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Abstract - Recent advances in wearable technology for healthcare monitoring create a need for flexible,
miniaturized antennas that can enable wireless connectivity. This paper presents the design and experimental
validation of an inverted E-shaped textile microstrip patch antenna for wearable applications in the 2.4 GHz
ISM band. A rectangular slot and pair of loaded strips are used in combination with the inverted E-shape to
achieve significant miniaturization of 75% compared to a standard patch antenna, with a final size of 30 x 20
mm. The antenna demonstrates good reflection coefficient below -10 dB in the operating band along with
acceptable radiation characteristics including omnidirectional patterns. Experimental results confirm adequate
performance under varied bending curvatures with efficiencies of 63-76%. The proposed antenna provides an
optimal combination of miniaturized profile, flexibility and radiation performance for integration in next-
generation wearable wireless sensors.
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1. INTRODUCTION

Wearable technology has expanded rapidly from initial applications in fitness tracking into medical-grade
patient monitoring systems leveraging recent advances in flexible electronics and Internet of Things (loT)
connectivity [1-3]. Healthcare wearables including biosensor patches, smart clothing, head-mounted displays
and body-worn sensor networks allow continuous, real-time monitoring of patient vitals and activities [4,5].
This enables early diagnosis as well as improvements in treatment efficiency and recovery monitoring for
conditions including cardiovascular disease, neurological disorders and mobility impairments. Critical
requirements for wearable systems include non-invasiveness, flexibility to conform to skin or clothing and
wireless connectivity for data transfer [6].

Antennas provide the wireless interface for wearables to communicate gathered sensor data to personal
devices or healthcare networks. However, wearable antennas face additional size and performance constraints
compared to traditional antenna implementations due to integration within flexible substrates and proximity to
the human body [7]. Flexible materials introduce greater signal losses while the high water content of tissues
heavily absorbs electromagnetic waves, resulting in detuning and efficiency degradation. The antenna must also
maintain functionality when subjected to dynamic bending, compression and stretch deformations as the user
moves. Consequently, significant efforts have focused on developing textile patch antennas with adequate
radiation characteristics under flexed conditions while minimizing thickness for seamless integration [8-10].
This paper presents a novel miniaturized inverted E-shaped textile antenna optimized specifically for wireless
body area network (WBAN) applications at 2.4 GHz. A compact, low-profile design is achieved using a
combination of slot loading and capacitive strip inserts to reduce the resonant frequency. The contributions are
summarized as follows:

e A miniaturized inverted E-shaped textile antenna with 75% size reduction compared to a standard
patch antenna

e Integration of slot and strip line techniques to compress antenna size below thresholds for wearable
sensors
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e Experimental validation of reflection coefficient, radiation patterns and efficiency under flat and flexed
conditions

e Demonstration of reliable performance when undergoing bending along horizontal and vertical
curvatures

The paper is organized as follows. Section 2 provides an overview of related work in textile wearable

antenna design and miniaturization techniques. Section 3 describes the design procedure and techniques used to

develop the inverted E-shaped antenna. Section 4 analyzes the measured results including reflection coefficient,

radiation characteristics and bending response. Finally, Section 5 presents the key conclusions and future
research directions.

2. RELATED WORK

Textile antennas substitute traditional rigid dielectric substrates with flexible, conductive fabric materials to
improve conformability for body-worn applications [11]. Common textile materials include felt, denim, fleece
and jersey knit with shielding properties enabled through electrotextiles coated with conductive pastes or metal
platings [12]. Performance is largely determined by the conductive surface resistivity, permittivity and loss
tangent.

Initial textile antennas simply replicated existing metal antenna topologies including patches,
monopoles and spirals using conductive textiles, which achieved moderate flexibility but lacked optimization
for wearables [13,14]. More recent research explores techniques to enhance specific characteristics like
miniaturization, radiation efficiency and deformation resilience while meeting the size and comfort needs for
integration within garments. These include ground plane truncation [15], substrate integrated waveguides [16]
and artificial magnetic conductor ground planes [17] to improve antenna gain and front-to-back ratios.
Multiband behavior using fractal geometries [18] or slot perturbations [19] along with frequency
reconfigurability [20] has been demonstrated for spectrum agility.

Size reduction is especially important as larger form factors restrict locations for on-body deployment
and increase likelihood of detachment. Miniaturization techniques reduce physical length scales through
modifications in the current path, impedance loading or near field effects to compress the antenna below
resonance dimensions [21]. High impedance surfaces have enabled half-wavelength patch sizes [22] while
meandering the radiator currents flowing from the feed to the patch edges increases the effective electrical
length [23]. Loading slot configurations introduce stepped impedances which slow wave propagation [24].
capacitively coupled feed proximity [25] and shorting pins/walls modify the inductive and capacitive parasitics
to achieve miniaturization ratios up to 75% for both planar and 3D antenna structures [26-30].

This work utilizes a combination of rectangular slot etching and capacitive strip loading tuned through
an evolutionary optimization routine to realize a compact, miniaturized inverted E-shaped textile wearable
antenna. The proposed design methodology balances good impedance matching and -10 dB return loss
performance in the 2.4 GHz ISM band with a 75% reduction in patch size, making it well-suited for unobtrusive
integration within WBAN sensor nodes, smart clothing and remote health tracking devices. The truncated
ground plane and E-shaped slots improve resilience to morphological changes when undergoing bending or
crumpling against the human body. Table 1 compares the proposed antenna dimensions and key parameters
including bandwidth, efficiency and miniaturization against recent state-of-the-art textile wearable antennas in
literature, showing favorable performance.

Table 1 Performance comparison with state-of-the-art textile wearable antennas.

Specifications [31] [32] [33] This Work
Antenna Size (mm) 50 x 50 x 6 59.6 x 59.6 x 3.7 63 x24.8x7.3 30x20x0.7
Substrate Felt Fleece Jeans Denim
Resonant Frequency (GHz) 2.40/5.20 2.4 24 2.4
Dielectric Constant 1.3 1.5 2.2 1.7
Bandwidth (%) 5.4 4.8 4 10
Efficiency (%) 17 81 N/A 79
Miniaturization 0 0 0 75%
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3. ANTENNA DESIGN METHODOLOGY

This section details the design procedure for the proposed inverted E-shaped miniaturized antenna. A standard
rectangular microstrip patch antenna as shown in Figure 1lab provides the reference for evaluating size
reduction and performance. The antenna consists of an etched radiating patch and truncated ground plane
separated by a 0.7 mm thick denim substrate with permittivity €» = 1.7 and loss tangent ¢ = 0.02. The
conductive Shieldlt fabric (surface resistivity 0.18 {2/sq) forms both the antenna patch and ground plane. A 50
€2 microstrip feedline connects to the patch along its length. The width W and length L of 40 mm x 60 mm are
selected to resonate at 2.4 GHz based on standard patch design equations for a rectangular radiator [34].

ﬂ S
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Figure 1. Reference rectangular patch antenna (a) front view, (b) back view.

The design evolution from the reference antenna in Figure 1 to the final inverted E-shape in Figure 8 begins by
reducing the patch size to a 30 mm x 20 mm rectangle as shown in Figure 2a. This fails to achieve the targeted
2.4 GHz resonance. Slot loading techniques are then applied to the reduce the resonant frequency through
modifications in the current path. Figure 2b introduces a rectangular slot, which perturbs the current distribution
along the radiating edges of the patch. The simulated S11 plot in Figure 5 illustrates the lowered resonance now
centered at 3.1 GHz.
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Figure 2. Evolutionary phases of the proposed antenna (a) Antenna_1 (b) Antenna_2
(c) Antenna_3 (d) Antenna_4
Introducing a second symmetrical slot to form an E-shape in Figure 2c further increases the effective current
path length, shifting down the resonant frequency to approximately 2.8 GHz as observed from the Antenna 3
trace in Figure 5. Finally, converting the lower slot into an inverted rectangular shape while inserting two thin
strip lines at the middle of each slot realizes the final inverted E-shaped topology in Figure 3a,b. The strips
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function as capacitive loads to achieve the targeted 2.4 GHz resonance with a significantly compressed patch
size of 30 x 20 mm, enabling >75% miniaturization compared to the original dimensions.

(@) (b)

Figure 3. (a) Front view (b) Back view of the proposed antenna (Antenna_5)

The equivalent circuit models corresponding to the incremental antenna structures are shown in Figure 4a-d.
The initial rectangular patch resembles a parallel RLC resonator. As the rectangular slot is introduced, two
current components flow: (i) the regular patch current distribution and (ii) a longer path meandering around the
slot, increasing both inductive and capacitive parasitics as lumped element additions AL and A C compared to
Figure 4a. The second slot further perturbs the current distribution for Antenna 3. Finally, the two strip lines in
the final Antenna 4 topology contribute additional capacitance £\ C which helps achieve the targeted 2.4 GHz
resonance. Table 2 lists the optimized circuit values obtained through an empirical fitting procedure with the
measured antenna data.
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Figure 4 Equivalent circuits of the evolutionary phases of the proposed antenna. (a) Antenna_1 (b)
Antenna_2 (c) Antenna_4 (d) Antenna_5
Table 2 Equivalent circuit model parameters.

Component Value
R 514 Q
C 0.5pF
L 0.3nH
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ALl 0.5nH
AL2 0.8nH
AC1 0.7pF
AC2 1.0pF
ACs 1 1.2pF
ACs 2 1.4pF

The measured reflection coefficient exhibits a wider 10 dB return loss bandwidth from 2.23 - 2.59 GHz
compared to the simulated range of 2.29 - 2.53 GHz. This stems from greater losses and dispersion in the actual
denim fabric material compared to the design model. Both results validate successful miniaturized operation at

the 2.4 GHz industrial, scientific and medical (ISM) band.
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Figure 5. Simulated reflection coefficients at various antenna configurations
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Figure 6. Simulated surface current distribution of the antenna at various frequencies. (a) Antenna_3
(3.334 GHz), (b) Antenna_4 (3.022 GHz), (c) Antenna_5 (2.65 GHz) (d) Antenna_6 (2.4 GHz)
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4. RESULTS AND DISCUSSION

The inverted E-shaped antenna prototype pictured in Figure 8 was fabricated using the conductive Shieldlt
fabric affixed on a 0.7 mm denim substrate with pins to connect the microstrip feed. Measurements of the
reflection coefficient, radiation patterns and antenna efficiency under flat and bending conditions were
conducted to fully characterize the antenna performance.
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Figure 7. Comparison of the simulated and measured reflection coefficient of the proposed antenna (i.e.
Antenna_b)
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Figure 8. Prototype of the proposed antenna (a) Front view (b) Back view

4.1. Return Loss Performance

Figure 7 previously showed reasonable matching between the measured and simulated S11 data. The fabricated
antenna demonstrates adequate impedance bandwidth for 2.4 GHz ISM band applications with a 240 MHz
(10%) fractional bandwidth from 2.23 - 2.53 GHz under flat conditions. This meets requirements for wearable
sensor communications using protocols including Bluetooth and Zigbee. Measurements of the radiated emission
patterns at multiple frequency samples across the operating band yielded similar omnidirectional (H-plane) and
bidirectional (E-plane) characteristics. Representative E- and H-plane normalized radiation patterns at 2.4 GHz
in Figure 9 also confirm close agreement to simulation results. The peak measured gain equalled 2.05 dB with
79% radiation efficiency.
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Figure 9. Measured and simulated E-plane and H-plane radiation patterns at 2.4 GHz.

4.2. Flexibility Performance

Wearability necessitates resilient antenna functionality under bending and crumpling against the dynamic
human body. The bending response was characterized by measuring S11 while conforming the patch around
foam cylinders with diameters of 70, 80, 100 and 140 mm, representing various curvature radii. Smaller
diameters induce increased bending deformation on the antenna. Figure 10 plots the results for vertical and
horizontal bending orientations, corresponding to axes transverse and parallel with the microstrip feed
orientation.

Table 3 summarizes the impact on operating bandwidth, resonance frequency and efficiency as the
curvature radius changes. The antenna exhibits slight upwards shift in resonance frequency as the diameter
decreased from 140 mm to 70 mm due to increased effective electrical length under higher bending. However,
adequate -10 dB impedance match is maintained across 2.23 - 2.62 GHz for all cases without discontinuities or
distortions, demonstrating reliable broadband performance when crumpled or conformed on-body. The radiation
efficiency varies from 63% to 76.2% since the E-plane experiences greater degradation relative to the H-plane
under bending stress [35]. Overall, both the frequency shift (+55 MHz) and efficiency change are minimal,
highlighting the antenna’s resilience.

d=80 T d=100 d=140

(a). Bending curvature in the vertical direction i.e. y-axis
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d=70

d=80

d=100

(b).Bending curvature in the horizontal direction i.e. x-axis
Figure 5.10. Graphical representation of the antenna bending curvature at (a) y-axis (b) x-axis
Table 3. Antenna parameters under varied bending diameters.

d=140

Parameter Units Flat d =140 mm d =100 mm d=80 mm d=70 mm

Frequency GHz 2.23-2.59 2.26-2.62 2.23-2.58 2.24-2.58 2.23-2.57
Range

Bandwidth MHz 360 350 350 340 340

Efficiency % 79 75.3 76.2 70.8 65.7

5. CONCLUSIONS

A miniaturized inverted E-shaped textile antenna was proposed for wearable wireless body area network
applications at 2.4 GHz. Techniques including rectangular slot etching and capacitive strip loading were
strategically combined to achieve over 75% size reduction compared to a standard patch antenna. Experimental
results confirmed acceptable impedance matching below -10 dB and 10% fractional bandwidth along with
omnidirectional radiation characteristics. Reasonably consistent performance was observed under varied
bending curvatures and orientations, with 65-76% radiation efficiency. The flexible, low-profile and
miniaturized textile antenna design enables seamless integration within smart clothing and wireless interfacing
with body-worn sensors. Further research can focus on the development of broadband or multiband wearable
textile antennas with frequency reconfigurability features.
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