrinking
or expanding or steady accordingly as 8% < a? or p% > a?or ? = a?.
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If p =0 then (6.5) can be shown as

Corollary 6.9. Projectively flat g-Yamabe soliton in 3-dimensional (g, §)- trans-Sasakian manifold. If 3-
dimensional (g, §)- trans-Sasakian manifold is shrinking or expanding or steady accordingly as er < 0 or er >

Oorer = 0.

7. C-Projectively flat Ricci Yamabe soliton in 3-dimensional (&, §)- trans-Sasakian manifold

If Ricci Yamabe soliton in 3-dimensional (&, §)- trans-Sasakian manifold is -projectively flat, then

P(U;,U,) = 0.
From (1.3) we obtain
R(Uy, U)¢ —%[S(Uz.i)% — S(Uy, U] =0.

Taking inner product with V; in the above equation, then we have

gRWU., U)4, V1) = % [S(U2, 9 g(U, V1) = S(U1, g Uy, V1)] = 0.

Substitute U, = ¢ in the above equation to get

gRU1, S, V1) —%[5(5,5)9(U1,V1) - S0, DY, V)] =0
In view of (2.2), (2.9), (2.13) and (7.4) to yield

g, V1) = —en(Un(Vy).

Put (7.5) in (7.3), we have

R(U,,Uy)C = 0.

By applying (7.6) in (7.2), we conclude the following

r=L
>
Or
21
r=—
q

Which leads the following theorem:

(7.1)

(7.2)

(7.3)

(7.4)

(7.9)

7.6)

7.7

Theorem 7.8. {-Projectively flat Ricci Yamabe soliton in 3-dimensional (e, §)- trans-Sasakian manifold is

shrinking or expanding or steady accordingasr < 0orr > 0 orr = 0.

If q =0 then (7.7) yield
A=0.

Above theorem leads to the following corollary:

Corollary 7.10. -Projectively flat p-Ricci soliton in 3-dimensional (&, §)- trans-Sasakian manifold is steady.
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8. Ricci Yamabe soliton in 3-dimensional (&, §)- trans-Sasakian manifold with ¢-Projectively Semi-
Symmetric Condition

Definition 8.1. A Riemannian manifold (M, g) is said to be ¢-projectively semi-symmetric with respect to
semi-symmetric metric connection if P(Uy, U,). ¢ = 0 holds on M.

Let M be a ¢-Projectively semi-symmetric 3-dimensional (g, §)- trans-Sasakian manifold with respect to semi-
symmetric metric connection. The condition P(U,,U,).¢ = 0 turns into

(P(Uy,Up).9)U; = P(Uy,Up). ¢ Us — ¢ P(Uy, Up)Us. (8.1)
Using (1.3) we obtain

R(U,,U5)¢ Us — ¢ R(Uy, Ux)Us —2[5(U2,¢ U)Uy — S(Up, ¢ Us)U; — S(U,, Us)p Uy +
S(Uy, Us)¢ Us] = 0. (8.2)

Applying (2.8) and (2.12) in (8.2), we have

LlgUz ¢ Us)Uy — g(Uy, ¢ U3)U, — g(Us, Us)p Uy + g(Uy, Us)ep Us]

+1,[g (U2, ¢ UsIn(U1)¢ = g(Us, ¢ Us)n(U2)¢ —n(U2)n(Us)e Uy +n(U)n(Us)é Uy ]

—%[S(Uz,(p Us)Uy — S(Uy, ¢ U3)U, — S(U,, U3)p Uy + S(Uy, Uz)dp U] = 0. (8.3
Replacing U; by ¢ U, and taking the inner product with V; and using (2.1), we have

Li[g(Uz, ¢ U3)g(¢ Uy, V1) — g(Us, U3)g(Uz, Vi) + € n(U2)n(Us) g (U, V1)

+ 99Uz, U3)g (U, V1) — € g(Uy, U)n (U (V1) + g(¢ Uy, U3)g (@ Uz, V1))

+[=e n(U)n(V) g (U, Us) + n(U)n(U3)g(Us, V1) + (1 = e)nUnU)n(Us)n(V1)]

—%[S(Uz,qﬁ U)Uy —S(Uy, ¢ U3)U, — S(Uy, Us)p Uy + S(Uy, Us)p U,] = 0. (8.4)

Substituting U; = V; = ¢; in (8.4) and using (2.1), we yield

S(U,,U3) = ay g(Up, U3) + an(U)n(Us). (8.5)
Where

—21-2B6 6 l
L=1+2(8 - a?), L =3(a*-p*) -7, Iy = 220, o ==[a-an+4

a, =é[2£l1+2(2—5)l2 —

Which leads to the following theorem:

Theorem 8.9. Let M be a ¢-Projectively semi-symmetric Ricci Yamabe soliton in 3-dimensional (g, §)- trans-
Sasakian manifold. Then M is an n-Einstein manifold.

Contracting (8.5) and (2.11) we get

1=r|(E2)p+q] - [po + (55) (@® - p2p]. (8.6)

4 2

Thus, we can state the theorem as:

Theorem 8.10. Ricci Yamabe soliton in 3-dimensional (¢, )- trans-Sasakian manifold with ¢-Projectively
Semi-Symmetric is shrinking or expanding or steady according as
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[((59)p+a] < [pe + (%) @ = 2] or r[(5%)p +a] > [p6 + (55) (@ = g73p or

r|(5)p ] = [+ (57) @ — g7

If g = 0 then (8.6) implies
1= p[ (3 Sg) (9 115) (ﬁz —0(2)] ﬁ5

Corollary 8.11. p-Ricci soliton in 3-dimensional (e, §)- trans-Sasakian manifold with ¢-Projectively Semi-

5) (9 118) (,32 2)] <,B5

Symmetric is shrinking or expanding or steady accordingly asp [r(3_4
or p[ (3 55) (9 115) (5% — 2)] > BS o p[ (3 58) (9 115) (p? — 2)] = 5.

If p = 0 then (8.6) becomes

<

A= qr — B4.

Corollary 8.12. g- Yamabe soliton in 3-dimensional (¢, §)- trans-Sasakian manifold with ¢-Projectively Semi-
Symmetric is shrinking or expanding or steady accordingly as gr < & or qr > 6 or qr = .
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