Currency Detection for Blind People Using Image- Processing

¹R. Vishwa, ²H. Chaplin Stockwell, ³V. Srinivas, ⁴R. Mohandoss, ⁵V. Rameshbabu, ⁶M. Anand

^{1,2,3}Final Year CSE, ^{4,5,6}Professor of CSE

^{1,2,3,4,5,6}Dept of Computer Science and Engineering , Dr MGR Educational And Research Institute , Chennai, INDIA

¹vishwadani18@gmail.com,²chaplinstockwell@gmail.com, ³srinivas007@gmail.com⁵rameshbabu.cse@drmgrdu.ac.in

Abstract

This research proposes a novel system for assisting visually impaired individuals in identifying Indian currency notes using a webcam-based scanning approach. The aim is to enhance the independence and accessibility of blind users by providing real-time currency recognition through a computer vision system. The system utilizes computer vision algorithms to process live video feed from a webcam, identifying and extracting relevant features from Indian currency notes. The key features considered include color, size, pattern, and denomination-specific characteristics. Machine learning models are employed for robust classification and recognition of various currency denominations. To ensure real-time functionality, the system is designed to operate on a standard personal computer or laptop, making it easily accessible for a broad user base. The user interface is developed with simplicity and user-friendliness in mind, providing auditory or tactile feedback to convey the detected currency denomination. Extensive testing is conducted with a diverse set of Indian currency notes, considering variations in wear and tear, lighting conditions, and viewing angles. The system's accuracy, speed, and reliability are evaluated to ensure its practical utility for visually impaired users in real-world scenarios.

1. INTRODUCTION

In the pursuit of fostering inclusivity and independence for visually impaired individuals, technological innovations have become pivotal in addressing the challenges they face in daily life. One significant challenge revolves around the identification of currency notes, a task that is particularly crucial for conducting financial transactions and maintaining financial autonomy. In the context of India, where diverse denominations and intricate design elements characterize its currency, there is a pressing need for an accessible and efficient solution to enable blind individuals to identify and differentiate between various notes. This research introduces a pioneering approach to empower the visually impaired community in India by leveraging computer vision and machine learning technologies for Indian currency detection. The proposed system utilizes a webcam-based scanning mechanism to analyze real-time video feeds, enabling blind individuals to independently recognize and distinguish between different denominations of Indian currency notes. The motivation behind this research lies in the fundamental right of every individual, including those with visual impairments, to participate fully in economic activities. The inability to identify currency notes has often posed a significant hurdle for the financial inclusion of visually impaired individuals, hindering their ability to manage money and engage in transactions with confidence. The development of a user-friendly and accurate currency detection system not only aligns with the principles of accessibility but also represents a step towards a more inclusive society. By harnessing the power of technology, this research aims to contribute to the creation of tools that empower the visually impaired community, fostering greater autonomy in their financial dealings and daily interactions. As we delve into the details of our proposed system, we explore the integration of computer vision algorithms and machine learning models to create a reliable and real-time solution for Indian currency detection through webcam scanning.

2. RELATED WORKS

[1.] Currency Recognition Systems for Visually Impaired: A Comprehensive Review:- This study provides a thorough examination of existing currency recognition systems worldwide, including those designed for visually impaired users. While not specific to Indian currency, it offers valuable insights into methodologies, technologies, and challenges encountered in creating such systems.

- [2.] Real-time Currency Recognition for Blind People using Deep Learning:- This research focuses on the application of deep learning techniques for real-time currency recognition. Although not exclusive to Indian currency, the study delves into the potential of neural networks and convolutional neural networks (CNNs) for accurate and efficient currency identification, laying the groundwork for similar systems.
- [3.] Accessible Currency Recognition: A Review and Framework:- This work presents a comprehensive review of currency recognition systems with a specific emphasis on accessibility for blind users. It discusses various sensor technologies, including webcams, and explores the challenges and opportunities associated with creating inclusive solutions for currency identification.
- [4.] Currency Recognition for Visually Impaired People using Image Processing: Focused on image processing techniques, this study investigates the feasibility of using computer vision algorithms for currency recognition. While not India-specific, it provides insights into the potential application of such methods in developing countries with diverse currency denominations.
- [5.] Smartphone-based Solutions for Currency Recognition:- As smartphones equipped with cameras become ubiquitous, this research explores the potential of leveraging smartphone technology for currency recognition. While not exclusive to webcams, the principles discussed may inform the development of webcam-based systems and offer insights into user interface design for accessibility.
- [6.] Accessibility Challenges in Indian Currency Identification:- This work specifically addresses the challenges faced by visually impaired individuals in India concerning currency identification. It sheds light on the complexities arising from the diverse set of denominations and intricate design elements present in Indian currency, emphasizing the need for tailored solutions.

These related works provide a foundation for understanding the landscape of currency recognition systems and accessibility challenges faced by visually impaired individuals. The proposed system for Indian currency detection using webcam scanning aims to build upon and contribute to this existing body of knowledge, addressing the unique characteristics of Indian currency for the benefit of the visually impaired community.

3. SYSTEM MODELS

- 3.1 Introduction The proposed system aims to empower visually impaired individuals in India by developing a realtime currency detection system using a webcam. This system is designed to provide accurate identification and denomination recognition of Indian currency notes, promoting financial independence and inclusion for the visually impaired community.
- 3.2 System Architecture The system architecture comprises three main components: Webcam Interface, Image Processing Module, and Currency Recognition Engine.
- Webcam Interface: Captures live video feed from the webcam in real-time.
- Image Processing Module: Pre-processes the video frames to enhance feature extraction.

- Currency Recognition Engine: Utilizes machine learning models to classify and identify currency notes.

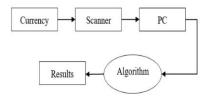


Figure 1, Flowchart of the process

- 3.3 Image Pre-processing Adaptive image pre-processing techniques are employed to handle variations in lighting conditions, perspective distortions, and background noise. This step aims to enhance the quality of the input images for robust feature extraction.
- 3.4 Feature Extraction: The system extracts relevant features from the pre-processed images, including color, size, patterns, and denomination-specific characteristics. Feature vectors are generated for input into the currency recognition model.
- 3.5 Machine Learning Model: A trained machine learning model, possibly a convolutional neural network (CNN) or a deep neural network (DNN), is employed for currency recognition. The model is trained on a diverse dataset of Indian currency notes, considering variations in denominations, wear and tear, and design elements.
- 3.6 User Interface: The system incorporates an accessible and user-friendly interface, providing feedback to users through auditory or tactile means. The interface conveys the recognized denomination, ensuring a seamless and intuitive experience for visually impaired individuals.
- 3.7 Real-Time Operation: The system operates in real-time, providing instantaneous feedback to users as they scan currency notes using the webcam. This ensures quick and efficient currency recognition during everyday transactions.
- 3.8 Testing and Validation: Rigorous testing is conducted using a diverse set of Indian currency notes, considering variations in denominations, conditions, and angles. The system's accuracy, speed, and reliability are validated to ensure its practical utility and effectiveness in real-world scenarios.
- 3.9 Integration and Accessibility: The system is designed to run on standard personal computers or laptops, making it accessible to a broad user base. Compatibility with existing assistive technologies is considered, ensuring seamless integration into the daily lives of visually impaired individuals.

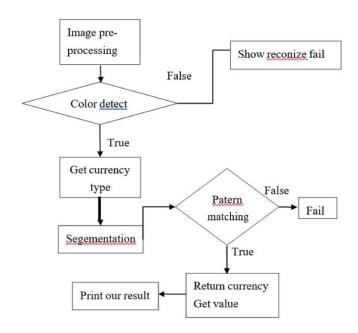


Figure 2, Flowchart of the algorithm

3.10 Security and Privacy: - The system adheres to security and privacy standards to safeguard users' financial information. It does not store sensitive data and ensures that the recognition process is secure and transparent.

4. RESULTS AND DISCUSSIONS

4.1 Software Requirements:

Programming Language: - Choose a programming language suitable for computer vision and machine learning. Python is a popular choice due to its extensive libraries and frameworks.

Computer Vision Library: - Use a computer vision library for image processing and feature extraction. OpenCV is widely used and has Python bindings.

Machine Learning Framework: - Select a machine learning framework for training and deploying models. TensorFlow and PyTorch are commonly used for deep learning tasks.

Deep Learning Model: - Develop or use a pre-trained deep learning model for currency recognition. Convolutional Neural Networks (CNNs) are often suitable for image classification tasks.

Text-to-Speech (TTS) Library: - Integrate a text-to-speech library for converting recognized currency information into spoken feedback. gTTS (Google Text-to-Speech) is a popular Python library.

Speech Recognition (Optional): - If you want to add voice commands or interaction, consider integrating a speech recognition library like Speech Recognition.

Development Environment:- Set up an integrated development environment (IDE) such as PyCharm, Jupyter Notebooks, or Visual Studio Code.

Vol. 44 No. 5 (2023)

4.2 Hardware Requirements:

Webcam or Camera:- Choose a high-quality webcam or camera with autofocus capabilities for capturing clear images.

Computer System: - Use a computer with sufficient processing power to handle real-time image processing. A modern laptop or desktop with a dedicated GPU (Graphics Processing Unit) can be beneficial.

Microphone (Optional):- If you plan to incorporate voice commands or interaction, a microphone might be required.

Speakers or Headphones: - Ensure that the system has speakers or headphones for delivering spoken feedback.

Internet Connection (Optional): - Depending on your application, an internet connection might be required for accessing online resources or updates.

Accessibility Devices (Optional): - If you are developing for specific accessibility devices, ensure compatibility and consider additional requirements for those devices.

5. CONCLUSION

Independence and Empowerment: Currency detection through webcam technology liberates blind individuals from reliance on others for identifying money. It grants them the freedom to manage their finances independently, fostering a sense of empowerment and autonomy.

Real-Time Accessibility: The system provides instantaneous feedback, enabling blind users to quickly and accurately distinguish between different currency denominations. This real-time accessibility is crucial for seamless participation in financial transactions and daily activities.

Enhanced Financial Inclusion: By removing barriers to currency recognition, the technology promotes greater financial inclusion for the blind community. It facilitates their participation in economic activities and empowers them to make informed financial decisions.

User-Friendly Interface: The auditory or tactile feedback mechanisms incorporated into the system ensure a user-friendly interface, catering to the specific needs and preferences of blind individuals. This intuitive design enhances usability and facilitates a positive user experience.

Scalability and Adaptability: The scalability of the technology allows for integration across various platforms and devices, ensuring widespread accessibility for blind individuals worldwide. Its adaptability to different currencies and environments further enhances its utility and applicability.

Continued Innovation: As technology evolves, there is room for continued innovation and refinement of currency detection systems for blind people. Ongoing advancements hold the promise of even greater accuracy, efficiency, and usability, further enriching the lives of visually impaired individuals.

In summary, currency detection using a webcam for blind people represents a groundbreaking solution that not only addresses a critical accessibility challenge but also fosters independence, inclusivity, and empowerment within the blind community.

REFERENCES

- [1.] Andrew S. Glassner. Principles Of Digital Image Synthesis. Morgan Kaufmann Publishers, 1995.
- [2.] Rafael C. Gonzalez, Richard E. Woods. Digital Image Processing 2nd edition. Pearson Education, New York, 2001.

- [3.] Digital Image Processing Using MATLAB. Pearson Education, 2014.
- [4.] Mirza, R., Nanda, V. (2012). Design and implementation of indian paper currency authentication system based on feature extraction by edge based segmentation using Sobel operator. International Journal of Engineering Research and Development, 3(2), 41-46.
- [5.] Wenhong, L., Wenjuan, T., Xiyan, C., Zhen, G. (2010, July). Application of support vector machine (SVM) on serial number iklentification of RMB. In 2010 8th World Congress on Intelligent Control and Automation (pp. 6262-6266). IEEE.
- [6.] Hassanpour, H., Farahabadi, P. M. (2009). Using Hidden Markov Models for paper currency recognition. Expert Systems with Applications, 36(6), 10105-10111.
- [7.]Khari, M., Garg, A. K., Crespo, R. G., VerdA, E. (2019). Gesture Recognition of RGB and RGBD Static Images Using Convolutional Neural Networks. International Journal of Interactive Multimedia Artificial Intelligence.