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Abstract:-Cardiovascular disease is the leading cause of death globally, with arrhythmia being a particularly 

lethal condition. Efficient and accurate identification of arrhythmia through the analysis of ECG data is crucial 

for effective treatment. Arrhythmias must be assessed when examining ECGs. This study presents a novel 

approach to automatically diagnose arrhythmia and congestive heart failure from sinus rhythm. The proposed 

method involves utilizing a multi-scale filter bank with scalograms, which makes use of preprocessed ECG data 

and non-weighted, pre-trained convolutional neural networks. Temporal frequency textures provide two-

dimensional representations of fundamental characteristics from single-lead ECG recordings. Subsequently, 

deep learning neural networks that are specifically designed for arrhythmia classification are used to label and 

classify collections of feature data. This study investigates the efficacy of deep learning models in classifying 

cardiac arrhythmias from ECG data. The study looks at how well different convolutional neural network 

architectures work by using a multi-scale filter bank and a scalogram-based representation. Pre-trained networks 

yielded classification models that were both 100% accurate and more effective than raw networks in terms of 

generalization. A comparison of models that have been trained and models that have not been trained shows that 

pre-trained networks, especially Vgg16, perform better in many ways, such as accuracy and precision. This 

suggests the potential for significant improvements in automated ECG-based diagnostics, paving the way for 

advanced, personalized healthcare solutions. 

Keywords: Multiclassification fusion (MSF), deep learning (DL), Convolutional Neural Network (CNN), 

Arrhythmias (ARR), Congestive heart failure (CHF), and Normal sinus rhythm (NSR). 

 

1. Introduction 

Arrhythmias, irregular cardiac rhythms, affect many people worldwide and pose a substantial health concern [1]. 

In addition to harmless irregular heartbeats, severe aberrant heart rhythms can cause cardiac arrest or strokes [1]. 

Thus, early detection of such illnesses improves treatment [2]. Medical professionals rely on the 

electrocardiogram (ECG) to detect arrhythmic rhythms. Due to its subtlety, clinical symptoms often impede 

diagnosis [3]. Recent deep-learning algorithms have showed promise for accurate and automated medical 

diagnosis [4-6]. Identifying arrhythmias quickly allows for dietary changes and medication therapies to prevent 

sickness worsening. Preventing strokes and heart attacks requires accurately diagnosing arrhythmias like atrial 

fibrillation and ventricular tachycardia [7-8]. A correct diagnosis allows clinicians to prevent catastrophic 

clinical occurrences by providing anticoagulant treatment or employing implanted cardioverter defibrillators 

(ICDs) [9]. Arrhythmia categorization is essential for customized treatment [9-10]. Since arrhythmias have 

several causes and treatment demands, precisely recognizing and classifying them using ECG data helps tailor 

treatment [10]. This tailored approach ensures efficient anomaly treatments [10]. Remote arrhythmia monitoring 

could revolutionize healthcare. Traditional approaches that use transient ECG evaluations struggle to detect 

arrhythmic episodes due to their rarity [11]. Early detection and efficient treatment of abnormal cardiac rhythms 

can reduce emergency department, hospital, and long-term healthcare expenses [12]. Automated arrhythmia 

detection technologies streamline patient treatment, optimize resource distribution, and may minimize financial 
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impact on individuals and healthcare systems [9]. Novel arrhythmia detection and categorization methods that 

increase accuracy, neutrality, and efficiency are needed due to conventional parameters [13]. The use of deep 

learning algorithms to automatically identify arrhythmias using electrocardiogram (ECG) measurements seems 

promising [13]. Artificial intelligence's deep learning has excelled in biomedical signal classification and protein 

detection [4-6]. Its capacity to autonomously extract complex patterns and features from raw data makes it 

excellent for ECG signal analysis and arrhythmia detection [14]. Deep learning can accurately classify 

arrhythmic ECG signals with complex temporal and spatial correlations [13]. Using deep learning algorithms 

with ECG readings can help diagnose arrhythmia. Deep learning models accurately identify arrhythmia patterns 

and characteristics in complicated ECG data. By including arrhythmia examples from big datasets, these models 

increase detection accuracy and generalization [13]. Deep learning models automate and immediately detect 

arrhythmias, reducing human interpretation and improving efficiency. After training, these models can scan 

ECG signals in real time, detect abnormal cardiac rhythms, and notify healthcare providers for further 

evaluation and treatment. Automating detection speeds up diagnosis and treatment [15]. Deep learning 

techniques on ECG signals can monitor and detect intermittent arrhythmias that brief ECG records miss [15]. 

Continuous monitoring helps identify and classify irregular heart rhythms, allowing for long-term cardiac 

rhythm study. Telemedicine and remote monitoring apps allow patients to access more healthcare services 

thanks to ongoing surveillance and powerful deep learning algorithms [15]. This study examines whether deep 

learning can automatically detect arrhythmias using electrocardiogram (ECG) data. The study's main goal is to 

develop and test improved deep-learning models that can accurately classify arrhythmias using 

electrocardiogram (ECG) data. Organization of the manuscript: Arrhythmia detection is crucial, and deep 

learning and ECG measurements can accurately and automatically detect it. The literature is then meticulously 

examined to determine past studies. The methodology section details the dataset, deep learning model structure, 

and performance evaluation criteria. After that, the findings and analysis sections compare the many DL models' 

effectiveness. The DL models detect arrhythmia using electrocardiogram (ECG) inputs well. With up to 100% 

accuracy, DL models function well. The study found that the model automates aberrant cardiac rhythm 

identification well. The results demonstrate the simplicity and operational efficiency of tiny DL models 

compared to larger ones. 

2. Literature Review 

Recently, the medical industry has experienced a significant change in which advanced computational 

approaches are being used to enhance the accuracy of traditional medical practices [13]. An area of particular 

emphasis is the electrocardiogram (ECG), which is a non-invasive device that plays a crucial role in capturing 

variations in cardiac activity. The introduction of machine learning (ML) and deep learning (DL) technologies 

has completely transformed the analysis and interpretation of ECG data, namely in the identification and 

categorization of arrhythmias [7-8]. The ECG is essential for monitoring heart rhythm. It involves inserting 

electrodes on the patient's body to capture little electrical impulses produced by the heart muscle. Nevertheless, 

the examination of these signals is challenging due to the wide range of heartbeats, the small magnitude of the 

signals, and the complexities associated with differentiating between different signal elements [7]. The main 

difficulty lies in precisely identifying and categorizing various forms of arrhythmias, a process that demands a 

considerable level of proficiency and is susceptible to human fallibility [15]. Historically, researchers have 

mostly concentrated on diminishing noise in ECG signals through the use of diverse machine-learning 

techniques, such as signal segmentation, manual feature extraction, and support vector machines [17]. In order 

to overcome the constraints of conventional machine learning techniques, scientists have resorted to 

sophisticated deep learning architectures such as recurrent neural networks (RNNs) and convolutional neural 

networks (CNNs) [4]. By preserving pertinent data that may be lost during pre-processing, these models yield a 

substantial enhancement in ECG signal analysis. The utilization of deep learning in medical diagnostics, namely 

in the automated detection of pulse and categorization of electrocardiograms (ECGs), represents a notable 

progression compared to prior machine learning (ML) methods [5]. The capacity of deep learning to abstract 

multi-level information allows it to accurately detect the inherent characteristics of ECG data. Multiple studies 

have demonstrated that deep neural networks (DNNs) outperform conventional neural networks and SVM 

classifiers in the classification of arrhythmias when utilizing raw ECG data as input [18]. Various datasets, such 
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as the PhysioNet Challenge datasets and the MIT-BIH Arrhythmia Database, have played a crucial role in this 

research [19]. Interdisciplinary research will shape deep learning ECG analysis. Computer scientists, medical 

practitioners, data analysts, and ethicists must collaborate to overcome technological, practical, and ethical 

challenges of new technology deployment. These collaborations can help create technically skilled, 

therapeutically appropriate, and ethical models. To conclude, deep learning can transform ECG analysis greatly. 

To realize this promise, advanced models must be built, integrated into medical procedures, data privacy and 

security issues resolved, ethical issues addressed, and interdisciplinary partnerships promoted. Although these 

challenges remain, deep learning can dramatically enhance heart disease diagnosis and treatment. ECG analysis 

is complicated, traditional approaches are challenging, and deep learning algorithms have made great strides. 

3. Materials and Methods 

The present article adopts a meticulously designed methodology, as elucidated in the subsequent sections. 

3.1 Dataset Overview 

This study examines how to arrange ECG samples from ARR, NSR, and CHF patients. A range of ECG 

recordings from three PhysioNet databases—MIT-BIH Arrhythmia, Normal Sinus Rhythm, and BIDMC 

Congestive Heart Failure—are used in the study. 47 participants contributed 48 half-hour two-channel ECH 

recordings to the MIT-BIH ARR Database [19]. The MIT-BIH NSR Database includes 18 extended ECG 

recordings from arrhythmia-free patients from Beth Israel Hospital's Arrhythmia Laboratory. The BIDMC CHF 

Database contains comprehensive ECG recordings from 15 severe congestive heart failure (NYHA class 3–4) 

individuals [19]. ECG recordings from 96 ARR-diagnosed, 30 NSR, and 36 CHF patients were included in the 

study. In a table [19], they listed database types, data collection methods, subject demographics, recorded 

parameters, annotations, geographical context, technical details, sample rates, goals, obstacles, practical usage, 

and scholarly references. 

3.2 Preprocessing of ECG Signals 

ECG signals must be preprocessed for accurate analysis and interpretation, especially in automated diagnostic 

systems. Best-practice ECG signal preprocessing includes several crucial steps. Noise reduction comes first. 

Finite Impulse Response (FIR) filtering maintained sign forms throughout noise removal. Electromyographic 

noise and baseline drift are reduced by bandpass filters [7-9]. Moreover, a notch filter eliminates powerline 

interference. Artifact reduction is crucial for addressing spikes or rapid variations generated by electrode 

movement or other external interferences [8-9]. Signal normalization reduces recording variability after noise 

and artifact reduction. Segmentation prepares signal segments for further steps, and the first 7.8125 s are utilized 

to test the detection algorithm's signal prediction accuracy. This stage is necessary for feature extraction, 

classification, and anomaly detection. Effective preprocessing enhances diagnostic algorithm efficiency and 

reduces automated ECG analysis system false positives and negatives.  In addition, wavelet transform 

techniques were used decades ago to extract features from ECG signals, providing a time-frequency portrayal 

that is beneficial for recognizing transitory characteristics and non-uniform elements [20]. This article uses the 

Continuous Wavelet Transform (CWT) and filter banks to capture signals at various scales and frequencies. 

This allows for detailed visualization of non-stationary ECG data. ECG data are transformed into scalogram 

images for visual and time-frequency representation. Scalograms help diagnose heart ailments by showing the 

signal's frequency content over time in a more targeted and exact manner. This enhanced representation 

improves ECG analysis and helps identify and classify signal anomalies. A 10-s NSR ECG signal and 

scalogram are shown in Figure 1.  
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Figure 1 (a) 10 s of a NSR signal (b) Scalogram of the signal in (a) 

3.3 Deep Learning Methods 

The paper discusses following deep learning architectures that combine additional deep learning network 

properties [14]: ResNet18 is an iteration of the Residual Network (RESNet) architecture, notable for its deep 

layers. It has 18 layers and is popular for picture identification. It has leftover blocks with skip connections or 

shortcuts for layer traversal. These blocks help solve the vanishing gradient problem and train more complicated 

networks. Batch normalization improves convergence and generalization by re-centering and rescaling the input 

layer. Global average pooling instead of entirely connected layers makes it computationally efficient despite its 

complexity. 

The Inception model, known for its fast calculation time and accurate image classification, has been improved in 

Inception-V3. Larger convolutions are factorized into smaller, more efficient processes to simplify processing. 

Auxiliary classifiers improve gradient flow during training. Grid size decrease allows higher-dimensional 

representation at the same computing cost. 

VggNet16: Convolutional neural network with 16 layers. Its simplicity and network-wide implementation of 

small 3x3 convolutional filters are well-known. Implementation and comprehension are simplified by its simple 

and uniform structure. Core networks with three completely connected layers might be resource-intensive. 

Transfer learning often uses pre-trained models that performed well on ImageNet. 

SqueezeNet, a powerful CNN framework, provides AlexNet-like accuracy with far less parameters. This makes 

it excellent for memory-constrained settings. It uses 'fire modules' with a compressed layer of 1x1 filters and an 

enlarged layer of 3x3 and 1x1. Compressing models is a simple way to optimize them for wearable applications. 

Its memory-efficient structure makes it suitable for peripheral devices with limited memory. 

AlexNet outperformed other convolutional neural network architectures in the 2012 ImageNet Large Scale 

Visual Recognition Challenge. AlexNet was known for its vast design, with five convolutional layers and three 

totally connected layers. The ReLU activation feature was innovative and accelerated training. Overlapping 

maximum pooling reduces network size and prevents overfitting. By intentionally building the architecture to 

use GPUs, it pioneered deep learning research. 

3.4 Implementation Approach 

The datasets categorized ECG samples into ARR, NSR, or CHF groups. We employed MATLAB for 

development. Figure 4 illustrates the arrhythmia detection process using ECG signals, comprising the following 

steps: 

A. The preprocessing steps include: 

1. Filtering of ECG signals to eliminate noise and abnormalities. 

2. Generating scalograms through a 12-octave continuous wavelet transform for time-frequency analysis. 

3. Optimizing time-frequency analysis parameters for improved visibility of specific frequency 

components. 

4. Utilizing scalograms as a visual tool for identifying irregularities in temporal frequency distribution. 
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5. Employing DL networks for the detection of abnormal ECG patterns indicative of cardiac arrhythmias. 

B. Dataset division: 80% for training, 20% each for validation and testing, utilizing 10-fold cross-validation. 

C. Design the none trained and pre-trained DL networks in (3.3) for automated detection of ARR, CHF, and 

NSR. 

D. Utilize the same loss function and optimizer  with all DL networks to achieve the classification task. 

E. Model Evaluation: Utilizing the test set for performance assessment using the following performance 

assessment metrics including accuracy, error, recall, specificity, precision, false positive rate, F1 score, 

Matthews correlation coefficient, and Kappa. 

3.5 Performance Assessment 

Performance metrics employed include the confusion matrix, accuracy, error, recall, specificity, precision, false 

positive rate, F1 score, Matthews Correlation Coefficient, and Kappa. These metrics offer nuanced insights into 

the model's classification performance. 

A. Accuracy: It measures the proportion of true results (both true positives and true negatives) among the total 

number of cases examined. 

𝐴𝐶𝐶 =
True Positives (TP)+True Negatives (TN)

Total Population (TP + TN + False Positives (FP) + False Negatives (FN))
    (1) 

B. Error Rate: It represents the proportion of all incorrect predictions out of the total number of cases. 

ER = 𝐸𝑅 =
𝐹𝑃+𝐹𝑁

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
= 1 − 𝐴𝐶𝐶       (2) 

C. Recall (Sensitivity or True Positive Rate): It measures the proportion of actual positives that are correctly 

identified. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
TP

TP+FN
          (3) 

D. Specificity (True Negative Rate): It measures the proportion of actual negatives that are correctly identified. 

𝑆𝑃𝐸 =
TN

TN+FP
          (4) 

E. Precision (Positive Predictive Value): It measures the proportion of positive identifications that were actually 

correct. 

Precision =
TP

TP+FP
         (5) 

F. False Positive Rate: It measures the proportion of actual negatives that are incorrectly identified as positives. 

𝐹𝑃𝑅 =
FP

FP+TN
= 1 − Specificity        (6) 

G. F1 Score: The harmonic mean of precision and recall, providing a balance between them. 

F1 Score = 2 ×
Precision×Recall

Precision+Recall
        (7) 

H. Matthews Correlation Coefficient (MCC): It is a measure of the quality of binary classifications, providing a 

balanced measure even if the classes are of very different sizes. 

MCC =
TP×TN−FP×FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
       (8) 

I. Kappa: It measures the agreement between two raters who each classify items into mutually exclusive 

categories. 

𝐾𝑎𝑝𝑝𝑎 =  
𝑃𝑜−𝑃𝑒

1−𝑃𝑒
          (9) 
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Where Po is the relative observed agreement among raters (i.e., the accuracy), and Pe is the hypothetical 

probability of chance agreement. 

Each of these metrics serves a specific purpose in evaluating the performance of a classification model, 

providing a comprehensive understanding of its strengths and weaknesses. The emphasis in cardiac arrhythmia 

detection is on minimizing both false positives and false negatives, ensuring precise and reliable diagnostic 

outcomes. 

4. Results and Discussion  

The described study presents a comprehensive analysis of deep learning models for cardiac arrhythmia 

classification, highlighting the effectiveness of various architectures. The training process was conducted on an 

i-core 3 Acer tablet using MATLAB, comparing five different deep learning (DL) models. Key aspects of the 

training process included: 

Learning Rate and Optimizer: An initial learning rate of 0.0005 was set for all models, with the use of an 

SGDM optimizer. 

Data Augmentation: Image sizes were adjusted to fit the DL networks, with no other augmentation techniques 

employed. 

Dropout Layer: To mitigate overfitting, a dropout layer with a probability of 0.6 was embedded in the 

networks. 

Model Performance and Comparisons 

Accuracy and Loss Function Graphs: Figures 2 illustrates the accuracy and loss functions of the pre-trained 

DL models, using training data in color and validation data in dotted black lines. 

Metric Performance: Table 1 shows metrics of the non-trained DL networks and Table 2 shows the metrics for 

the pre-trained DL networks.  

Comparative Analysis 

Analysis of Non-Trained DL Networks (Table 1): 

Table 1 Performance metrics of the non-trained DL networks 

Net\Metric ACC Err Recall Specificity Precision FPR F1_score MCC Kappa 

AlexNet 0.8438 0.1562 0.8759 0.9100 0.7982 0.0900 0.8045 0.7297 0.6484 

SqueezeNet 0.9375 0.0625 0.9167 0.9556 0.9649 0.0444 0.9339 0.9042 0.8594 

Vgg16 0.8750 0.1250 0.8690 0.9340 0.8158 0.0660 0.8333 0.7619 0.7188 

Iception-V3 0.7188 0.2812 0.7403 0.8386 0.7661 0.1614 0.7326 0.5999 0.3672 

ResNet18 0.8125 0.1875 0.7941 0.8833 0.8187 0.1167 0.8016 0.6959 0.5781 

SqueezeNet shows the highest performance in terms of accuracy (0.9375), precision (0.9649), F1_score 

(0.9339), MCC (0.9042), and Kappa (0.8594). It also has a low error rate (0.0625) and FPR (0.0444). This 

suggests a balanced and robust model for ECG signal classification. 

AlexNet and Vgg16 perform moderately well, with Vgg16 slightly better in terms of specificity and MCC. 

Iception-V3 and ResNet18 show lower performance compared to others, particularly in accuracy, precision, and 

MCC. Iception-V3 has the lowest Kappa score, indicating less agreement in its predictions. 

Analysis of Pre-Trained DL Networks (Table 2): 
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Table 2 Performance metrics of the pre-trained DL networks 

Net\Metric ACC Err Recall Specificity Precision FPR F1_score MCC Kappa 

AlexNet 0.9375 0.0625 0.9408 0.9620 0.9269 0.0380 0.9299 0.8943 0.8594 

SqueezeNet 0.9375 0.0625 0.9278 0.9744 0.8968 0.0256 0.9103 0.8797 0.8594 

Vgg16 1 0 1 1 1 0 1 1 1 

Iception-V3 0.9062 0.0938 0.9000 0.9475 0.8713 0.0525 0.8834 0.8268 0.7891 

ResNet18 0.8750 0.1250 0.9420 0.9556 0.7778 0.0444 0.8016 0.7646 0.7188 

Vgg16 stands out with perfect scores across all metrics, indicating exceptional performance in the pre-trained 

scenario. 

Both AlexNet and SqueezeNet show high performance, similar in accuracy, precision, F1_score, MCC, and 

Kappa. SqueezeNet has slightly better specificity but a lower recall than AlexNet. 

Iception-V3 shows improved performance in the pre-trained setting compared to its non-trained counterpart, 

particularly in accuracy, precision, and MCC. 

ResNet18 also improves in the pre-trained setting, with notable increases in recall and specificity, but its 

precision and MCC are lower than other pre-trained networks. 

Overall Observations: 

Pre-training generally improves the performance of DL networks in ECG signal classification. Vgg16, 

particularly in its pre-trained form, appears to be the most effective model. SqueezeNet is consistently high-

performing in both non-trained and pre-trained forms. There is a significant improvement in the performance of 

Iception-V3 and ResNet18 when pre-trained. The choice of the network might depend on the specific 

requirements of the task, such as the emphasis on recall (identifying all positives) vs. precision (ensuring 

positives are correct) or the need for a balance as indicated by the F1 score and MCC.  

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

Figure 2: the accuracy and loss functions of the pre-trained: (a) AlexNet, (b) SqueezeNet, (c)Vgg16, (d) 

Iception-V3, and € ResNet18 

5. Conclusions 

Deep learning can detect arrhythmias in electrocardiogram (ECG) readings, underscoring its usefulness in 

healthcare. This highlights the importance of these healthcare practices. The work shows how deep learning 

methods revolutionize arrhythmia therapy, a vital element of cardiac healthcare. Comparing five DL networks 

was crucial to our investigation. The findings strongly show that model complexity does not directly affect 

efficacy. Contrary to model complexity and efficiency norms, the tiny DL network model found arrhythmias 

better. Its potential as a robust and effective automated arrhythmia detection method could have major clinical 

ramifications. The study validates the potential of deep learning for automating the detection of cardiac 

arrhythmias using ECG signals. It showcases the effectiveness of pre-trained models over non-trained ones, with 

Vgg16 outperforming other architectures. These findings could revolutionize arrhythmia therapy, underscoring 

deep learning's expansive role in healthcare. The research encourages the integration of these technologies into 

clinical practice, offering a path toward more accurate and rapid diagnoses and, consequently, improved patient 

outcomes in cardiovascular care.  
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