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Abstract:-The purpose of this article is to extend the classical Banach contraction principle to a complete metric 

space endowed with a binary relation where the contraction condition is relatively weaker than usual contraction 

as it is required to hold only on those elements which are related under the underlying relation rather than the 

whole space. Finally, we apply our results to prove the existence and uniqueness of solution of a certain class of 

nonlinear contraction in a complete metric space. The presented theorems extend and subsumes various known 

comparable results from the current literature. Some illustrative examples and applications are provided to 

demonstrate the main results and to show the genuineness of our results. 
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1. Introduction 

The metric space, first developed by French mathematician M. Frechet in 1906, has been an important concept 

in functional analysis and mathematical analysis. Since its introduction, many researchers have generalized and 

extended the metric space concept in various ways, leading to the development of complex valued metric 

spaces, rectangular metric spaces, semi metric spaces, quasimetric spaces, and others. These generalizations 

have been motivated by the wide-ranging impact of the original metric space on mathematics, with applications 

in areas such as probability theory, game theory, and computer science.A significant amount of research has 

been devoted to exploring the generalizations and improvements of fixed point results, many of which focus on 

establishing the existence and uniqueness of fixed points. One of the most notable of these results is that of Ran 

and Reurings [12], who studied the existence of fixed points for certain mappings in partially ordered metric 

spaces, with applications to matrix equations. This work was later extended by Nieto and Lopez [11], who 

considered non-decreasing mappings and derived solutions to partial differential equations with periodic 

boundary conditions.  In this direction several authors obtained further results [2,5,7,9,10,20,23]. 

Turinici [1] introduced the novel idea of an order-theoretic fixed point result, and this concept was later 

expanded upon by Samet and Turinici [17], who developed fixed point results using the symmetric closure of an 
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amorphous binary relation. Alam and Imdad [13] further extended these results, deriving a relation-theoretic 

analogue of the Banach contraction principle that unifies many existing order-theoretic results. These results 

represent significant contributions to the field of fixed point theory, building upon the work of Turinici [1] and 

other researchers. 

In addition to their previous work [13], Alam and Imdad [14] presented a new variant of the Banach contraction 

principle on complete metric spaces with binary relations. This variant utilized relation-theoretic analogues of 

various metrical notions such as contraction, completeness, and continuity, all of which were reduced to their 

corresponding usual notions under the universal relation. This variant represents an important step forward in 

developing fixed point theory in the context of relations. 

In view of the above considerations, we extend the classical Banach contraction principle to a complete metric 

space endowed with a binary relation where the contraction condition is relatively weaker than usual contraction 

as it is required to hold only on those elements which are related under the underlying relation rather than the 

whole space. The presented theorems extend and subsumes various known comparable results from the current 

literature. Some illustrative examplesand applications are provided to demonstrate the main results.  

Throughout this paper, 𝑅 stands for a nonempty binary relation, but forthe sake of simplicity, we write 

onlybinary relation instead of nonemptybinary relation, ℕ,ℚ and ℝ respectively denote the sets of natural 

numbers, rationalnumbers and real numbers wherein ℕ0 = ℕ ∪ {0}. Also, we use the following notations: 

(i)𝐹(𝑇) = the set of all fixed points of 𝑇, 

(ii)𝑋(𝑇, 𝑅) ≔ {𝑥 ∈ 𝑋: (𝑥, 𝑇𝑥) ∈ 𝑅}, 

(iii) 𝑌(𝑥, 𝑦, 𝑅):= the class of all paths in 𝑅 from 𝑥 to 𝑦. 

2Preliminaries 

We start this section by presenting some basic relevant definitions andpropositions. 

Definition 2.1 [14] Let 𝑋 be a nonempty set. A subset 𝑅 of 𝑋2 is called a binary relation on 𝑋. 

Notice that for each pair𝑥, 𝑦 ∈ 𝑋, one of the following holds:  

(i) (𝑥, 𝑦) ∈ 𝑅; means that “𝑥 is 𝑅-related to 𝑦” or “𝑥 relates to 𝑦 under 𝑅”. Sometimes, we write 𝑥𝑅𝑦 instead of 

(𝑥, 𝑦) ∈ 𝑅.  

(ii) (𝑥, 𝑦) ∉ 𝑅; means that “𝑥 is not 𝑅-related to 𝑦” or “𝑥 doesn’t relate to 𝑦 under 𝑅”.  

Trivially, 𝑋2 and ∅ being subsets of 𝑋2 are binary relations on 𝑋, which are respectively called the universal 

relation (or full relation) and empty relation.  

Definition 2.2 [19] Let 𝑅 be a binary relation on a nonempty set 𝑋 and 𝑥, 𝑦 ∈ 𝑋. Then𝑥 and 𝑦 are 𝑅-

comparative if either (𝑥, 𝑦) ∈ 𝑅 or (𝑦, 𝑥) ∈ 𝑅. Denoted by[𝑥, 𝑦] ∈ 𝑅.  

Proposition 2.3[13] If (𝑋, 𝑑) is a metric space, 𝑅 is a binary relation on 𝑋, 𝑇is a self-mapping on 𝑋 and 𝜆 ∈

[0,1), then the following contractive conditions are equivalent:  

(a) 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝑅,  

(b) 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋 with [𝑥, 𝑦] ∈ 𝑅.  

Proof The implication (b)⇒(a) is trivial. On the other hand, suppose that (a) holds. Take 𝑥, 𝑦 ∈ 𝑋 with [𝑥, 𝑦] ∈

𝑅. If (𝑥, 𝑦) ∈ 𝑅, then (b) is directly follow from (a). Otherwise, in case (𝑦, 𝑥) ∈ 𝑅, using symmetry of 𝑑 and (a), 

we obtain 

𝑑(𝑇𝑥, 𝑇𝑦) = 𝑑(𝑇𝑦, 𝑇𝑥) ≤ 𝜆𝑑(𝑦, 𝑥) = 𝜆𝑑(𝑥, 𝑦)  (2.1) 

Implies that (a)⇒(b).  
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Proposition 2.4 If (𝑋, 𝑑) is a metric space, 𝑅 is a binary relation on 𝑋, 𝑇is a self-mapping on 𝑋 and 𝜆 ∈ [0,1), 

then the following contractivity conditions are equivalent:  

(a) 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆(𝑀(𝑥, 𝑦)), ∀𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝑅,  

where 

𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑥, 𝑦),

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦)
 ,

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)

𝑑(𝑥, 𝑇𝑥)𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦) }
 
 

 
 

(2.2) 

(b) 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆(𝑀(𝑥, 𝑦)), ∀𝑥, 𝑦 ∈ 𝑋 with [𝑥, 𝑦] ∈ 𝑅, 

where 

𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑥, 𝑦),

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦)
 ,

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)

𝑑(𝑥, 𝑇𝑥)𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦) }
 
 

 
 

(2.3) 

ProofThe implications follow from the proof of proposition 2.3. 

Definition 2.5 [13] A binary relation 𝑅 defined on a nonempty set 𝑋is called 

• reflexive if(𝑥, 𝑥) ∈ 𝑅 ∀𝑥 ∈ 𝑋, 

• irreflexive if(𝑥, 𝑥) ∉ 𝑅 ∀𝑥 ∈ 𝑋, 

• symmetric if (𝑥, 𝑦) ∈ 𝑅 implies(𝑦, 𝑥) ∈ 𝑅 , 

• antisymmetric if(𝑥, 𝑦) ∈ 𝑅 and(𝑦, 𝑥) ∈ 𝑅  implies 𝑥 = 𝑦, 

• transitive if(𝑥, 𝑦) ∈ 𝑅 and(𝑦, 𝑧) ∈ 𝑅 implies(𝑥, 𝑧) ∈ 𝑅, 

• complete, connected or dichotomous if[𝑥, 𝑦] ∈ 𝑅 ∀𝑥, 𝑦 ∈ 𝑋, 

• weakly complete, weakly connected or trichotomous if [𝑥, 𝑦] ∈ 𝑅 or 𝑥 = 𝑦  ∀𝑥, 𝑦 ∈ 𝑋. 

Definition 2.6 [13] A binary relation 𝑅 defined on a non- 

empty set 𝑋 is called 

• strict order or sharp order if 𝑅 is irreflexive and transitive, 

• near-order if 𝑅 is antisymmetric and transitive, 

• pseudo-order if 𝑅 is reflexive and antisymmetric, 

• quasi-order or preorder if 𝑅 is reflexive and transitive, 

• partial order if 𝑅 is reflexive, antisymmetric and transitive, 

• simple order if 𝑅 is weakly complete strict order, 

• weak order if 𝑅 is complete preorder, 

• total order, linear order or chain if 𝑅 is complete partial order, 

• tolerance if 𝑅 is reflexive and symmetric, 

• equivalence if 𝑅 is reflexive, symmetric and transitive. 

Remark 2.7 Clearly, universal relation 𝑋2 defined on a nonempty set 𝑋remains a complete equivalence relation. 

Definition 2.8 [14] Let 𝑋 be a nonempty set and 𝑅 a binary relation on 𝑋.  

(1) The inverse or transpose or dual relation of𝑅, denoted by𝑅−1 andis defined by 

𝑅−1 ≔ {(𝑥, 𝑦) ∈ 𝑋2: (𝑥, 𝑦) ∈ 𝑅}.     (2.4) 

(2) The symmetric closure of 𝑅, denoted by 𝑅𝑠, is defined to be the set𝑅 ∪ 𝑅−1by 

𝑅𝑠 ≔ 𝑅 ∪ 𝑅−1   .   (2.5) 

Indeed, 𝑅𝑠 is the smallest symmetric relation on 𝑋 containing 𝑅.  



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 1 (2024) 

__________________________________________________________________________________ 

4359 

Proposition 2.9 [14] For a binary relation 𝑅 on a nonempty set 𝑋,  

(𝑥, 𝑦) ∈ 𝑅𝑠 ⇔ [𝑥, 𝑦] ∈ 𝑅.     (2.6) 

Definition 2.10 [4] Let 𝑋 be a nonempty set and 𝑅 a binary relation on 𝑋. A sequence{𝑥𝑛} ⊂ 𝑋 is called 𝑅-

preserving if 

(𝑥𝑛, 𝑥𝑛+1) ∈ 𝑅 ∀ 𝑛 ∈ ℕ0.  (2.7) 

Definition 2.11 [4]Let (𝑋, 𝑑) be a metric space and 𝑅 a binary relation on 𝑋.A binary relation 𝑅 on 𝑋 iscalled 

𝑑-self-closed if whenever {𝑥𝑛} is an 𝑅-preserving sequence and 𝑥𝑛
𝑑
→ 𝑥, then there exists a subsequence {𝑥𝑛𝑘} 

of {𝑥𝑛} with  

[𝑥𝑛𝑘 , 𝑥] ∈ 𝑅  ∀ 𝑘 ∈ ℕ0.   (2.8) 

Definition 2.12 [15] Let 𝑋 be a nonempty set and 𝑇 a self-mapping on 𝑋. A binary relation 𝑅 on 𝑋 is called 𝑇-

closed if for all 𝑥, 𝑦 ∈ 𝑋, 

(𝑥, 𝑦) ∈ 𝑅 ⇒ (𝑇𝑥, 𝑇𝑦) ∈ 𝑅.    (2.9) 

Proposition 2.13[6] Let 𝑋 be a nonempty set, 𝑅 a binary relation on 𝑋 and 𝑇is a self-mapping on 𝑋. If 𝑅 is𝑇-

closed, then𝑅𝑠 is also 𝑇-closed.  

Proposition 2.14[4] Let 𝑋 be a nonempty set, 𝑅 a binary relation on 𝑋 and 𝑇is a self-mapping on 𝑋. If 𝑅 is𝑇-

closed, then, for all 𝑛 ∈ ℕ0. 𝑅 is also 𝑇𝑛-closed, where 𝑇𝑛 denotes 𝑛th iterate of 𝑇.  

Definition 2.15[3] Let (𝑋, 𝑑, 𝑅) be a metric space and 𝑅 a binary relation on 𝑋. Then(𝑋, 𝑑) is 𝑅-complete if 

every 𝑅-preserving Cauchy sequence in 𝑋 converges to a point in 𝑋.  

Definition 2.16[8] Let (𝑋, 𝑑) be a metric space and 𝑅 a binary relation on 𝑋. A subset 𝐸 of 𝑋 is called 𝑅-closed 

if every 𝑅-preserving convergent sequence in 𝐸 converges to a point of 𝐸.  

Remark 2.17 Every closed subset of a metric space is 𝑅-closed, for any binary relation 𝑅. Particularly, under 

the universal relation the notion of 𝑅-closedness coincides with usual closedness.  

Definition 2.18 [17]Let (𝑋, 𝑑) be a metric space and 𝑅 a binary relation on 𝑋. Then a subset 𝐸 of 𝑋 is called 𝑅-

connected if for each pair 𝑥, 𝑦 ∈ 𝐸, there exists a path in 𝑅 from 𝑥 to 𝑦. 

Definition 2.19 [16] Let 𝑋 be a nonempty set and 𝑅 a binary relation on 𝑋. A subset 𝐸 of 𝑋 is called 𝑅-directed 

if for each pair 𝑥, 𝑦 ∈ 𝐸, there exists 𝑧 ∈ 𝑋 such that(𝑥, 𝑧) ∈ 𝑅 and(𝑦, 𝑧) ∈ 𝑅.  

Definition 2.20 [6] Let 𝑋 be a nonempty set and 𝑅 a binary relation on 𝑋. For 𝑥, 𝑦 ∈ 𝑋, a path of length 𝑘 

(where 𝑘 is a natural number) in 𝑅 from 𝑥 to 𝑦 is a finite sequence{𝑧0, 𝑧1, 𝑧2, … , 𝑧𝑘} ⊂ 𝑋 satisfying the following 

conditions:  

(i) 𝑧0 = 𝑥 and 𝑧𝑘 = 𝑦,  

(ii) (𝑧𝑖 , 𝑧𝑖+1) ∈ 𝑅 for each 𝑖(0 ≤ 𝑖 ≤ 𝑘 − 1).  

Notice that a path of length 𝑘 involves 𝑘 + 1 elements of 𝑋, although they are not necessarily distinct.  

3Results 

Theorem 3.1 Let 𝑋and 𝑌be nonempty set equipped with a binary relation 𝑅 and a metric 𝑑 such that (𝑋, 𝑑) is 

an 𝑅-complete subspace of 𝑋. Let 𝑇: 𝑋 → 𝑋 be a self-mapping. Suppose that the following conditions hold:  

(a) 𝑋(𝑇, 𝑅) is nonempty,  

(b) 𝑅 is 𝑇-closed,  

(c) either 𝑇 is continuous or 𝑅 is 𝑑-self-closed,  
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(d) there exists 𝜆 ∈ [0,1) such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆(𝑀(𝑥, 𝑦)), ∀𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝑅,  

where 

𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑥, 𝑦),

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦)
 ,

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)

𝑑(𝑥, 𝑇𝑥)𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦) }
 
 

 
 

(3.1) 

Then 𝑇 has a fixed point.  

ProofIn view of the assumption (d), we choose 𝑥0 an arbitrary element of 𝑋(𝑇, 𝑅). Construct 

a sequence {𝑥𝑛}of Picard iterates, i.e. 

𝑥𝑛 = 𝑇
𝑛(𝑥0) for all 𝑛 ∈ ℕ0.    (3.2) 

Since(𝑥0, 𝑇𝑥0) ∈ 𝑅, using assumption (b), we get 

(𝑇𝑥0, 𝑇
2𝑥0), (𝑇

2𝑥0, 𝑇
3𝑥0), … , (𝑇

𝑛𝑥0, 𝑇
𝑛+1𝑥0), … ∈ 𝑅 

Observe that 

(𝑥𝑛, 𝑥𝑛+1) ∈ 𝑅for all 𝑛 ∈ ℕ0   (3.3) 

Thus, the sequence {𝑥𝑛}is 𝑅-preserving. Applying the contractive condition (d), we have 

𝑑(𝑥𝑛+1, 𝑥𝑛+2) ≤ 𝜆(𝑀(𝑥𝑛 , 𝑥𝑛+1)) for all 𝑛 ∈ ℕ0    (3.4) 

 

where 

𝑀(𝑥𝑛 , 𝑥𝑛+1)

= 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑥𝑛, 𝑥𝑛+1),

𝑑(𝑥𝑛, 𝑇𝑥𝑛)𝑑(𝑥𝑛+1, 𝑇𝑥𝑛+1)

𝑑(𝑥𝑛, 𝑥𝑛+1)
 ,

𝑑(𝑥𝑛, 𝑇𝑥𝑛)𝑑(𝑥𝑛+1, 𝑇𝑥𝑛+1)

𝑑(𝑥𝑛 , 𝑥𝑛+1) + 𝑑(𝑥𝑛 , 𝑇𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑇𝑥𝑛)

𝑑(𝑥𝑛 , 𝑇𝑥𝑛)𝑑(𝑥𝑛 , 𝑇𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑇𝑥𝑛)𝑑(𝑥𝑛+1, 𝑇𝑥𝑛+1)

𝑑(𝑥𝑛+1, 𝑇𝑥𝑛) + 𝑑(𝑥𝑛, 𝑇𝑥𝑛+1) }
 
 

 
 

(3.5) 

= 𝑚𝑎𝑥{𝑑(𝑥𝑛 , 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2)}      (3.6) 

If for some 𝑛 ≥ 1, we have 𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤ 𝑑(𝑥𝑛+1, 𝑥𝑛+2). 

From (3.6), we get  

𝑑(𝑥𝑛+1, 𝑥𝑛+2) ≤ 𝜆𝑑(𝑥𝑛, 𝑥𝑛+1) < 𝑑(𝑥𝑛+1, 𝑥𝑛+2)  (3.7) 

a contradiction. Thus, for all 𝑛 ≥ 1, we have  

𝑚𝑎𝑥{𝑑(𝑥𝑛 , 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2)} = 𝑑(𝑥𝑛 , 𝑥𝑛+1)(3.8) 

Using (3.4) and (3.8), we get 

𝑑(𝑥𝑛+1, 𝑥𝑛+2) ≤ 𝜆𝑑(𝑥𝑛, 𝑥𝑛+1) for all 𝑛 ≥ 1  (3.9) 

Using an inductive process, we obtain 

𝑑(𝑥𝑛+1, 𝑥𝑛+2) ≤ 𝜆𝑛+1𝑑(𝑥0, 𝑇𝑥0) for all 𝑛 ∈ ℕ0.    (3.10) 

Now, consider (3.10) and triangular inequality for all 𝑛 ∈ ℕ0, 𝑘 ∈ ℕ with 𝑘 ≥ 2, we have 

𝑑(𝑥𝑛+1, 𝑥𝑛+𝑘) ≤ 𝑑(𝑥𝑛+1, 𝑥𝑛+2) + 𝑑(𝑥𝑛+2, 𝑥𝑛+3) + ⋯+ 𝑑(𝑥𝑛+𝑘−1, 𝑥𝑛+𝑘) 
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≤ (𝜆𝑛+1 + 𝜆𝑛+2 +⋯+ 𝜆𝑛+𝑘−1)𝑑(𝑥0, 𝑇𝑥0) 

= 𝜆𝑛𝑑(𝑥0, 𝑇𝑥0)∑𝜆𝑗
𝑘−1

𝑗=1

 

           (3.11) 

as 𝑛 → ∞. Thus, {𝑥𝑛} is a Cauchy sequence. Since (𝑋, 𝑑) is complete, there exists𝑥 ∈ 𝑋 

such that 

𝑥𝑛
𝑑
→ 𝑥. 

Now, we consider the following two cases: 

Case1On using assumption(c), 𝑇 is continuous, we have  

𝑥𝑛+1 = 𝑇(𝑥𝑛)
𝑑
→ 𝑇(𝑥).     (3.12) 

Owing to the uniqueness of limit, we get 𝑇(𝑥) = 𝑥. Thus,𝑥 is a fixed point of 𝑇. 

Case 2Now, assume that 𝑅 is 𝑑-self-closed. Since{𝑥𝑛} is an 𝑅preserving sequence and 𝑥𝑛
𝑑
→ 𝑥, there exists a 

subsequence{𝑥𝑛𝑟}of {𝑥𝑛} with 

[𝑥𝑛𝑟 , 𝑥] ∈ 𝑅  ∀𝑟 ∈ ℕ0.      (3.13) 

Using (d), Proposition 2.4, [𝑥𝑛𝑟 , 𝑥] ∈ 𝑅 and𝑥𝑛𝑟
𝑑
→ 𝑥, we have 

𝑑(𝑥𝑛𝑟+1, 𝑇𝑥) = 𝑑(𝑇𝑥𝑛𝑟 , 𝑇𝑥) ≤ 𝜆 (𝑀(𝑥𝑛𝑟 , 𝑥)),  

where 

𝑀(𝑥𝑛𝑟 , 𝑥) = 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑥𝑛𝑟 , 𝑥),

𝑑(𝑥𝑛𝑟 , 𝑇𝑥𝑛𝑟)𝑑(𝑥, 𝑇𝑥)

𝑑(𝑥𝑛𝑟 , 𝑥)
 ,

𝑑(𝑥𝑛𝑟 , 𝑇𝑥𝑛𝑟)𝑑(𝑥, 𝑇𝑥)

𝑑(𝑥𝑛𝑟 , 𝑥) + 𝑑(𝑥𝑛𝑟 , 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑥𝑛𝑟)

𝑑(𝑥𝑛𝑟 , 𝑇𝑥𝑛𝑟)𝑑(𝑥𝑛𝑟 , 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑥𝑛𝑟)𝑑(𝑥, 𝑇𝑥)

𝑑(𝑥, 𝑇𝑥𝑛𝑟) + 𝑑(𝑥𝑛𝑟 , 𝑇𝑥) }
 
 

 
 

 

(3.14) 

𝑑(𝑥𝑛𝑟+1, 𝑇𝑥) = 𝑑(𝑇𝑥𝑛𝑟 , 𝑇𝑥) ≤ 𝜆 (𝑀(𝑥𝑛𝑟 , 𝑥)) → 0   (3.15) 

as 𝑟 → ∞ so that 𝑥𝑛𝑟+1
𝑑
→ 𝑇(𝑥). Again, owing to the uniqueness of limit, we get  

𝑇(𝑥) = 𝑥. 

Thus,𝑥 is a fixed point of𝑇.  

Now, we prove a corresponding uniqueness result. 

Theorem 3.2In addition to the hypotheses of Theorem 3.1, suppose that the following condition holds: 

 (e) 𝑌(𝑥, 𝑦, 𝑅𝑠) is nonempty, for each 𝑥, 𝑦 ∈ 𝑋,  

Then 𝑇 has a unique fixed point. 

Proof In view of Theorem 3.1, 𝐹(𝑇) ≠ ∅. Take 𝑥, 𝑦 ∈ 𝐹(𝑇), then for all 𝑛 ∈ ℕ0, wehave 

𝑇𝑛(𝑥) = 𝑥 and 𝑇𝑛(𝑦) = 𝑦.      (3.16) 

Clearly𝑥, 𝑦 ∈ 𝑇(𝑋). By assumption (e), there exists a path (say {𝑧0, 𝑧1, 𝑧2, … , 𝑧𝑘})of some finite length 𝑘 in 𝑅𝑠 

from 𝑥 to 𝑦 so that 
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𝑧0 = 𝑥, 𝑧𝑘 = 𝑦 and [𝑧𝑖 , 𝑧𝑖+1] ∈ 𝑅 for each 𝑖(0 ≤ 𝑖 ≤ 𝑘 − 1).(3.17) 

since𝑅 is 𝑇-closed, using Propositions 2.13, we have 

[𝑇𝑛𝑧𝑖 , 𝑇
𝑛𝑧𝑖+1] ∈ 𝑅 for each 𝑖(0 ≤ 𝑖 ≤ 𝑘 − 1)and for each 𝑛 ∈ ℕ0. (3.18) 

Consider(3.16),(3.17), (3.18), assumption (d) and Proposition 2.4, we have 

𝑑(𝑥, 𝑦) ≤ 𝜆(𝑀(𝑇𝑛𝑧𝑖 , 𝑇
𝑛𝑧𝑖+1)),  

where 

𝑀(𝑇𝑛𝑧𝑖 , 𝑇
𝑛𝑧𝑖+1)

= 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑇𝑛𝑧𝑖 , 𝑇

𝑛𝑧𝑖+1),
𝑑(𝑇𝑛𝑧𝑖 , 𝑇𝑇

𝑛𝑧𝑖)𝑑(𝑇
𝑛𝑧𝑖+1, 𝑇𝑇

𝑛𝑧𝑖+1)

𝑑(𝑇𝑛𝑧𝑖 , 𝑇
𝑛𝑧𝑖+1)

 ,
𝑑(𝑇𝑛𝑧𝑖 , 𝑇𝑇

𝑛𝑧𝑖)𝑑(𝑇
𝑛𝑧𝑖+1, 𝑇𝑇

𝑛𝑧𝑖+1)

𝑑(𝑇𝑛𝑧𝑖 , 𝑇
𝑛𝑧𝑖+1) + 𝑑(𝑇

𝑛𝑧𝑖 , 𝑇𝑇
𝑛𝑧𝑖+1) + 𝑑(𝑇

𝑛𝑧𝑖+1, 𝑇𝑇
𝑛𝑧𝑖)

𝑑(𝑇𝑛𝑧𝑖 , 𝑇𝑇
𝑛𝑧𝑖)𝑑(𝑇

𝑛𝑧𝑖 , 𝑇𝑇
𝑛𝑧𝑖+1) + 𝑑(𝑇

𝑛𝑧𝑖+1, 𝑇𝑇
𝑛𝑧𝑖)𝑑(𝑇

𝑛𝑧𝑖+1, 𝑇𝑇
𝑛𝑧𝑖+1)

𝑑(𝑇𝑛𝑧𝑖+1, 𝑇𝑇
𝑛𝑧𝑖) + 𝑑(𝑇

𝑛𝑧𝑖 , 𝑇𝑇
𝑛𝑧𝑖+1) }

 
 

 
 

 

= 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑇𝑛𝑧𝑖 , 𝑇

𝑛𝑧𝑖+1),
𝑑(𝑇𝑛𝑧𝑖 , 𝑇

𝑛+1𝑧𝑖)𝑑(𝑇
𝑛𝑧𝑖+1, 𝑇

𝑛+1𝑧𝑖+1)

𝑑(𝑇𝑛𝑧𝑖 , 𝑦)
 ,

𝑑(𝑇𝑛𝑧𝑖 , 𝑇
𝑛+1𝑧𝑖)𝑑(𝑇

𝑛𝑧𝑖+1, 𝑇
𝑛+1𝑧𝑖+1)

𝑑(𝑇𝑛𝑧𝑖 , 𝑇
𝑛𝑧𝑖+1) + 𝑑(𝑇

𝑛𝑧𝑖 , 𝑇
𝑛+1𝑧𝑖+1) + 𝑑(𝑇

𝑛𝑧𝑖+1, 𝑇
𝑛+1𝑧𝑖)

𝑑(𝑇𝑛𝑧𝑖 , 𝑇
𝑛+1𝑧𝑖)𝑑(𝑇

𝑛𝑧𝑖 , 𝑇
𝑛+1𝑧𝑖+1) + 𝑑(𝑇

𝑛𝑧𝑖+1, 𝑇
𝑛+1𝑧𝑖)𝑑(𝑇

𝑛𝑧𝑖+1, 𝑇
𝑛+1𝑧𝑖+1)

𝑑(𝑇𝑛𝑧𝑖+1, 𝑇
𝑛+1𝑧𝑖) + 𝑑(𝑇

𝑛𝑧𝑖 , 𝑇
𝑛+1𝑧𝑖+1) }

 
 

 
 

 

𝑑(𝑥, 𝑦) ≤ 𝜆(𝑀(𝑇𝑛𝑧𝑖 , 𝑇
𝑛𝑧𝑖+1)) → 0       (3.19) 

as 𝑛 → ∞. 

Thus, 𝑥 = 𝑦. 

Hence 𝑇 has a unique fixed point.  

 

If 𝑅 is complete or 𝑋 is 𝑅𝑠-directed, then, we have the following Corollary.  

Corollary 3.3 Theorem 3.1 remains true if we replace condition (e) by one of the following conditions and 

retaining the rest of the hypotheses:  

(f) 𝑅 is complete,  

(g) 𝑋 is 𝑅𝑠-directed 

ProofSuppose 𝑅 is complete, then for each 𝑥, 𝑦 ∈ 𝑋, [𝑥, 𝑦] ∈ 𝑅, then we have that{𝑥, 𝑦}is a path of length 1 in 

𝑅𝑠 from 𝑥 to 𝑦 so that 𝑌(𝑥, 𝑦, 𝑅𝑠) is nonempty. By Theorem 3.1 we can gives the conclusion. Otherwise, 𝑋 is 

𝑅𝑠-directed, then for each 𝑥, 𝑦 ∈ 𝑋, there exists𝑧 ∈ 𝑋 such that[𝑥, 𝑧] ∈ 𝑅 and [𝑦, 𝑧] ∈ 𝑅so that{𝑥, 𝑧, 𝑦} is a path 

of length 2 in 𝑅𝑠 from 𝑥 to 𝑦. Hence, 𝑌(𝑥, 𝑦, 𝑅𝑠)is nonempty, for each 𝑥, 𝑦 ∈ 𝑋 and in light of Theorem 3.1 the 

conclusion is immediate.  

Now, we consider the following examples in support of Theorem 3.1 and Theorem 3.2. 

Example 3.4Consider 𝑋 = 𝑅with the usual metric𝑑 = |𝑥 − 𝑦|, then (𝑋, 𝑑) is a complete metric space. Define a 

binary relation  

𝑅 = {(𝑥, 𝑦) ∈ 𝑅2: 𝑥 − 𝑦 ≥ 0, 𝑥 ∈ ℚ} 

on 𝑋. Let 𝑇: 𝑋 → 𝑋be a mappingdefined by  

𝑇(𝑥) = 4+
1

3
𝑥. 

Observe that𝑅 is 𝑇-closed and 𝑇 is continuous. Now, for 𝑥, 𝑦 ∈ 𝑋 with (x, y) ∈ R, we have  
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𝑑(𝑇𝑥, 𝑇𝑦) = |(4+
1

3
𝑥) − (4+

1

3
𝑦)| =

1

3
|𝑥 − 𝑦| =

1

3
𝑑(𝑥, 𝑦) <

2

5
𝑑(𝑥, 𝑦), 

i.e., 𝑇 satisfies assumption (d) of Theorem 3.1 for𝜆 =
2

5
. Thus, all the conditions (a)-(d) of Theorem 3.1 are 

satisfied and 𝑇 has a fixed point in 𝑋. Moreover, here assumption (e) of Theorem 3.2 also holds and therefore, 𝑇 

has a unique fixed point (𝑥 = 6).  

Example 3.5Let𝑋 = [0,2]equipped with usual metric 𝑑 = |𝑥 − 𝑦| so that (𝑋, 𝑑) is a complete metric space. 

Define a binary relation  

𝑅 = {(0,0), (0,1), (1,0), (1,1), (0,2)} 

on 𝑋 and 𝑇: 𝑋 → 𝑋be a mapping defined by 

𝑇(𝑥) = {
0, 𝑖𝑓 0 ≤ 𝑥 ≤ 1,   
1,   𝑖𝑓 1 < 𝑥 ≤ 2.

 

Clearly, 𝑅 is 𝑇-closed but 𝑇 is not continuous. Take an 𝑅-preserving sequence {𝑥𝑛} such that𝑥𝑛
𝑑
→ 𝑥 so that 

(𝑥𝑛, 𝑥𝑛+1) ∈ 𝑅for all 𝑛 ∈ ℕ0. Observe that(𝑥𝑛 , 𝑥𝑛+1) ∉ {(0,2)} so that(𝑥𝑛 , 𝑥𝑛+1) ∈

{(0,0), (0,1), (1,0), (1,1)} ∀𝑛 ∈ ℕ0, which gives rise to{𝑥𝑛} ⊂ {(0,1)}. Since {(0,1)} is closed, we have[𝑥𝑛 , 𝑥] ∈

𝑅. Therefore, 𝑅 is 𝑑-self-closed. By a routine calculation, one can verify assumption (d) of Theorem 3.1 

with𝜆 =
1

2
. Thus, all the conditions (a)-(d) of Theorem 3.1 are satisfied and 𝑇 has a fixed point in 𝑋(𝑥 = 0). 

4 Applications 

In this section, we consider some special cases, wherein our result deduces several well-known fixed point 

theorems of the existing literature.  

4.1 Fixedpoint theorems in ordered metric spaces via comparable mappings.  

We first considerthe type of results involving comparable mappings which are contained inTurinici [1], Nieto 

and RodriguezLopez [11]and Alam and Imdad [19].  

Definition 4.1Let the pair(𝑋, ≼), stands for a nonempty set 𝑋 equippedwith a partial order ≼often called an 

ordered set wherein we generally write 𝑥 ≽ 𝑦instead of𝑦 ≼ 𝑥. Two elements 𝑥 and 𝑦 in an ordered set (𝑋, ≼) 

are said tobe comparable if either𝑥 ≼ 𝑦 or𝑦 ≼ 𝑥 and denote it as𝑥 ≺≻ 𝑦. A subset 𝐸of an ordered set is called 

totally ordered if 𝑥 ≺≻ 𝑦 for all𝑥, 𝑦 ∈ 𝐸.  

 

Nieto andRodrıguez-Lopez [11] replaced this condition by preservation of comparable elementsand proved the 

following Theorem as follows: 

Theorem 4.2 (Theorem 7, Nieto and Rodrıguez-Lopez [11]). Let (𝑋, 𝑑, ≼)bean ordered metric space and 𝑇 a 

self-mapping on 𝑋. Suppose that the followingconditions hold: 

(a) (𝑋, 𝑑) is complete, 

(b) for 𝑥, 𝑦 ∈ 𝑋∈X with 𝑥 ≼ 𝑦 ⇒ 𝑇(𝑥) ≼ 𝑇(𝑦) 𝑜𝑟 𝑇(𝑥) ≽ 𝑇(𝑦), 

(c) either 𝑇 is continuous or (𝑋, 𝑑, ≼) satisfies the following property: 

if {𝑥𝑛}is a sequence in 𝑋 such that𝑥𝑛
𝑑
→ 𝑥 whose consecutive terms arecomparable, then there exists a 

subsequence{𝑥𝑛𝑘} of {𝑥𝑛} such that everyterm is comparable to the limit 𝑥, 

(d) there exists𝑥0 ∈ 𝑋 such that𝑥0 ≺≻ 𝑇(𝑥0), 

(e) there exists 𝜆 ∈ [0,1) such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋 with  𝑥 ≺≻ 𝑦, (4.1) 
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(f) for every pair𝑥, 𝑦 ∈ 𝑋 there exists𝑧 ∈ 𝑋 which is comparable to 𝑥 and 𝑦. 

Then 𝑇 has a unique fixed point 𝑥. Moreover, for every𝑥 ∈ 𝑋, lim
𝑛→∞

𝑇𝑛(𝑥) = 𝑥. 

Theorem 4.3Let (𝑋, 𝑑, ≼)bean ordered metric space and 𝑇 a self-mapping on 𝑋. Suppose that the 

followingconditions hold: 

(a) (𝑋, 𝑑) is complete, 

(b) for 𝑥, 𝑦 ∈ 𝑋∈X with 𝑥 ≼ 𝑦 ⇒ 𝑇(𝑥) ≼ 𝑇(𝑦) 𝑜𝑟 𝑇(𝑥) ≽ 𝑇(𝑦), 

(c) either 𝑇 is continuous or (𝑋, 𝑑, ≼) satisfies the following property: 

if {𝑥𝑛}is a sequence in 𝑋 such that𝑥𝑛
𝑑
→ 𝑥 whose consecutive terms arecomparable, then there exists a 

subsequence{𝑥𝑛𝑘} of {𝑥𝑛} such that everyterm is comparable to the limit 𝑥, 

(d) there exists𝑥0 ∈ 𝑋 such that𝑥0 ≺≻ 𝑇(𝑥0), 

(e) there exists 𝜆 ∈ [0,1) such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆(𝑀(𝑥, 𝑦)), ∀𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝑅,  

where 

𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑥, 𝑦),

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦)
 ,

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)

𝑑(𝑥, 𝑇𝑥)𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦) }
 
 

 
 

(4.2) 

 (f) for every pair𝑥, 𝑦 ∈ 𝑋 there exists𝑧 ∈ 𝑋 which is comparable to 𝑥 and 𝑦. 

Then 𝑇 has a unique fixed point 𝑥. Moreover, for every𝑥 ∈ 𝑋, lim
𝑛→∞

𝑇𝑛(𝑥) = 𝑥. 

Turinici [22, 24] proved similar results besides observing that these results are particular cases of Banach 

Contraction Principle [25]and it an important generalization due to Maia [23]. Following Turinici [22,24],given 

𝑥, 𝑦 ∈ 𝑋, any subset{𝑧1, 𝑧2, … , 𝑧𝑘} (for 𝑘 ≥ 2) in 𝑋 with 𝑧1 = 𝑥, 𝑧𝑘 = 𝑦 and𝑧𝑖 ≺≻ 𝑧𝑖+1 for each 𝑖(1 ≤ 𝑖 ≤ 𝑘 −

1)is called a ≺≻-chain between 𝑥 and 𝑦. Theclass of such chains is denoted by𝐶(𝑥, 𝑦, ≺≻). 

Theorem 4.4 (Theorem 2.1, Turinici [22]). Let (𝑋, 𝑑, ≼) be an ordered metric spaceand 𝑇 a self-mapping on 𝑋. 

Suppose that the following conditions hold: 

(a) (𝑋, 𝑑) is complete, 

(b) for 𝑥, 𝑦 ∈ 𝑋∈X with 𝑥 ≼ 𝑦 ⇒ 𝑇(𝑥) ≼ 𝑇(𝑥),  

(c) 𝑇 is continuous, 

(d) there exists𝑥0 ∈ 𝑋 such that𝑥0 ≺≻ 𝑇(𝑥0), 

(e) there exists 𝜆 ∈ [0,1) such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆(𝑀(𝑥, 𝑦)), ∀𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝑅,  

where 

𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑥, 𝑦),

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦)
 ,

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)

𝑑(𝑥, 𝑇𝑥)𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦) }
 
 

 
 

(4.3) 

(f) 𝐶(𝑥, 𝑦, ≺≻) is nonempty for each 𝑥, 𝑦 ∈ 𝑋. 
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Then 𝑇 has a unique fixed point 𝑧. Moreover, for each 𝑥 ∈ 𝑋, the sequence{𝑇𝑛𝑥}isconvergent and lim
𝑛→∞

𝑇𝑛(𝑥) =

𝑧. 

Theorem 4.5 Let (𝑋, 𝑑, ≼) be an ordered metric spaceand 𝑇 a self-mapping on 𝑋. Suppose that the following 

conditions hold: 

(a) (𝑋, 𝑑) is complete, 

(b) for 𝑥, 𝑦 ∈ 𝑋∈X with 𝑥 ≼ 𝑦 ⇒ 𝑇(𝑥) ≼ 𝑇(𝑥),  

(c) 𝑇 is continuous, 

(d) there exists𝑥0 ∈ 𝑋 such that𝑥0 ≺≻ 𝑇(𝑥0), 

(e) there exists 𝜆 ∈ [0,1) such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋 with  𝑥 ≺≻ 𝑦, (4.4) 

 (f) 𝐶(𝑥, 𝑦, ≺≻) is nonempty for each 𝑥, 𝑦 ∈ 𝑋. 

Then 𝑇 has a unique fixed point 𝑧. Moreover, for each 𝑥 ∈ 𝑋, the sequence{𝑇𝑛𝑥}is 

convergent and lim
𝑛→∞

𝑇𝑛(𝑥) = 𝑧. 

Theorem 4.6 (Theorem 2.1, Turinici [24]) Let (𝑋, 𝑑, ≼) be an ordered metric spaceand 𝑇 a self-mapping on 𝑋. 

Suppose that the following conditions hold: 

(a) (𝑋, 𝑑) is complete, 

(b) for 𝑥, 𝑦 ∈ 𝑋∈X with 𝑥 ≼ 𝑦 ⇒ 𝑇(𝑥) ≼ 𝑇(𝑥), 

(c) (𝑋, 𝑑, ≼) satisfies the following property: 

if {𝑥𝑛}is a sequence in 𝑋 such that𝑥𝑛
𝑑
→ 𝑥 whose consecutive terms arecomparable, then there exists a 

subsequence{𝑥𝑛𝑘} of {𝑥𝑛} such that everyterm is comparable to the limit 𝑥, 

(d) there exists𝑥0 ∈ 𝑋 such that𝑥0 ≺≻ 𝑇(𝑥0), 

(e) there exists 𝜆 ∈ [0,1) such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋 with  𝑥 ≺≻ 𝑦,  (4.5) 

(f) 𝐶(𝑥, 𝑦, ≺≻) is nonempty for each 𝑥, 𝑦 ∈ 𝑋. 

Then 𝑇 has a unique fixed point 𝑧. Moreover, for each 𝑥 ∈ 𝑋, the sequence{𝑇𝑛𝑥}isconvergent and lim
𝑛→∞

𝑇𝑛(𝑥) =

𝑧. 

Theorem 4.7 Let (𝑋, 𝑑, ≼) be an ordered metric spaceand 𝑇 a self-mapping on 𝑋. Suppose that the following 

conditions hold: 

(a) (𝑋, 𝑑) is complete, 

(b) for 𝑥, 𝑦 ∈ 𝑋∈X with 𝑥 ≼ 𝑦 ⇒ 𝑇(𝑥) ≼ 𝑇(𝑥), 

 (c) (𝑋, 𝑑, ≼) satisfies the following property: 

if {𝑥𝑛}is a sequence in 𝑋 such that𝑥𝑛
𝑑
→ 𝑥 whose consecutive terms arecomparable, then there exists a 

subsequence{𝑥𝑛𝑘} of {𝑥𝑛} such that everyterm is comparable to the limit 𝑥, 

(d) there exists𝑥0 ∈ 𝑋 such that𝑥0 ≺≻ 𝑇(𝑥0), 

(e) there exists 𝜆 ∈ [0,1) such that  
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𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆(𝑀(𝑥, 𝑦)), ∀𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝑅,  

where 

𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑥, 𝑦),

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦)
 ,

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)

𝑑(𝑥, 𝑇𝑥)𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦) }
 
 

 
 

(4.6) 

 (f) 𝐶(𝑥, 𝑦, ≺≻) is nonempty for each 𝑥, 𝑦 ∈ 𝑋. 

Then 𝑇 has a unique fixed point 𝑧. Moreover, for each 𝑥 ∈ 𝑋, the sequence{𝑇𝑛𝑥}isconvergent and lim
𝑛→∞

𝑇𝑛(𝑥) =

𝑧. 

4.2 Fixed point theorems under symmetric closure of a binary relation.  

Now we consider the type of results involving symmetric closure of a binary relationwhich are contained 

inSamet and Turinici [17] which is also pursued in Berzig [18]. In this context, 𝑅 stands for an arbitrary binary 

relation on a nonempty set 𝑋 and𝑆:= 𝑅𝑠.  

Definition 4.8 [17]. Let 𝑇be a self-mapping on 𝑋. We say that𝑇 is comparative if for any 𝑥, 𝑦 ∈ 𝑋, 

(𝑥, 𝑦) ∈ 𝑆 ⇒ (𝑇𝑥, 𝑇𝑦) ∈ 𝑆.    (4.7) 

Remark 4.9 It is clear that 𝑇 is comparative iff 𝑆 is𝑇-closed.  

Definition 4.10 [21]. (𝑋, 𝑑, 𝑆) is regular if the following condition holds: if the sequence {𝑥𝑛} in 𝑋 and the 

point𝑥 ∈ 𝑋 are such that  

(𝑥𝑛, 𝑥𝑛+1) ∈ 𝑆 for all 𝑛 andlim
𝑛→∞

(𝑥𝑛𝑘 , 𝑥) = 0,   (4.8) 

then there exists a subsequence{𝑥𝑛𝑘} of {𝑥𝑛} such that(𝑥𝑛𝑘 , 𝑥) ∈ 𝑆 for all 𝑘.  

Remark 4.11 Clearly, (𝑋, 𝑑, 𝑆)is regular iff𝑆 is 𝑑-self-closed. 

Corollary 4.12 [18] Let(𝑋, 𝑑) be a metric space, 𝑅 a binary relation on 𝑋 and 𝑇a self-mapping on 𝑋. Suppose 

that the following conditions hold:  

(a)𝑇(𝑋) ⊆ 𝑋,  

(b) 𝑇 is comparative,  

(c) there exists𝑥0 ∈ 𝑋 such that(𝑥0, 𝑥0) ∈ 𝑆,  

(d) there exists 𝜆 ∈ [0,1) such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆𝑑(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝑆,   (4.9) 

(e) (𝑋, 𝑑) is complete and𝑋 is closed,  

(f) (𝑋, 𝑑, 𝑆) is regular.  

Then 𝑇 has a fixed point. 

Corollary 4.13 Let(𝑋, 𝑑) be a metric space, 𝑅 a binary relation on 𝑋 and 𝑇 a self-mapping on 𝑋. Suppose that 

the following conditions hold:  

(a)𝑇(𝑋) ⊆ 𝑋,  

(b) 𝑇 is comparative,  

(c) there exists𝑥0 ∈ 𝑋 such that(𝑥0, 𝑥0) ∈ 𝑆,  
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(d) there exists 𝜆 ∈ [0,1) such that  

𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜆(𝑀(𝑥, 𝑦)), ∀𝑥, 𝑦 ∈ 𝑋 with (𝑥, 𝑦) ∈ 𝑅,  

where 

𝑀(𝑥, 𝑦) = 𝑚𝑎𝑥

{
 
 

 
 𝑑(𝑥, 𝑦),

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦)
 ,

𝑑(𝑥, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)

𝑑(𝑥, 𝑇𝑥)𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑥)𝑑(𝑦, 𝑇𝑦)

𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑦) }
 
 

 
 

(4.10) 

 (e) (𝑋, 𝑑) is complete and𝑋 is closed,  

(f) (𝑋, 𝑑, 𝑆) is regular.  

Then 𝑇 has a fixed point. 

5Conclusion 

In this article, we present a generalization of the classical Banach contraction principle for complete metric 

spaces with a binary relation, where the contraction condition is weaker than usual. The contraction condition is 

required to hold only on those elements that are related by the underlying relation, rather than the entire space. 

We apply our results to prove the existence and uniqueness of solutions to a certain class of nonlinear 

contractions in a complete metric space. Our results extend and build upon existing work in the literature, and 

are supported by illustrative examples and applications that demonstrate their validity of the results. 
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