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Abstract 

This work aims to examine the influence of bi-parabolic thickness temperature change on the vibrations of bi-linear 

temperature non-homogeneous trapezoidal plates. The plate has boundary conditions on all four edges that are 

simply supported (SSSS). The modulus of elasticity is not uniform because of temperature fluctuation. Different 

numerical values of the tapering constant, non-homogeneity, aspect ratio and temperature gradient are derived to 

determine the frequency of the 1st and2nd modes of vibration. 
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1. Introduction 

The majority of structures and machines are controlled by high temperatures.This causes certain vibrations in the 

system. System strength, durability, and efficiency are all impacted by vibrations. Vibration studies aim to minimize 

vibration by designing machinery and buildings correctly and precisely. Therefore, before finishing the design of 

structures, design engineers as well asresearchers must possess pre-knowledge about the vibrational properties of 

systems. Plate geometry affects the vibrational analysis of those plates. Nowadays, engineering applications employ 

plates in a variety of forms, including parallelograms, ellipticals, circulars, and rectangles. Plates with diverse 

geometries, boundary conditions on edges, as well as complicating impacts have frequently been observedin a variety 

of structures, including those used in nuclear reactor technology, aerospace, machine design, telecommunications, 

naval structures, as well a 

s earthquake-resistant constructions. 

According to published studies numerous scholars have been motivated to study in this area by vibration 

analysis. Gupta and Sharma [1] examined how a linear temperature gradient affected the vibrations of trapezoidal 

plates with parabolically variable thicknesses. Sharma and Gupta [2] investigated how a non-homogeneous trapezoidal 

plate along with parabolically variable thickness was affected by linear temperature behaviour.In his monograph, 

Leissa [3] offered a comprehensive collection of research articles on the plate’s vibration with various forms and 

boundary conditions. Saxena and Singh [4] examined the variable-thickness triangular plates’ transverse vibration. 

Chen et al. [5] investigated the free vibration of the thick trapezoidal plates that were cantilevered and symmetrically 

laminated. Bambill et al. [6] investigated the transverse vibrations of cantilever plates that were rectangular, 

trapezoidal, and triangular orthotropic. Saliba [7] studied simply supported symmetrical trapezoidal plate-free 

vibration analysis. Deshpande and Krishnan [8] investigated the trapezoidal plates’ free vibration. Lam and Liew [9] 

have investigated the vibrational action of trapezoidal composite plates that were symmetrically laminated under point 

restrictions. Lim and Liew [10] investigated the transverse vibration of variable-thickness symmetric trapezoidal 

plates. 
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2. Geometry of the Plate 

A thin,symmetric,as well asnon-homogeneous trapezoidal plate having different densities and thicknesses were 

considered for the research of transverse vibration. Figure 1 depicts the plate's geometry. 

Figure 1: Geometry of the trapezoidal plate 

 

 

3. Thickness and Density 

The plate's thickness, which changes in both directions in a parabolic manner, may be written as
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here oh indicates the thickness along by /= and ax /= . 

The non-homogeneity is considered to result from the “linear change in density along withplate length and occurs in 

the bodies as a result of material imperfection. 
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The temperature differenceon the plate is deemed to be bilinear such as linear in 𝜉 direction and η direction as: 
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Where o presents the temperature excess over the reference temperature on end 
2

1
−=  and τ denotes a excess over 

the reference temperature at a distance
a
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The elasticity  modulus for elastic materials is defined as: 

F = Fo (1- ),                                                                                                                    (4) 

Where OF indicates the Young’s modulus value over reference temperature at =0 and  represents thevariation slope 

of F and . 

Using Eq. (3) in Eq. (4), we get 
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Where  = O  (0 ≤   ≤ 1). 

4. Governing differential Equation 

The differential equation that determines the kinetic energy K as well asstrain energy S of a non-homogeneous 

trapezoidal plate” whose thickness changes bi-parabolically may be written as 

K = dAwhw
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Plate’sFlexural rigidity D ( )  is expressedas 

D ( ) = OD ( ) ( )
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Where OD =
( )2

3

112 −

OFh
indicates the plate’s flexural rigidity  onside 

2

1
−=  

The deflection function of 2-term w is considered“as 
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Where 1A and 2A indicates the constants. 
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5. Methodology 

The frequency equation is resolved with Rayleigh-Ritz method. It is necessary for the greatest strain energy in this 

procedure to match the highest kinetic energy. Thus, to solve the issue  under consideration that 

( ) 0=− SK .                                                                                                                (11) 

By using (1), (2), (6), (7), (8) and (9), (11) becomes 
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Denote the frequency parameter. 

Eq. (12) contains 2 unknowns 1A 2A that arise as a consequence of applying the deflection function. 

These 2 unknowns may be assessed from Eq. (12) as follows: 
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On simplifying Eq. (22), we get: 

                                                                                   (14) 

here )2,1(, 21 =mbb mm includes the frequency parameter and the parametric constant. 

The coefficient determinant in Eq. (14) should be zero for the solution to be non-zero. Thus, the frequency eq. obtained 

as 

|
11b 12b

21b 22b
|= 0                               (15) 

The quadratic equation 
2  is attained via eq. (15) which displays the 2 values 

2 referred to as 1st and 2nd modes of 

vibration correspondingly. 

6. Result and discussion 

The current literature examines the “vibration characteristics of a non-uniform trapezoidal plate with bi-parabolic 

thickness variation and bi-linear temperature variation. Equation (15) yields the frequency parameter values for 

numerous values of the above-mentioned parameters. For the first 2 vibration modes, the natural frequencies are 

approximated. Poisson's ratio is calculated to be 0.33. Every result has been shown with the use of graphs. 

Figure 1: It is evident that in both cases, when 1 = 0.4 and 1 = 1, the frequency value drops as the temperature 

gradient  increases from 0 to 1. Additionally, it is noted that when the taper constant rises from 0 to 0.4, the 

frequency of both vibration modes increases in both scenarios. 

Figure 2: When the tapering parameters 21, rise from 0 to 1 for both situations ( 1 =0.4 and 1 =1), the frequency 

parameter values for both modes increase. Additionally, the graph showed that, in the two aforementioned examples, 

the frequency of both vibration modes reduces as the temperature gradient value rises from 0 to 0.4. 
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Figure 3: It is highlighted that when the aspect ratio c/b rises from 0.25 to 1, frequency” falls; however, when the 

graph is viewed from left into right for the mentioned cases, frequency increases for both modes.Case1:

021 ===  and 4.0,0 21 ===   

Case2: = 0.4, 021 ==  and  = 0.4, 4.021 ==   

Figure 4: It is clear that a rise in a non-homogeneity 1 range between0 to 1 indicates that the vibrational frequency 

for modes declines in one scenario, whereas in the other, the frequency rises. This is demonstrated by observing the 

graph for the following scenarios from left to right. 

Case1: 021 ===  and 4.0,0 21 ===   

Case2:  = 0.4, 021 ==  and  = 0.4, 4.021 ==  ( )
 

 

Figure-1: Thermal Gradient α  versus Frequency λ 
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Figure-2: Taper Constant β1=β2 versus Frequency λ 

 

Figure-3: Aspect Ratio (c/b) versus  Frequency λ 
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Figure-4: Non Homogeneity Constant  α1 versus  Frequency λ 

 

Conclusion 

The current study used the Rayleigh-Ritz approach to investigate the temperature impact on the vibrations of a 

symmetric, non-homogeneous trapezoidal plate made of isotropic material along with all four edges that are simply 

supported assisted boundary conditions. Additional factors affecting the plate, including aspect ratios, taper constants, 

thermal gradient, as well as non-homogeneity constants, were also taken into account. 
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